
SIAM J. DISC. MATH.
Vol. 9, No. 1, pp. 1-6, February 1996

1996 Society for Industrial and Applied Mathematics

001

A CHARACTERIZATION OF NONNEGATIVE
BOX-GREEDY MATRICES *

ULRICH FAIGLE, ALAN J. HOFFMANn:, AND WALTER KERN

Abstract. Given an ordering of the variables according to nonincreasing coefficients of the
objective function cTx, the nonnegative matrix A is said to be greedy if, under arbitrary nonnegative
constraint vectors b and h, the greedy algorithm maximizes cTx subject to Ax

_
b, 0

_
x

_
h.

Extending a result of Hoffman, Kolen, and Sakarovitch for (0, 1)-matrices, we characterize greedy
matrices in terms of forbidden submatrices, which yields polynomial recognition algorithms for various
classes of greedy matrices. The general recognition problem for the existence of forbidden submatrices
is shown to be NP-complete

Key words, greedy algorithm, linear program

AMS subject classification. 90C27

1. Introduction. The greedy algorithm constitutes a fundamental algorithmic
principle in combinatorics and has received considerable attention within the frame-
work of linear programming. Basically, one orders the components of the objective
function according to nonincreasing values and then constructs a feasible solution for
the linear program greedily in that order of the variables. The problem is to find out
under what conditions the greedy solution is optimal.

A well-known example is the (generalization of the) matroid greedy algorithm of
Edmonds (1970), which refers to (0, 1)-constraint matrices A and is robust relative to
arbitrary linear objective functions as long as the vector b in the feasibility conditions

(1.1) Ax <_ b, x >_ 0,

corresponds to a submodular set function.
A different line of research on greedily solvable linear programs was initiated by

Hoffman, Kolen, and Sakarovitch (1985). Here the order of the variables is fixed; i.e.,
one only considers objective functions cTx, where cT (Cl,..., Cn) satisfies Cl _> c2 _>

_> cn. The matrix A is then termed (box)-greedy if the greedy algorithm successfully
solves the linear program

(1.2) maxcTx s.t. Ax <_ b, O <_ x <_ h,

relative to any feasible choice of c, b, and h. Hoffman, Kolen, and Sakarovitch show that
greedy (0, 1)-matrices A can be characterized by two simple forbidden submatrices.

It is our purpose here to provide a combinatorial characterization of arbitrary
nonnegative greedy matrices that was announced (without proof) in Hoffman (1985).
We do this in 2 by showing that it suffices to check greediness for the quasi-diagonal
submatrices of A, i.e., for those submatrices that can be brought into essentially

* Received by the editors November 23, 1993; accepted for publication (in revised form) January
27, 1995.

Department of Applied Mathematics, University of Twente, P.O. Box 217, 7500 AE Enschede,
The Netherlands (fa+/-glemath.utwente.nl and kern@math.utwente.nl).

: Department of Mathematical Sciences, IBM Research Division, T. J. Watson Research Center,
P.O. Box 218, Yorktown Heights, NY 10598 (hoffa(C)watson.+/-bm.com).

2 ULRICH FAIGLE ALAN J. HOFFMAN AND WALTER KERN

diagonal form by a suitable permutation of the rows. Checking greediness of particular
quasi-diagonal submatrices turns out to be very simple.

Our characterization yields polynomial recognition algorithms for various special
classes of nonnegative box-greedy matrices (cf. 3). The general problem turns out to
be NP-complete.

2. Greedy matrices. Let A E 11txn be a nonnegative real matrix and b E
IR, h IR be nonnegative vectors. The greedy algorithm constructs a feasible solu-
tion x* (x,..., x)T]n for the system

(2.1) Ax < b, 0 < x < h,

as follows:

FOR k= 1,...,n

max{x e]R](x,.. Xk_l,Xk X 0 O)T feasible}.

We say that the matrix A is (box)-greedy if, for any choice of b and h, the greedy
solution is optimal for the linear program

max cTx s.t. Ax <_ b, 0 < x < h,

whenever c (Cl,..., Cn)T satisfies Cl >_ c2 _> _> cn _> 0. Note that the greedy
algorithm for (2.2) depends on b and h but not on c. Our aim is to characterize
greedy matrices in terms of inherent combinatorial properties without any reference
to constraint vectors b and h. Choosing b and h appropriately, it is easy to see that
the matrix A can only be greedy if all submatrices of A are greedy. We are interested
in particular submatrices of A.

The matrix. B is a normalized submatrix of A if there is a submatrix A’ of A such
that the first element in each row of A’ is strictly positive and B arises from A’ by
dividing each row by its first element. Let B0 be the submatrix obtained by removing
the first column of B. So

B =[IlBo],
where 1 denotes the vector with all l’s of appropriate dimension.

The normalized submatrix B of A is quasi-diagonal if the rows of B0 can be
permuted so that a diagonal matrix results. With each quasi-diagonal normalized
submatrix B we associate the weight

1
(2.3) w(B) -,
where the dj’s are the nonzero entries of B0. (Set w(B) 0 if B0 contains no nonzero

element.)
The quasi-diagonal submatrix B is feasible if w(B) < 1.
LEMMA. If A is greedy, then every quasi-diagonal normalized submatrix B is

feasible.
Proof. Suppose B is normalized submatrix with w(B) > 1, where without loss of

generality B0 diag (dl,..., dk) and did2.., d :/: O.
Then the greedy algorithm yields objective function value i for the linear program

max 1Tx s.t. Bx < 1, x _> 0.

A CHARACTERIZATION OF NONNEGATIVE BOX-GREEDY MATRICES 3

Since 2 (0, d-1,. d-1) is feasible with 1Tx w(B) > 1, B is obviously not
greedy. Hence also A is not greedy. [:]

We now state a sufficient condition.
PROPOSITION. Assume that for every normalized submatrix B of A, the linear

inequality system
BoA _> 1, A >_ 0,

either is not feasible or has a solution A with IT/ <_ 1. Then A is greedy.
Proof. Consider the feasible linear program

maxcTx s.t. Ax <_ b, O <_ x <_ h,

with Cl Cn O. Among all optimal solutions for the linear program, let
2 (21,... ,2n)T be one with first component 21 as large as possible.

If 21 x, where x* (x,...,x,*) is the greedy solution, we may assume by
induction on the number of variables that

C222 -- -- Cn2n C2X2 t_

_
CnXn

and hence cTx

_
cT2, i.e., that x* is optimal.

So suppose 21 < x. We will then exhibit a feasible solution 2 (1,..., n) with
:1 21 and cTc >_ cT2, a contradiction to the choice of 2.

Let A be the submatrix of those rows Ai of A with leading coefficient all 0
and Ai2 bi, restricted to those columns AJ such that j 1 or 2j > 0. Denote by B
the normalized submatrix associated with A.

Because 21 < x, the matrix B0 has (at least) one nonzero element in each row.
Hence BoA _> 1, A _> 0, is feasible and we may assume that 1TI _< 1 holds.

Let E1) 0 be such that the vector (21 + 1,22,...,2n) does not violate any
constraint Ai outside A, and choose 2 > 0 such that

2j-2Aj_>0 for all2j >0, j>_2.

With min{l,2} > 0, we thus conclude from BoA _> 1 that the vector 2
(1, 2n)T given by

21 - if j 1,
cj 2j -eij ifj_>2and2j >0,

0 otherwise

is feasible for the linear program. Moreover, Cl

_
max{cjlj >_ 2} and 1TA

_
1 yield

cT cT2, which is the desired contradiction. [:]

Our main result asserts that the necessary condition in the lemma is equivalent
with the sufficient condition in the proposition.

THEOREM 1. Let A be a nonnegative matrix. Then A is greedy if and only if
every quasi-diagonal normalized submatrix B of A is feasible.

Proof. We show that A violates the necessary condition of the lemma if A violates
the sufficient condition of the proposition.

Suppose that B is a (row and column) minimal normalized submatrix of A such
that the linear program

(2.4) min 1T/ s.t. BoA _> 1, _> 0,

4 ULRICH FAIGLE ALAN J. HOFFMAN AND WALTER KERN

is feasible with optimal objective function value z0 > 1. We claim that B contains
some infeasible quasi-diagonal submatrix.

To fix notation, let E be the index set of the rows of B0 and El,..., Ek be the
supports of the k columns of B0. Because B0 was chosen feasible and column-minimal
with objective function value strictly greater than 1, we must have

k

EC_UE
s-----I

and E UEs fort--1,...,k.

So there are elements el,..., ek 6 E with es 6 Es and e Et for t # s. Now restrict
B to the submatrix/) consisting of the rows of B that correspond to {el,..., ek}, and
observe that B is a quasi-diagonal normalized submatrix of A. If dl,..., d are the
nonzero entries of/)0, the proof is finished once we can establish the relation

1 1

d-+--.+-=zo>l.
Let A (A,...,/k)T be an optimal feasible solution for (2.4). Then BoA > 1 implies

1
As_> s for s 1,...,k.

If 1 7 di-1, for example, then the el-constraint in (2.4) is not binding for the optimal
solution A. Hence also the linear program

min 1T s.t. BA _> 1, A _> 0,

where (2.4’) is obtained by dropping the el-constraint in (2.4), is feasible with optimal
objective function value z > 1, which contradicts the row-minimality of the ma-
trix B.

Hence we conclude

3. Recognition complexity of box-greedy matrices. For the fixed parame-
ter K _> 0, let Ad (K) be the class of all nonnegative matrices A such that the maximum
ratio of every pair of nonzero elements in each row of A is bounded by K.

COROLLARY 1. For every fixed K >_ O, there is a polynomial algorithm to decide
whether the matrix A 6 .M(K) is (box-)greedy.

Because A 6 3J(K), we know that the positive entries in each quasi-diagonal
normalized submatrix B lie in the interval [1, K]. Hence we have w(B) > 1, whenever
B0 has more than K nonzero elements. So it suffices to check the condition of Theorem
1 for quasi-diagonal normalized submatrices with at most K + 1 rows and K + 2
columns, which can be done in polynomial time for fixed K.

A further specialization yields the characterization of greedy (0, 1)-matrices as
"totally balanced" matrices due to Hoffman, Kolen, and Sakarovitch (1985).

COROLLARY 2. Let A be a (0, 1)-matrix. Then A is greedy if and only if neither
of the following two matrices occurs as a submatrix:

(110) (1 0 1)1 0 1 1 1 0

A CHARACTERIZATION OF NONNEGATIVE BOX-GREEDY MATRICES 5

Reasoning similarly as in Corollary 1, it is also easy to recognize nonnegative
greedy matrices A with arbitrary coefficients if we bound the number of rows or the
number of columns. Let us turn to the recognition complexity for general greedy
matrices. To be more precise, consider the following decision problem.

Instance. A nonnegative matrix A E Q,x.
Question. Does A contain an infeasible quasi-diagonal normalized submatrix?
THEOREM 2. The decision problem above is NP-complete.
Proof. Since infeasibility of a given quasi-diagonal submatrix can be checked in

polynomial time, the decision problem is in NP. To prove that it is NP-complete it
suffices to show that it is at least as hard as the problem of deciding whether a graph
G with n nodes has a stable set of size k + 1 (cf. Garey and Johnson (1979)).

We associate with G the (n x n)-matrix A0 (aij), where

nJ+1 if < j and ij is an edge in G,
if j,aij k --}- -0 otherwise.

Assuming n > k >_ 2, consider now the matrix A IliA0]. Clearly, if G contains a
stable set of size k + 1, A contains an infeasible quasi-diagonal submatrix B [liB0],
where the nonzero elements of B0 form a subset of the diagonal of A0.

Conversely, let B [liB0 be a normalized quasi-diagonal submatrix of A. Sup-
pose that G has no stable set of size k + 1. We claim w(B) _< 1. To verify the claim,
we distinguish two cases.

If B is a normalized submatrix of the submatrix A0, then every nonzero entry of
B0 has size at least n. So w(B) _< n. (l/n) --=, 1.

In the other case, B0 is a submatrix of A0. Because G has no stable set of size
k + 1, B0 contains at most k elements from the diagonal of A0. Hence

k x-n 1 2k 1
+ 2,nJ+l__w(B) < k + - j=

2k + 1 n2 n
<1.

4. Remarks and open problems. While Theorem 1 characterizes nonneg-
ative matrices A that are greedy relative to any box constraints 0 <_ x <_ h, it is
interesting to know the structure of general "greedy" matrices. Hoffman (1992) gives
a characterization of (0, 1)-matrices A for which the greedy algorithm solves the linear
program

max 1Tx s.t. Ax <_ b, x >_ O,

and its dual relative to any b. An extension of this result to arbitrary nonnegative
matrices is open.

We finally mention a related problem. If x* is the greedy solution to the nonneg-
ative linear program

max cTx s.t. Ax <_ b,

it is not hard to see that x* is a basic solution. Is there a "simple" way to decide
whether x* is optimal? For example, if x* is nondegenerate, it suffices to consider
the basis B associated with x* and to check whether y cTB-1 is nonnegative, i.e.,
whether the vector cTB-1 yields a dually feasible solution (cf. Kovalev and Vasilkov
(1993)).

6 ULRICH FAIGLE ALAN J. HOFFMAN AND WALTER KERN

REFERENCES

J. EDMONDS (1970), Submodular functions, matroids and certain polyhedra, in Combinatorial Struc-
tures and Their Applications, R. Guy et al., eds., Gordon and Breach, New York, pp. 69-87.

M. R. GAREY AND D. S. JOHNSON (1979), Computers and Intractability: A Guide to the Theory of
NP-Completeness, Freeman, San Francisco, CA.

A. J. HOFFMAN (1985), On greedy algorithms that succeed, in Surveys in Combinatorics, I. Anderson,
ed., Cambridge University Press, Cambridge, pp. 97-112.

A. J. HOFFMAN (1992), On simple combinatorial optimization problems, Discrete Math., 106/107,
pp. 285-289.

A. J. HOFFMAN, A. W. J. KOLEN, AND M. SAKAROVITCH (1985), Totally-balanced and greedy matrices,
SIAM J. Alg. Discrete Methods, 6, pp. 721-730.

M. M. KOVALEV AND D. M. VASILKOV (1993), The canonical order and optimization problems,
preprint, Fac. of Applied Mathematics, Belarusian State University, Minsk; Z. Oper. Res., 1996.

SIAM J. DISC. MATH.
Vol. 9, No. 1, pp. 7--18, February 1996

() 1996 Society for Industrial and Applied Mathematics
O02

EFFICIENT GOSSIPING BY PACKETS IN NETWORKS
WITH RANDOM FAULTS *

KRZYSZTOF DIKS AND ANDRZEJ PELC$

Abstract. Every node of a communication network has a constant size value which should be
made known to all other nodes. Nodes and links fail independently with constant probabilities p < 1
and q < 1, respectively. Faults are permanent and of crash type: a faulty link does not transmit
messages and a faulty node neither sends nor receives messages. In a unit of time, every node can
send a packet of information to at most one neighbor and receive a packet from at most one neighbor.
The size of each packet does not exceed b(n), where n is the number of nodes. For every > 0 we
present an algorithm to exchange values between all fault-free nodes of an n-node network in time

O(b--n) + log n), with probability exceeding 1 -n-v, for sufficiently large n. This order of magnitude
of running time is optimal.

Key words, fault, gossiping, packet, random

AMS subject classifications. 68C05, 68C25

1. Introduction. Gossiping is an important and well-studied problem in net-
work communication. Every node of a communication network has a value which
should be made known to all other nodes. Algorithms for gossiping (and closely re-
lated broadcasting) working fast and/or using few messages have been proposed by
many researchers (see [14] for an extensive bibliography).

Recently, growing attention has been devoted to broadcasting and gossiping in
the presence of faulty links and/or nodes [2]-[12], [16]-[17]. While the classic approach
assumes an upper bound on the total number of faults and their worst case location [2],
[11]-[12], probabilistic models, where links and/or nodes fail independently with con-
stant probability, have recently gained prominence [3]-[10], [16]-[17]. Two alternative
assumptions are usually made about faults: crash faults mean that a faulty component
does not send or transmit any messages [2], [4], [6]-[12], [17], while Byzantine faults
mean arbitrary, even malicious, behavior of faulty components [3], [5], [16].

In this paper we study gossiping under the assumption that nodes and links of the
network fail independently with constant probabilities p 1 and q 1, respectively.
Faults are permanent and of crash type. Since nodes can fail, the aim of gossiping
becomes the exchange of values between fault-free nodes. As always in probabil-
istic models, we seek gossiping algorithms working with high probability: exceeding
1 -n-v, for n-node networks and a fixed positive constant .

We assume that, in a unit of time, each node can send a message to at most one
neighbor and receive a message from at most one neighbor. We generalize the classic
model (cf. [14]) in which a node can send to a neighbor all information it currently has
in a unit of time: we assume that a packet of size not exceeding b(n), where n is the

* Received by the editors September 14, 1993; accepted for publication (in revised form) April
5, 1995.

Instytut Informatyki, Universytet Warszawski, Banacha 2, 02-097 Warszawa, Poland and
Ddpartement d’Informatique, Universit(du Quebec Hull, C. P. 1250, succursale B, Hull, Quebec
J8X 3X7, Canada. The research of this author was partially supported by a Natural Sciences and
Engineering Research Council of Canada International Fellowship and grant KBN 2-2043-92-03.

SDepartement d’Informatique, Universite! du Quebec Hull, C. P. 1250, succursale B, Hull,
Quebec J8X 3X7, Canada. The research of this author was partially supported by Natural Sciences
and Engineering Research Council of Canada grant OGP 0008136.

8 KRZYSZTOF DIKS AND ANDRZEJ PELC

number of nodes, can be sent in a unit of time. For simplicity we assume that node
values are 0 or 1, although any constant length values would increase the execution
time of the algorithm by only a constant factor, thus leaving our result unchanged.
For b(n) >_ n our model coincides with the classic one, while for constant b(n) it is
equivalent to the linear model (cf. [15]) with negligible start-up time.

Our algorithm is synchronous (a global clock is assumed) and nonadaptive. The
latter means that all transmissions are scheduled in advance: before starting the
execution, it is determined which nodes communicate in a given time unit; we do not
assume the ability of nodes to choose message recipients depending on the success or
failure of previous communications.

We assume that every pair of nodes can communicate directly, i.e., the underlying
network is complete. It turns out, however, that our algorithm uses only links of a
specific, much sparser network of logarithmic degree. The topology of this network will
follow from our presentation, and we will indicate how our algorithm can be modified
to work for a large class of underlying networks of logarithmic degree (and for all
networks containing them as subgraphs).

For every r/ > 0, we design an algorithm to exchange values between all fault-
O nfree nodes. Our algorithm works in time (b-(+ log n), with probability exceeding

1 -n-v, for a sufficiently large number n of nodes in the network. We count total
execution time, including transmissions and local computations in nodes. This order of
magnitude is clearly optimal under our assumptions, even without faults: logarithmic

ntime is needed to broadcast a single bit and time (b-(-) is needed to read all values
by one node. Our result should be compared to that from [6], where a broadcasting
algorithm working in logarithmic time has been given under the same assumptions.
On the other hand, in [8], linear time gossiping has been described assuming fault-free
nodes and random faults of individual transmissions (as opposed to permanent link
failures).

Two main techniques are used. The first concerns gossiping by packets of size
1: messages are sent along edges of expander graphs to ensure information exchange
in linear time with high probability. The second is a modification of the nonadaptive
broadcasting algorithm from [6] and is used to gossip in subnetworks of size not ex-
ceeding that of the packet. We describe in detail and analyze the first technique, which
is the main contribution of this work, and briefly indicate the required modifications
of [6] to our present setting.

The paper is organized as follows. In 2 we give some preliminary notions and
results to be used later. Section 3 is devoted to the description of our algorithm for
b(n) 1 under the additional assumption that node and link failure probabilities
are sufficiently small. In 4 we prove that our gossiping algorithm for b(n) 1 works
correctly with probability exceeding 1-n-, for sufficiently large n. In 5 we show how
to modify our algorithm for arbitrary failure probabilities. Finally, in 6 we describe
the gossiping algorithm for packets of arbitrary size.

2. Preliminaries. For any finite set X, IX denotes the number of elements of
X. For a real x, [x denotes the smallest integer greater than or equal to x, and [xJ
denotes the largest integer less than or equal to x. We use log x for the logarithm
with base 2. For any graph G and any set X of nodes of G, Fc(X) denotes the set
of all neighbors of nodes from X in graph G. If G (A, B, E) is a bipartite graph
with sets of nodes A, B and set of edges E, G is called an (a,/, n,d)-expander if
[A[IB[n, the degree of each node is d, and, for all X c A such that IZl <_ an,
we have IF(X)[_> [X[.

GOSSIPING WITH RANDOM FAULTS 9

We will use the following result (cf. [1]).
PROPOSITION 2.1. For any a < 1 and such that a < 1 there is an explicit

construction of an (a, , m, d)-expander with d <_ 8(1
The following version of the Chernoff bound has been derived in [13]. It estimates

the probability that at least r successes are obtained in a series of n Bernoulli trials
with success probability p. Let S denote the number of successes in such a series.

PROPOSITION 2.2. Pr(S >_ r) <_ 2-r, for r >_ 6pn.
Let be a fixed positive constant and b: N - N a function. An algorithm is

called rt-safe b(n)-gossiping if it exchanges values between all fault-free nodes of an
n-node network using packets of size b(n), with probability exceeding 1 -n-, for
sufficiently large n.

3. Gossiping with packets of size 1. In this section we describe a gossiping
algorithm for packets of size 1 under the additional assumption that failure probabil-
ities are sufficiently small. In 5 we will show how this assumption can be removed.

We first define networks that support our algorithm. Let c be a sufficiently large
constant (depending on failure probabilities but not on the number of nodes) and let
m [clog n, where n is the number of nodes. For simplicity we assume that m
divides n; otherwise the algorithm can be easily modified. We partition the set of all
nodes into k n/m pairwise disjoint sets V0,..., Vk-1 of size m. These sets will be
called groups. Nodes v V and w t are joined by a link if and only if li- J is 1
or k- 1 (el. [3], [5], where similar graphs called "fat rings" have been used). We will
use the convention that operations on indices of groups V are performed modulo k.

Let a > 0 and/ > 1 be such that c/ < 1. Let d be a positive integer for which
an (a,/, m, d)-expander is explicitly constructible, by Proposition 2.1. Let p0 and q0

be positive constants such that 6p0 and 5 6q0 satisfy the following conditions:
5 < 1, s + a < 1, and/a/2 a/2 had > 0. We describe our algorithm assuming
that node failure probability p is less than p0 and link failure probability q is less
than q0.

We start by presenting the idea of the algorithm. During its execution, every node
stores already obtained values of other nodes in a vector A whose terms are initialized
to a special symbol *. When a node is supposed to transmit a value of another node,
it transmits the symbol from the appropriate term of its vector A (0, 1, or *), thus
using two bits (and two time units) per symbol. Upon completion of the algorithm all
nodes have the symbol * as the value of faulty nodes only, and correct values, 0 or 1,
of fault-free nodes, with high probability.

The algorithm works in three stages. In stage 1 all nodes of group V send their
values to all other nodes in this group, using consecutive nodes in V+ as interme-
diaries. This is done in time O(m2). It will be proved that upon completion of this
stage, every fault-free node knows the values of all other fault-free nodes in its group,
with high probability.

The aim of stage 2 is to transmit information on all fault-free nodes in the network
to many nodes in each group, with high probability. For every i < k we use an
(,/,m,d)-expander G (, V_,E). (Expanders were used in a similar context
in [1].) Links in E are partitioned into d disjoint perfect matchings FI,..., Fd. For
every v we denote by a(v, r) the node in -1 matched with v by F[. Similarly,
for every w V-i we denote by b(w, r) the node in V matched with w by F(. Stage
2 operates in k- 1 rounds. Before round j 0,..., k- 2, some fault-free nodes
in each group are called informedthey have value 1 assigned to a special register
D, and other fault-free nodes are not informed and their value of D is 0. Before

10 KRZYSZTOF DIKS AND ANDRZEJ PELC

round 0, D is set to 1 for all nodes. During round j, every informed node w E V-I
informs nodes b(w, r), for r 1,..., d, in d consecutive steps (in each step nodes act
in parallel). First it sends its value D and then all values of nodes in V_I_j (some of
these values may be *). Each step takes time O(m) and thus each round is executed
in time O(m) as well. A node v E , which had register D set to 1 before round j
and obtained value D 1 from a node a(v, r) during this round, keeps its register D
set to 1 and is considered informed after round j. Otherwise, node v sets its register
D to 0 and remains uninformed until the end of stage 2. It will be proved that upon
the completion of stage 2, at least (1-- a/2)m fault-free nodes in each group have
register D set to 1 and know the values of all other fault-free nodes in the network, with
high probability. Stage 2 consists of k- 1 rounds, each taking time O(m), for a total
time O(n).

Stage 3 is devoted to informing nodes that have not yet obtained all information
after stage 2: those that have register D set to 0. Every such node v V obtains
information from informed nodes in +1. This is done in three steps. First, all nodes
from V+I send the value of their register D to all nodes in V, in time O(m). In the
second step, every node v V requests a portion of total information from all nodes in

V+I from which it obtained D 1. We shall prove that, with high probability, there
are at least m0 (1- 5)(1-- a/2)m such nodes in V+I. Node v sends consecutive
integers i 1,..., m0 to the first m0 of these nodes in V+I (for simplicity we assume
that m0 is an integer: it is easy to modify the algorithm in the general case); log m time
units are reserved for the transmission of each integer. Since transmissions must be
scheduled in a nonadaptive way, all nodes from V must be able to send these integers
to all nodes in V+I. This can be done in time O(m log m). The third step consists
of informed nodes from V+I sending the requested portion of information to nodes
v V which sent the request. Every node divides the set of all nodes into m0 sets
P1,..., P-o of size l0 n/mo. The partition is identical for all nodes. (Again, without
loss of generality, we assume that l0 is an integer.) If node v V sent integer j to an
informed node w, node w interprets this as a request for portion Pj of information. It
sends values of nodes from Pj to node v in the third step, which (for all possible v)
takes time O(mlo) O(n). This concludes stage 3, which takes total time O(n).

It should be noted that, although some actions in the algorithm execution are
conditional, the algorithm remains nonadaptive in the sense that all transmissions to
be performed in a given time unit are scheduled in advance. A node may choose the
message to be sent or refrain from sending any message at a given time, but a fixed
receiver for a particular node and time unit is reserved in advance.

We now proceed to a more formal description of our gossiping algorithm. For
every node x, Ax denotes the content of register A in this node. We use the elementary
procedure SEND(x, A, y, B, t) for adjacent nodes x, y and registers A in node x and
B in node y that consists of the following actions:

1. x sends a t-bit long message Ax to y.
2. y assigns Ax to its register B if it got the message; otherwise it does nothing.
The parameter t indicates the length of the message transmitted in a particular

SEND procedure and the time reserved for its execution. Since possible node values
that are transmitted during algorithm execution are 0, 1, or ,, to send them we need

The algorithm is preceded by the initialization of all registers. We now explain
the role of each register and specify how it is initialized. Every node v E t of the
network uses the following registers:

GOSSIPING WITH RANDOM FAULTS 11

Val: used to store the original value of the node. Val is initialized to 0 or 1 and
never changed.

A[x], for all nodes x: used to store the value of node x obtained during execu-
tion. A[x] is initialized to *, for x v, and to Val, for x v.

B Ix], for all nodes x E V-I: used to store the value of node x from the
neighboring group in the first part of stage 1. B[x] is initialized to *.

C[x, y], for all nodes x E V, y V+I: used to store the value of node x obtained
from node y in the second part of stage 1. C[x, y] is initialized to *.

D: used to determine if the node is informed. D initialized to 1.
M[r], for r 1,..., d: used to receive the content of register D from a node in

/--1 in stage 2. M[r] is initialized to 0.
N[r], for r 1,..., rn: used to receive the content of register D from a node in

+1 in stage 3. N[r] is initialized to 0.
S: used to keep the current index of the requested set Pi. S is initialized to 1.

Z[r], for r 1,..., rn: used to receive the index of the set Pi of nodes whose
values are requested in stage 3. Z[r] is initialized to 0.

We now describe three subroutines used in our gossiping algorithm. The first
of them corresponds to stage 1 of the algorithm: values are exchanged among nodes
of the same group via the neighboring group. For i < k, let HI,...,H be a fixed
partition of all links between Y and +1 into disjoint perfect matchings. For every
v V, we denote by h(v, r) the node in Y+l matched with v by H. Similarly, for
every w Y+l, we denote by g(w, r) the node in matched with w by H.
procedure EXCHANGE (i)

for r - 1 to m do
for all v in parallel do
SEND(v, Val, h(v, r), B[v], 2)

for r - 1 to m do
for all v E do

for all w +1 in parallel do
SEND(w, B[v], g(w, r), C[v, w], 2)
if C[v, W]g(v,r) then do

A[v]g(,r) - C[v, w]g(,).
The first external loop takes time O(m) and the second takes time O(m2). Execution
time of procedure EXCHANGE is O(m2).

The next subroutine corresponds to one round of stage 2. We keep notation from
our informal description.

procedure NEXT (i, round)
for r - 1 to d do

for all v -1 in parallel do
ifD 1 then do
SEND(w, D, b(w, r), M[r], 1)
for all v Y/_l_round do
SEND(w, A[v], b(w, r), A[v], 2)

for all u V in parallel do
if (M[r]u 0 for all r _< d) then do
Du -0.

The first external loop takes time O(m) and the second takes constant time. Execution
time of procedure NEXT is O(m).

12 KRZYSZTOF DIKS AND ANDRZEJ PELC

The final subroutine corresponds to stage 3: informing nodes not yet informed.
The meaning of h(v, r) and g(w, r)is as before.

procedure FINAL(i)
for r -- 1 to m do

for all v V+I in parallel do
SEND(w, D, g(w, r), N[r], 1)

for r - 1 to m do
for all v in parallel do

if N[r] 1 and S

_
m0 then do

SEND(v, S, h(v, r), Z[r], log n)

for r - 1 to m do
for all v +1 in parallel do

if Z[r] > 0 then do
for all u Pz[] do
SEND(w, A[u], g(w, r), A[u], 2).

The first external loop takes time O(m), the second takes time O(logn log m), and
the third takes time O(n). The execution time of procedure FINAL is O(n).

Our algorithm can now be written as follows.

algorithm GOSSIP
for all < k in parallel do
EXCHANGE(i)

for round - 0 to k- 2 do
for all i < k in parallel do
NEXT(i, round)

for all < k in parallel do
FINAL(i).

Execution time of algorithm GOSSIP is O(m2 + km + n) O(n).
We conclude this section by pointing out that, although our algorithm has been

described for particular networks of logarithmic degree, a much wider class of networks
could be used with only minor algorithm modifications. Let H be any k-node graph of
bounded degree (independent of the number of nodes). Replace every node of H by a
group of [c log k] nodes, for sufficiently large c. For adjacent nodes v and w of H, join
all nodes of the group corresponding to v with all nodes of the group corresponding
to w. The obtained network H* (and every network containing H* as a subnetwork)
supports a suitably modified gossiping algorithm. Instead of operating on the cycle
1/,..., V_ of groups (as algorithm GOSSIP does), the modified algorithm would
operate on the tree of groups obtained from a spanning tree of H. The details of
modification are left to the reader.

4. Probability of correctness. In this section we prove that if failure probabil-
ities p and q satisfy the conditions imposed at the beginning of 3, then the algorithm
GOSSIP is -safe, for a sufficiently large constant c. Fix r > 0. Let p0, q0, , 5, a, and
Z be as required in 3. We assume that the constant c (for which m [clog HI) is
sufficiently large and depends on p, q, and , but not on n.

LEMMA 4.1. Assume that p < po. Let E be the event that in each group there
are at most sm faulty nodes. Then

Pr(E1) > 1- n-/4,

GOSSIPING WITH RANDOM FAULTS 13

.for sufficiently large n.

Proof. The probability that in a given group V there are at least Cm faulty nodes
is at most 2-era, in view of Proposition 2.2. Hence,

Pr(E1) :> 1 k. 2-m > 1 n-v
for sufficiently large c and n.

LEMMA 4.2. Let E2 be the event that, upon the completion of stage 1 of the
algorithm, all fault-free nodes know the values of all other fault-free nodes in their
group. Then

Pr(E2) > 1 n-/4,

for sufficiently large n.

Proof. Fix distinct nodes u, v E V. The probability that at least one path u-
w- v, where w E +1, has both links and the middle node fault free is equal to

1-(1-(1-q)(1-p))".

Hence,
Pr(E2) _> 1- km2(1- (1- q)2(1- p))m > 1- n-?/4,

for sufficiently large c and n.
Before formulating the next lemma we need to introduce the following definition.

Let v t. A thread of length j 0, 1,... ,k- 1, ending at node v, is a sequence
v vj, vj-1,..., vo, where, for every s <_ j, vj-s - and link vj-+l -vj_ is an
edge of the expander Gj_+I. A thread is open if all its links and nodes are fault free.

LEMMA 4.3. Assume that p < po and q < qo. Let E3 be the event that at least
(1 -- a/2)m nodes in each group are ends of an open thread of length k- 1. Then

Pr(E31E1) > 1- n-/4,

for sujficiently large n.

Proof. Assume that event E holds. Let Fj, for j < k, be the event that at least
(1 a/2)m nodes in each Y are ends of an open thread of length j. We will prove
by induction on j that Pr(Fj) _> 1- jk2-d[m/2l.

In view of event El, at least (1- e)m nodes in each are fault free and all
of them are ends of an open thread of length 0. Thus Pr(F0) 1. Suppose that
Pr(Fy) _> 1- jk2-d[m/21 and assume that Fj holds. Fix i < k. Let X0 be the set
of fault-free nodes in Y that are not ends of an open thread of length j / 1. Suppose
that IXol >_ m(/2. Take X C X0 of size [ma/2. For sufficiently large m, IXI _< cm.
Consider any node v X. For every node w Y-i linked with v by an edge of the
expander Gi, either w is not an end of an open thread of length j or the link v w is
faulty.

Let Y be the set of edges of the expander Gi incident to nodes from X. Thus
IYI d[mo/2. Let F*(i) be the event that at most 5d[mo/2 links from Y are faulty.
By Proposition 2.2, Pr(F*(i)) _> 1 2-d[m/2]. Assume that F*(i) holds. By the
property of the expander Gi, IFa(X)I _> [am/2]. At least [am/2 -m- real2
nodes in Fv (x) are ends of an open thread of length j. Each of those nodes is linked
by at least one link from Y to a node in X. At most 5d[ma/2] of these links re faulty.
For sufficiently large m we have

;3[am/2] m ma/2 5d[am/2] >_ m/2 m ma/2 5dma,

14 KRZYSZTOF DIKS AND ANDRZEJ PELC

which is positive by the choice of our constants. Thus, at least one node w E IV-I
is an end of an open thread of length j linked to a node v E X by a fault-free link.
Hence, v is an end of an open thread of length j + 1, which contradicts the definition
of X.

This implies that if events Fj and F*(i) hold, then IX01 < mc/2 and hence at
least (1 e c/2)m nodes in are ends of an open thread of length j + 1. Let F*
be the intersection of events F*(i) over all < k. Hence Pr(F*) >_ 1- k. 2-d[’/2].
We have

F+ F a F*;

hence, by the inductive hypothesis,

Pr(Fj+l) _> 1 (j + 1)k. 2-Sd[ma/2].

By induction we get
Pr(Fk-1) >_ 1 ke2-Sd[’/]

(assuming that E1 holds).
Since Ea Fk-1 we have

Pr(EaIEi) > 1 n-V

for sufficiently large c and n.
LEMMA 4.4. Assume that p < po and q < qo. Let E4 be the event that, upon the

completion of stage 2 of the algorithm, at least (1-- (/2)m fault-free nodes in each
group know the values of all other fault-free nodes. Then

Pr(Ea) > 1 3n-V/4,

for su]flciently large n.

Proof. Since E4 D E1 ffl E2 CI Ea, the conclusion follows from Lemmas 4.1, 4.2,
and 4.3.

The following theorem is the main result of this section.
THEOREM 4.5. Assume that p < po and q < qo. Then the algorithm GOSSIP is

Proof. Assume that event E4 holds. For every < k, let Wi c be the set of
those fault-free nodes in that know the values of all other fault-free nodes, after stage
2 of the algorithm. Thus IWil _> (1 /2)m, for all < k. Fix < k and consider
v V. Let Fv be the event that at least (1- 5)[Wi+ll links joining v with nodes from

Wi+l are fault free. By Proposition 2.2, Pr(Fv) >_ 1 2-51Wi+il

_
1 2-(1--/2)".

Let F be the intersection of events F over all nodes v in the network. Thus,

Pr(F) _> 1 n2-5(1-e-a/2)m > 1 n-’/4,

for sufficiently large c and n. If events E4 and F hold, every node v can commu-
nicate during stage 3 with at least mo (1- 5)(1- e- c/2)m nodes from +1 which
already had values of all fault-free nodes after stage 2, for all < k. This implies that,
assuming E4 fl F, all fault-free nodes will get values of all other fault-free nodes after
stage 3. Since er(E4) > 1 an-v by Lemma 4.4, and er(F) > 1 -n-V we get
Pr(E4 fl F) > 1- n-v, for sufficiently large n, which shows that algorithm GOSSIP is

r-safe. D

GOSSIPING WITH RANDOM FAULTS 15

5. Modifications for arbitrary failure probabilities. In this section we
show how our 1-gossiping algorithm should be modified in case of arbitrary node
failure probability p < 1 and link failure probability q < 1.

Let P0 and q0 be as described in 3. Let c be a constant sufficiently large that
our previous arguments hold for node and link failure probabilities less than p0 and
q0, respectively. Let p (1 and q (1 be arbitrary node failure and link failure
probabilities. Define K0 to be the least integer satisfying the following conditions:

K0/(1 6p) is an integer.

" 2-K6p/(1-6p) Po.

" 2(Kol_-p)qK < qo.

Let L0 K0/(1 -6p). A supernode is a set of L0 nodes. A superlink joining
two disjoint supernodes $1 and $2 is the set of all links u- v, for u E $1, v E $2.
A supernode is called faulty if less than K0 of its nodes are fault free. A superlink
joining supernodes $1 and $2 is called faulty if there exists a node v $1 which is
not joined by a fault-free link with any fault-free node in 5’2 or there exists a node
w $2 which is not joined by a fault-free link with any fault-free node in $1. Thus, a

supernode is faulty if at least L0 K0 6pLo of its nodes are faulty. The probability
of this event does not exceed 2-6pLo < p0. The probability that a superlink joining
and $2 is faulty does not exceed 2LoqKo < qo.

We first slightly modify the network supporting our algorithm. Let m [c log
as before. For simplicity assume that m mLo divides n (it is easy to adjust the
argument in the general case). We partition all nodes into k groups V,..., V,_ of
size m.

The algorithm is modified as follows. Stage 1 is executed as before. In stage 2 we
partition each group V/ into rn disjoint supernodes and consider (c,/, m, d)-expa,nders
G on supernodes from V(and V(_I" nodes of G are supernodes and links of G are
superlinks joining them; G is isomorphic to the expander Gi used in 3. Procedure
NEXT is now executed using G instead of Gi" whenever, in the original version of
NEXT, node v V/_ communicated with node w , in the modified version of
NEXT, corresponding supernodes v and w communicate; that is, every node in v
sends the respective message to every node in w. Since the size of the supernodes
is constant, execution time may increase only by a constant factor. Since supernode
and superlink failure probabilities are less than p0 and q0, respectively, our previous
arguments show that, after the modified stage 2, at least (1 -- a/2)m fault-free
supernodes in each group V(know that the values of all fault-free nodes, with high
probability. (A fault-free supernode S is said to know values of all fault-free nodes if
some fault-free node v E S knows all these values.) It follows that, after the modified
stage 2, at least (1 -- a/2)m fault-free nodes in each group V/ know the values
of all other fault-free nodes, with high probability. Now stage 3 can be executed as
before, with one modification: instead of m0 (1- 5)(1- - a/2)m we should
take m mo/Lo. This can increase execution time by only a constant factor. An
argument similar to that from the proof of Theorem 4.5 can be used to show that
after (the modified) stage 3, all fault-free nodes know the values of all other fault-free
nodes, with probability exceeding 1- n-v, for sufficiently large n. This proves the
following result.

THEOREM 5.1. For any node failure and link failure probabilities p < 1, q
1, and for any constant > O,-safe 1-gossiping among n nodes can be done in
time O(n).

16 KRZYSZTOF DIKS AND ANDRZEJ PELC

6. Gossiping with arbitrary packets. We start with the description of gos-
siping when packets are large. Fix /> 0 and let c be a constant depending on ; c will
have to be sufficiently large to ensure -safe gossiping. We first construct an r/-safe
b(n)-gossiping algorithm working in time O(b-n + log n) under the assumption that
b(n) >_ 2 c log n. Suppose that n is large enough to satisfy In/log nJ _> 2 [c log n. Let
r min(b(n), In/log nJ). For simplicity, assume that r divides n and [c logn divides
r (it is easy to modify the algorithm in the general case).

Partition the set V of all nodes into s n/r pairwise disjoint sets V0,..., V_ of
size r and partition each set V into t r/[c logn subsets Vk, k 0,..., t 1 of size
[c log n]. By assumption, t >_ 2.

Our algorithm works in two phases. In the first phase nodes exchange their values
in each set V independently and in the second phase information is exchanged between
sets V.

Phase I is performed in all sets V in parallel. We describe it for a fixed set V.
It is very similar to the algorithm NBA from [6]. The only difference is this: NBA
consisted of three identical stages, while in our present phase I there are four identical
stages, each of them as in NBA. We refer the reader to [6] for a detailed description
of a stage and merely point out the role of the additional stage in the present setting.
As in [6], sets Va are organized in a complete binary tree of size t _> 2 with V in
the root. Every node in the set Vj is connected with all nodes in the parent set. The
role of the additional stage is to transmit the value of each fault-free node in to
some fault-free node in the root V, with high probability. The aim of the remaining
three stages is identical to that in NBA: broadcasting from V to all remaining nodes.
Since the size r of V does not exceed the size b(n) of a packet, phase I works in
time O(log n), similarly as NBA, and an analysis analogous to that from [6] yields the
following lemma.

LEMMA 6.1. Assume b(n) >_ 2[clogn. For every > 0 and every i < s, there
exists a constant c such that (1 -f l)-safe b(n)-gossiping can be done in 4 in time
O(log n).

Since s < n, Lemma 6.1 implies the following corollary.
COROLLARY 6.2. Assume b(n) >_ 2[clogn. For every 1 > 0 there exists a con-

stant c such that after phase I every fault-free node in Vi knows values of all other
fault-free nodes in Vi, for all i < s, with probability exceeding 1 -n-v, for suJ:ficiently
large n. rl

Before describing phase II of our algorithm we consider the following auxiliary
problem. Let W0,..., W_ be pairwise disjoint sets of size [c log n. Nodes v Wi
and w Wy are joined by an edge if and only if-li- Jl is 1 or s- 1 (cf. groups V
from 3). Each fault-free node in W initially has the same information c(i) consisting
of a bits. Nodes can exchange packets of size b with their neighbors. The aim of b-

8--1GROUP-GOSSIPING (W0,.. W-I) is that every fault-free node v LJi=0 Wi know
all information (i), for i < s.

The above problem can be solved by slightly modifying algorithm GOSSIP from
3. Indeed, it is enough to delete its stage 1 (communication inside groups) and
allow transmissions of packets of size b in a unit of time. Since initial information
at each node now has size a, the algorithm GOSSIP thus modified works in time

o(r l + n).
The analysis from 4 yields the following lemma.
LEMMA 6.3. For every 1 > 0 there exists a constant c such that b-GROUP-

GOSSIPING (W0,..., W_) can be done in time o(sr + logn), with probability

GOSSIPING WITH RANDOM FAULTS 17

exceeding 1 n-(l+n), for suJficiently large n. [3

Now it is easy to describe phase II of our algorithm: b(n)-GROUP-GOSSIPING
(V03,..., vsJ_l) is performed for all j < t, in parallel. In our case a(i), for < s, is the
set of all values of nodes in (each value is 0, 1, or *). Thus a E O(r) and S[b-) E

O(bnr) O(b-n))" Consequently, the algorithm works in time O(bn) + log n).
Corollary 6.2, together with Lemma 6.3, yields the following result.
LEMMA 6.4. Assume b(n) >_ 2[clogn. For every > 0 there exists a constant c

such that rl-safe b(n)-gossiping can be done in time 0(4-log n). [3

It remains to describe the gossiping algorithm for small packets, i.e., when b(n) <
2[clog n. In this case we take r [clog n and partition the set V into s n/r
pairwise disjoint sets V0,..., V-I of size r. (Again we assume for simplicity that r
divides n.) We only change phase I of the algorithm described earlier in this section,
leaving phase II as before. As before, the aim of the new phase I is to exchange values
inside each set V, independently and in parallel. We describe it for a fixed i < s. Let
Ei be the set of edges of the complete graph on vertex set V and let F,..., F+
be a partition of Ei into r + 1 pairwise disjoint matchings. Now phase I consists of
two stages, each executed in r 4- 1 steps. In the jth step of each stage every node
u V communicates with the node v V for which the edge {u, v} is in F. In stage
1, nodes u and v exchange their values (if both are fault free): this takes 1 unit of
time. In stage 2 nodes u and v exchange all r values obtained in stage 1, subsequently
updating previously stored values: * is first stored as a value of every node w and then
replaced by 0 or 1 as soon as this value of w is obtained. Every step of stage 2 takes

[-) time units and thus phase 1 is now executed in time O(r 4- [-). r), which

is O(log2 n) in view of the assumption b(n) < 2[clog n 2r. This is dominated by
execution time O(b-)) of the second (unchanged) phase.

Since every pair of fault-free nodes in , < s, communicates via r- 2 distinct
intermediary nodes, the probability of exchanging information between such a pair is
1 (1 -(1 -p)(1 -q)2)r-2. It follows that all pairs of fault-free nodes in V exchange
information with probability exceeding 1 r2(1 (1 p)(1 q)2)r-2, which is larger
than 1 n-(l+n), for sufficiently large c and n. This implies the following lemma.

LEMMA 6.5. Assume b(n) < 2[clogn]. For every rl > 0 there exists a constant
c such that after phase I every fault-free node in knows values of all other fault-
free nodes in , .for all < s, with probability exceeding 1- n-n, for sufficiently
large n. [3

Since phase II and its analysis remain unchanged for b(n) < 2[clog u, Lemmas
6.4, 6.3, and 6.5 imply our main result, Theorem 6.6.

THEOREM 6.6. For every > O,-safe b(n)-gossiping can be done in time

+
We conclude the paper by pointing out which networks support our gossiping

algorithm for packets of arbitrary size. If b(n) < 2[c log hi, these are networks similar
to the network H* described at the end of 3mwith one change: all connections have
to be added inside groups. If b(n) >_ 2[c log hi, the supporting networks are somewhat
more complicated. The set V of all nodes is divided into sets V0,..., Vs-, each of
size r min(b(n), [n/lognJ). Each set V is partitioned into sets V,..., Vt-x of size

[c log hi. Sets V,..., V/t-1 are arranged into a complete binary tree, each node v Vd
being connected to all nodes from the parent set. Additionally, sets V,..., V_1, for
every j < t, are arranged to span a graph H* as described at the end of 3. (The choice
of H may be different for every j.) In both cases the obtained supporting network has

18 KRZYSZTOF DIES AND ANDRZEJ PELC

logarithmic degree, and numerous possible choices of the underlying graph H allow a
considerable flexibility of network topology.

REFERENCES

[1] S. ASSAF AND E. UPFAL, Fault-tolerant sorting networks, SIAM J. Discrete Math., 4 (1991),
pp. 472-480.

[2] K. A. BERMAN AND M. HAWRYLYCZ, Telephone problems with failures, SIAM J. Alg. Discrete
Methods, 7 (1986), pp. 13-17.

[3] P. BERMAN AND A. PELC, Efficient broadcasting and gossiping with Byzantine link failures,
Rapport de Recherche RR 92/11-11, Universite du Quebec Hull, 1992.

[4] D. BIENSTOCK, Broadcasting with random faults, Discrete Appl. Math., 20 (1988), pp. 1-7.
[5] D. M. BLOUGH AND A. PELC, Optimal communication in networks with randomly distributed

Byzantine faults, Networks, 23 (1993), pp. 691-701.
[6] B.S. CHLEBUS, K. DIKS, AND A. PELC, Sparse networks supporting ejficient reliable broadcast-

ing, in Proc. 20th International Colloquium on Automata, Languages and Programming
(ICALP 93), LEnd, Sweden, Lecture Notes in Computer Science 700, 1993, pp. 388-397.

[7] , Optimal broadcasting in faulty hypercubes, Digest of Papers, 21st International Sym-
posium on Fault-Tolerant Computing, 1991, pp. 266-273.

[8] , Fast gossiping with short unreliable messages, Discrete Appl. Math., 53 (1994), pp.
15-24.

[9] K. DIES AND A. PELC, Reliable gossip schemes with random link failures, in Proc. 28th Ann.
Allerton Conf. on Comm. Control and Comp., Allerton, IL, 1990, pp. 978-987.

[10] , Almost safe gossiping in bounded degree networks, SIAM J. Discrete Math., 5 (1992),
pp. 338-344.

[11] L. GARGANO, Tighter time bounds on fault-tolerant broadcasting and. gossiping, Networks, 22
(1992), pp. 469-486.

[12] R.W. HADDAD, S. RoY, AND A. A. SCHAFFER, On gossiping with faulty telephone lines, SIAM
J. Alg. Discrete Methods, 8 (1987), pp. 439-445.

[13] T. HAGlUP AND C. RUB, A guided tour of Cherno bounds, Inform. Process. Lett., 33

(1989/90), pp. 305-308.
[14] S. M. HEDETNIEMI, S. T. HEDETNIEMI, AND A. L. LIESTMAN, A survey of gossiping and

broadcasting in communication networks, Networks, 18 (1988), pp. 319-349.
[15] S. L. JOHNSSON AND C.-T. HO, Optimum broadcasting and personalized communication in

hypercubes, IEEE Trans. Comput., 38 (1989), pp. 1249-1268.
[16] A. PELC, Reliable communication in networks with Byzantine link failures, Networks, 22 (1992),

pp. 441-459.
[17] E. R. SCHEINERMAN AND J. C. WIERMAN, Optimal and near-optimal broadcast in random

graphs, Discrete Appl. Math., 25 (1989), pp. 289-297.

SIAM J. DISCRETE MATH.
Vol. 9, No. 1, pp. 19-28, February 1996

() 1.996 Society for Industrial and Applied Mathematics
OO3

SHORT RANDOM WALKS ON GRAPHS*

GREG BARNES* AND URIEL FEIGE*

Abstract. The short-term behavior of random walks on graphs is studied, in particular, the rate
at which a random walk discovers new vertices and edges. A conjecture by Linial that the expected
time to find flf distinct vertices is O(Af3) is proved. In addition, upper bounds of O(A/[2) on the
expected time to traverse AA edges and of O(A/[flf) on the expected time to either visit Af vertices
or traverse A/[edges (whichever comes first) are proved.

Key words, random walk, graph, Markov chain

AMS subject classification. 60J15

1. Introduction. Consider a simple random walk on G, an undirected graph
with n vertices and rn edges. At each time step, if the walk is at vertex v, it moves
to a vertex chosen uniformly at random from the neighbors of v. Random walks
have been studied extensively and have numerous applications in theoretical com-
puter science, including space-efficient algorithms for undirected connectivity [4], [8],
derandomization [1], recycling of random bits [10], [15], approximation algorithms [6],
[12], [17], efficient constructions in cryptography [14], and self-stabilizing distributed
computing [11], [16].

Frequently (see, for example, Sarger et al. [19] and iisan et al. [20]), we are inter-
ested in E[T(Af)], the expected time before a simple random walk on an undirected
connected graph, G, visits its Afth distinct vertex, Af

_
n. The corresponding ques-

tion for edges is also interesting and arises in the work of Broder et al. [8]" how large is
SIT(A/t)], the expected time before a simple random walk on an undirected connected
graph, G, traverses its j4th distinct edge, j4

_
rn? This paper gives upper bounds

on E[T(Af)] and BIT(A/t)] for arbitrary graphs. While a great deal was previously
known about how quickly a random walk covers the entire graph (see, for example,
[2], [4], [7], [9], [18], [22], [23]), little was known about the behavior of a random walk
before the vertices are covered. These bounds help fill the gaps in our knowledge of
random walks, giving a picture of the rate at which a random walk explores a finite
or an infinite graph.

Aleliunas et al. [4] show that the expected time to visit all vertices of an arbitrary
graph (called the cover time) is O(mn) <_ O(n3). Using this bound, Linial derives
a bound for general Af of E[T(Af)] O(Af4) [19, Lemma 4.1]. Linial (in a personal
communication) conjectures that the cover time bound generalizes to all Af, that is,
for all Af

_
n, E[T(Af)] O(Af3). We prove Linial’s conjecture.

THEOREM 1.1. For any connected graph on n vertices and for any Af

_
n,

E[T(Af)] O(Af3).

Received by the editors March 21, 1994; accepted for publication (in revised form) December
13, 1994. Portions of this work were performed while the authors were at the IBM T.J. Watson
Research Center, Yorktown Heights, NY.

Department of Computer Science, University of Waterloo, Waterloo, Ontario N2L 6E3, Canada
(gsbarnes(C)plg.uwaterloo.ca). The research of this author was supported by an NSERC Interna-
tional Fellowship. Portions of this research were performed while the author was at the Max-Planck-
Institut fiir Informatik, Saarbriicken, Germany.

Department of Applied Mathematics, The Weizmann Institute, Rehovot 76100, Israel
(fe+/-g(C)w+/-sdom.ue+/-zmarm.ac.+/-l). The research of this author was supported by a Koret Founda-
tion fellowship.

19

20 GREG BARNES AND URIEL FEIGE

Zuckerman [23] proves an upper bound of O(mn) on the time to traverse all edges
in a general graph. We are unaware of any previous nontrivial bounds for A/[< m.
We prove the following theorem.

THEOREM 1.2. For any connected graph with rn edges and for any A/l <_ rn,

E[T(A/f)] O(A/f).

Theorem 1.2 holds even if G is not a simple graph (i.e., if we allow self-loops and
parallel edges).

Let E[T(A/t,Af)] be the expected time for a simple random walk to either tra-
verse A distinct edges or visit Af distinct vertices (whichever comes first). Then the
following theorem implies both of the above theorems, by considering E[T(Af2,Af)]
and E[T(./, A/t)], respectively.

THEOREM 1.3. For any connected graph with rn edges and n vertices and for any
J and Af such that A/[<_ rn or Af <_ n,

E[T(A/f,A/’)] O(A/f.M).

In the above three theorems, the graph G need not be finite. If G is a graph
with infinitely many vertices (each vertex of finite degree), then we can consider only
the finite portion of G that is within a distance Af (or M) of the starting vertex of
the random walk, and the proofs remain unchanged. For finite graphs, the following
theorem serves to complete the picture of the rate at which vertices (or edges) are
discovered. It provides better bounds than Theorems 1.1 and 1.2 when the number of
vertices to be discovered is larger than or the number of edges to be discovered
is larger than n.

THEOREM 1.4. For any simple connected graph on n vertices and rn edges and
for any Af <_ n,

E[T(Af)] O(rnA/’),

and for any]t4 <_ rn,

E[T(A//)] O(nA/f).

Our theorems are the best possible in the sense that there exist graphs for which
the bounds are tight up to constant factors (e.g., the n-cycle for Theorem 1.2). How-
ever, these bounds can be refined if additional information regarding the structure of
G is given. The work of Kahn et al. [18] indicates that dmin, the minimum degree of
the vertices in the graph G, is a useful parameter to consider. They show that the
expected cover time of any connected graph is O(mn/dmin), implying a cover tirne
of O(n2) for regular graphs. This inverse dependency on dmin applies also to short
random walks. Preliminary results in this direction (tight up to a logarithmic factor)
were presented in an earlier version of this paper [5]. The superfluous logarithmic
factor in these results was subsequently removed by Feige [13], building upon proof
techniques that were developed by Aldous [3]. Aldous is writing a textbook that will
include a systematic account of random walks on graphs and reversible Markov chains.
The current draft [3] contains results similar to ours in the regular graph setting.

While the short-term behavior of random walks is worth studying in its own
right, short random walks also have immediate applications in many areas of computer
science. Our results, of course, cannot be applied to all such areas. For example, much

SHORT RANDOM WALKS 21

stronger results are already known about the properties of short random walks on the
special class of graphs known as expanders (see, e.g., Ajtai et al. [1] and Jerrum and
Sinclair [17]). One might hope our results would dramatically improve the algorithms
of Zarger et al. [19] and Nisan et al. [20] for undirected connectivity. As mentioned
above, both require an estimate of E[T(Af)] (and both used the estimate E[T(Af)]
O(Af4)). Unfortunately, substituting our bound only improves the constants for the
algorithms since the running times of both depend on the logarithm of E[T(Af)] rather
than E[T(Af)].

Our results may yield significant improvements for other randomized algorithms.
In particular, consider randomized time-space tradeoffs for undirected -7 connec-
tivity (USTCON), as studied by Broder et al. [8]. One key property of Broder et al.’s
algorithIn is that a short random walk from a given edge traverses many edges. Im-
proved bounds on E[T(J4)], then, would seem to provide an improvement to their
tradeoff. Partial results in this direction were presented in an earlier version of our
paper [5], and further improvements are presented by Feige [13].

2. Proofs of theorems. The proofs of the theorems are best read in order. The
proof of Theorem 1.1 introduces the proof techniques that are used in all subsequent
proofs. The proof of Theorem 1.2 is a simple modification of this proof technique.
The proof of Theorem 1.3 introduces additional subtleties. For this reason, we have
stated Theorems 1.1 and 1.2 explicitly rather than presenting them as corollaries of
Theorem 1.3. The proof of Theorem 1.4 is a slight modification of the proofs of
Theorems 1.1 and 1.3.

Proof of Theorem 1.1. Assume that n > 2Af. Otherwise the proof follows from
Aleliunas et al.’s bound of E[T(n)] O(rnn) [4]. We view the random walk as

proceeding in phases. For any i, 1 _< i _< 2A/’, at the beginning of phase i, we identify
(as described later) a set of vertices V c V and a starting vertex s E V, the last
vertex visited in phase i- 1. Phase starts with the random walk at s and ends
when the random walk exits V. We show that for any i, the expected number of
steps taken in phase i is O(i2) and that up to phase at least i/2 distinct vertices are
visited. Thus, at most 2Af phases are needed to visit A/" distinct vertices, proving (by
linearity of the expectation) that E[T(Af)] O(Af3).

To simplify the presentation, assume that G contains a Hamiltonian cycle. The
case where G does not have a Hamiltonian cycle is only slightly more complicated
and will be addressed later. Let Vl, v2, Vn be an arrangement of the vertices of
G along the Hamiltonian cycle.

At the beginning of phase i, we identify the following vertices and sets of vertices:
Starting vertex. The vertex s at which the walk of phase i- 1 ended (if > 1);

Sl is the starting vertex of the whole random walk.
Right vertex. The vertex r foil.owing s in the cyclic order imposed by the

Hamiltonian cycle.
Visited vertices. The set Y C V of vertices visited in previous steps by the

walk; note that s E Y.
Good vertices. The set of vertices U c_ V \ Y (for two sets A and B, A \ B

denotes the set of elements in A but not in B) with the following property: let
Rvj,, for 1 _< t _< n, be the set of t consecutive vertices {vj, vj+l,..., vj+_l}
on the Hamiltonian cycle. (By convention, if k > n, then vk is interpreted as

Vk-n.) V U if and only if for all t _< n, IRvj, NYI _< /2. Thus, a vertex vj
is good in phase if, starting at vy and walking along the Hamiltonian cycle,
at least half of the vertices discovered are new. This holds for any number of

22 GREG BARNES AND URIEL FEIGE

steps that a walk might make before walking completely around the cycle.
Bad vertices. All other vertices. Let B denote this set.
The following lemma gives a bound on

LEMMA 2.1. For every i, if IY l < n/2, ta n IB I < IY I.
Proof. The proof is by induction on I1. If 1 (and n > 2), then IBI- 0,

as there is no consecutive set of vertices starting from an unvisited vertex such that
a majority of vertices in the set are visited.

Assume the lemma is true for IY I- and any n > 2k, and prove for IYI k + 1
and any n > 2k + 2. Consider a ring with n vertices and k + 1 visited vertices

(n > 2k + 2). Then there exists a visited vertex y that is to the right of an unvisited
vertex v. Remove y and v from the ring, linking the left neighbor of v to the right
neighbor of y in the obvious way. Thus, n is decreased by 2 and IYI is decreased by 1.
Now the induction hypothesis holds, and there are at most k- 1 bad vertices. Put y
and v back in the ring, and restore the values of IYl and n. No previously good vertex
can become bad, as any consecutive set of vertices that starts at an unvisited vertex
and includes y must contain v as well. Thus, the only bad vertex that could possibly
have been added is v, resulting in the desired bound of at most k bad vertices.

Let V (Y U Bi) \ {r}. At the beginning of phase the random walk is at
the vertex si E V/. Phase ends when the random walk exits V/. Let Ti denote the
number of steps taken in phase i.

LEMMA 2.2. E[T{] < (llY l)
P oof. By 2.1, IV I _< IY I + IB I, it fonow that IV I < 21Y I.

Phase ends when an edge leading out of V/ is taken. One such edge is the edge
connecting si to ri on the Hmniltonian cycle. We claim that if we remove all other
edges leading out of V, the expected time to leave V remains at least E[Ti].

Suppose we wish to remove a single edge e between u E V/ and v V/. Instead
of actually removing e, create a new auxiliary vertex w V and make e connect
with w. This does not change E[Ti]. Let T denote the number of steps taken to
exit 1/2 U {w}, not counting steps that traverse the edge e (in either direction). Then

E[T’] >_ E[T]. Finally, remove e completely, and observe that the expected time to
leave 17/remains E[T’].

After removing all edges but e {si, ri} leading out of V, we are left with only
the subgraph induced by V/ and the edge e. Let rni denote the number of edges in
this subgraph. Observe that if > 1, m <_ IVI/2. (If 1,T 1 and the lemma
trivially holds.) Since the walk of phase starts at si and since there is an edge
connecting si to ri, the expected time to reach ri is at most 2mi. (This is well known.
See, e.g., Aleliunas et al. [4].)

We have bounded the duration of each phase. It remains to bound the number
of phases.

LEMMA 2.3. For any k, in the first k phases at least k/2 distinct vertices are

visited.

Proof. Observe that each phase ends by either walking to the next vertex along
the Hamiltonian cycle or "jumping" to a good vertex. Let S be the sequence of
starting vertices visited by the walk, Sl, s2,..., sk. Partition S into subsequences as
follows: the first subsequence begins with sl, and sj begins a new subsequence if and
only if phase j 1 did not end at rj-1. Then each subsequence begins with a good
vertex, and at least half the vertices visited in it are new.

Note that given the definition of good vertices, it is possible that there may be
many consecutive phases in the walk in which no new vertex is visited. However, this

SHORT RANDOM WALKS 23

can only occur if earlier in the same subsequence there were enough phases in which
a new vertex was visited. Breaking the walk into subsequences, therefore, amounts
to amortizing the cost of the phases in which no new vertex is found over the earlier
phases in the same subsequence.

If G has a Hamiltonian cycle, this completes the proof, as

2At 2At

E[T(N’)] _< E E[Ti] < (21YI) < 8A/".
i:1 i:1

If G does not have a Hamiltonian cycle, we can use the following well-known lemma.
LEMMA 2.4. For any connected graph, G, there is a cyclic ordering of its vertices,

wl, w2, wn, such that the distance (the length of the shortest path in G) between
any vertec and its successor is at most 3.

Proof. Let Gspan be a spanning tree of G. Traverse Gspan in depth-first search
fashion, using vertices of even distance from the root to advance toward the leaves
and vertices of odd distance from the root to backtrack. Let wl, w2,..., wn be the
vertex ordering derived from this traversal, where wi is the ith vertex visited by the
traversal. Then wn is a neighbor of w, the root of Gspan, and for all 1 _< i < n, w{ is
at most distance 3 from %0i+1. []

Using the ring obtained by Lemma 2.4 in place of a Hamiltonian cycle makes
the expected time to leave V{ at most three times as large, thus only affecting the
constants involved, rl

Proof of Theorem 1.2. In Lemma 2.4 we show a way to arrange the vertices of
a connected graph in a cyclic order. Arranging the edges in a cyclic order is even
simpler. View each undirected edge as two anti-parallel directed edges (two directed
edges are anti-parallel if they have the same endpoints, u and v, but one is directed
from u to v, and the other directed from v to u). The number of directed edges
entering any vertex is equal to the number of directed edges leaving it. Hence the
directed graph is Eulerian and has an Eulerian cycle. This Eulerian cycle induces a
cyclic ordering on the directed edges and can replace the Hamiltonian cycle used in
the proof of Theorem 1.1.

Now the proof technique of Theorem 1.1 can be applied to prove Theorem 1.2,
with "directed edges" replacing "vertices" in a straightforward manner. For edges,
however, Lemma 2.2 can be strengthened--in phase i, the set V is now a set of edges
and not a set of vertices, so the expected time to leave V{ is IV{I instead of IV{I 2. This
yields a bound of E[T(A/I)] O(Ad2). D

Proof of Theorem 1.3. Assume that m _> 2Ad. The proof for the case m < 22M is
much simpler. See, for example, the first part of the proof of Theorem 1.4.

As in the proof of Theorem 1.1, view the random walk as proceeding in phases.
For any _> 1, at the beginning of phase i, we identify (as described later) a set of
vertices V/C V, a set of edges E C E, and a starting vertex s E V/--the last vertex
visited in phase i- 1. Phase i starts with the random walk at si. Phase i ends when
the random walk exits the subgraph Gi (V,E{). Phases where s{ has many yet
unvisited outgoing edges will also end if the walk returns to si. The whole walk ends
when either A/" vertices or A/I edges are visited. This does not necessarily correspond
to any fixed number of phases, making the analysis (of the expected number of steps
taken by the walk) subtler than the analysis in the proof of Theorem 1.1, where the
completion of 2N" phases guaranteed the end of the walk.

View each undirected edge as two anti-parallel directed edges. Observe that
traversing 23/I- 1 distinct directed edges guarantees at least Ad distinct original

24 GREG BARNES AND URIEL FEIGE

(undirected) edges are traversed. The set of outgoing edges from vertex v is denoted
by Out(v). Let d(v)=

Let Vl, v2, ..., vn be an arrangement of the vertices of G along the ring obtained
by Lemma 2.4. At the beginning of phase i, we identify the following vertices and
sets of vertices and edges.

Starting vertex. The vertex s at which the walk of phase i- 1 ended (if > 1);
s is the starting vertex of the whole random walk.

Right vertex. The vertex r following s in the ring of vertices.
Traversed edges. The set F C E of edges traversed in previous steps by the

walk.
Visited vertices. The set Y C_ V of vertices visited in previous steps by the

walk; note that s E Y.
Exhausted vertices. The set X C_ Y of vertices, x, such that at least half of

the outedges from x have been traversed in previous steps by the walk.
Good vertices. The set of vertices U with the following property: As in the

proof of Theorem 1.1, let Rvj,, for 1 < g < n, be the set of g consecutive
vertices {vj,vj+l,...,vj+_} on the ring of vertices. Define g(v) to be
max(0, d(v)/2 -IF N Out(v)l), that is, the number of untraversed outedges
of v that would have to be traversed for v to become exhausted. For a vertex
vj, vy E U if and only if for all t, 1 _< t _< n,

g(v) >_ (2A/I/.Af)IR,,e X].

Note that a visited vertex can be good, but an exhausted vertex cannot. Note
also that S is a good vertex in phase 1.

Bad vertices. The set of vertices B that are not good.
Good edges. The set of untraversed edges D C_ E \ F that exit from good

vertices.
Bad edges. The set of edges C that are neither good nor traversed.
Informally, the definition of good vertices above is similar to the definition of good

vertices in the proof of Theorem 1.1. In that proof, each subsequence (see the proof
of Lemma 2.3) begins at a good vertex and progresses along the ring. The definition
of a good vertex ensures that the number of previously unvisited vertices visited
during the subsequence is at least a constant fraction of the number of phases in the
subsequence. In this proof, a subsequence again starts at a good vertex, but the walk
does not progress along the ring until the current vertex is exhausted. This definition
of good vertices ensures that the number of previously untraversed edges that are
traversed during a subsequence is at least 2A/Af times the number of exhausted
vertices that are starting vertices in the phases in the subsequence. This property is
used in Lemma 2.9 to bound the number of phases that begin at exhausted vertices.

The following lemma gives a bound on ICI.
LEMMA 2.5. For every i, ICI < IFI + 4AA(1 + IXl/Af). In particular, for

IF I < levi <
Proof. Consider the ring of vertices at the beginning of phase i. For any vertex v,

let g(v) max(0, d(v)- 21F Out(v)l), and mark g(v) of v’s untraversed outedges.
Since 21F + -vg(v) > 2m, the number of untraversed edges in G that are not
marked is at most]F]. We will show by induction on]X] that the number of marked
edges that are bad is no more than 4A/l(1 +]X]/Af). Hence the total number of bad
edges is as claimed in the lemma.

SHORT RANDOM WALKS 25

To bound the number of marked edges that are bad, we prove the following lemma.
The lemma is more general than is necessary, since it considers not only configurations
of marked edges and exhausted vertices that could be a result of random walks on
graphs but also configurations that could not.

LEMMA 2.6. Consider a ring of n vertices, and let k < Af <_ n. Choose k of
the vertices in an arbitrary way and mark them as exhausted. Distribute an arbitrary
number of tokens on the unexhausted vertices of the ring in an arbitrary way. A
vertex v is bad if for some <_ n, the number of tokens encountered by taking steps
to the right (including the tokens on v itself) is less than 4]Ut/Af times the number
of exhausted vertices encountered by such a walk. A token is bad if it is placed on
a bad vertex. Then for any n, Af, A/t, and k, the number of bad tokens is at most
4d(1 + k/Af).

Proof. The lemma is proved by induction on k. If k- 0, then for all values of n,
Af, and A/l, there are no bad tokens, and the lemma holds.

Assume the lemma is true for k j, for all values of n, Af, and j4, where
k < Af _< n. Prove for k j + 1 and arbitrary n, Af, and A/l, where k < Af _< n.

Consider a walk backward along the ring from some exhausted vertex, v. After a
certain number of steps along the ring, the walk will have encountered 4A/l/Af tokens.
Let y be the vertex where this walk from v first reaches its (4Ad/Af)th token. Because
there are at least 4dd tokens (otherwise, the lemma trivially holds) and at most Af
exhausted vertices, there must be some exhausted vertex v such that the walk from
v to y visits no exhausted vertex besides v.

Let v be such a vertex and T be the first 4Ad/Af tokens encountered by this walk
(this may include only some of the tokens placed on y). Remove from the ring the
tokens T, and make v not exhausted. Thus, k is decreased by 1. Now the induction
hypothesis holds, so there are at most 4A/[(1 + (k- 1)/Af) bad tokens.

Add the tokens in T back to the ring, mark v as exhausted, and restore the value
of k. The tokens in T may be bad, but no token t that is not in T and was not
previously bad can become bad, as any walk from t that includes v must include all
the tokens between yv and v as well. So the number of bad tokens increases by at
most 4jt/Af, proving the lemrna. [3

Observe that for any subset Vs of the vertices, Evev gi(v) >_ (Evev. g(v))/2.
By considering marked edges as the tokens of Lemma 2.6 and bad marked edges as
the bad tokens, the proof of Lemma 2.5 follows. [3

The definition of the subgraph Gi (V, Ei) and the stopping condition for phase
depends on whether si is exhausted or not. At the beginning of phase i, the random

walk is at the vertex s E V.
If si is not exhausted, V Bi [3 {si}, Ei are all the edges with both endpoints in

V, along with the edges out of si and the edges into si; and phase ends when the
random walk returns to si or exits Gi by visiting a vertex in Ui.

If si is exhausted, V Bi \ {ri}; Ei are all the edges with both endpoints in V,
along with the edges along a shortest path from si to ri and the edges anti-parallel to
the edges in this path; and phase ends when the random walk exits Gi by visiting a
vertex in Ui U {ri}.

Let Ti denote the number of steps taken in phase i.

LEMMA 2.7. Ifphase i begins at an unexhausted vertex, v, E[T] < 12A/rid(v)+2.
Proof. The number of edges in Gi is no more than the number of outedges from

vertices in V plus the edges into si. An outedge from a bad vertex is either bad or

traversed, so levi _< IFil + ICI + 2d(v). Therefore, by Lemma 2.5, if IFI < 2A/t, then

26 GREG BARNES AND URIEL FEIGE

IEil < 124 + 2d(v).
It is well known that on an undirected graph with mi edges the expected time

for a random walk that starts at vertex v to return to v is 2m/d(v). G is equivalent
to an undirected graph with levi/2 edges, since if a directed edge e is in E, the edge
anti-parallel to e is in Ei as well. The degree of v in G is the same as its degree in
G; therefore, the expected length of a phase that begins at an unexhausted vertex, v,
is no more than 12A//d(v)

LEMMA 2.8. If phase begins at an exhausted vertex, E[T] < 36A + 15.

Proof. The only edges in E that may not be outedges from bad or exhausted
vertices are the edges in the path from s to ri and the edges anti-parallel to these
edges. By the construction of the ring of vertices, this path is of length 3 or less,
and the first outedge in the path from s is from an exhausted vertex, so there are at
most five such edges, and levi _< IFI / ICI / 5 < 12A / 5. Using a proof similar to
the proof of Lemma 2.2, the expected length of such a phase is less than the distance
from si to r times

We have bounded the duration of each phase. It remains to bound the number
of phases. Call phases that start at unexhausted vertices short phases and phases
that start at exhausted vertices long phases. The walk ends when
2j4-1. Since we are considering directed edges, this will ensure that either Af vertices
were visited or A// undirected edges were traversed. To analyze the expected number
of phases of the walk, consider the following two stopping conditions.

1. At least Af distinct vertices were the starting vertices of phases. Clearly, this
implies that Af vertices were visited.

2. There were at least 2Af long phases. This implies that at least 2AA edges
have been visited, by the following lemma.

LEMMA 2.9. If m >_ 2], 2Af long phases occur, and no more than A/" distinct
vertices are the starting vertices of these long phases, then at least 2A edges are
traversed.

Proof. Similar to the proof of Lemma 2.3, observe that each phase ends by either
walking to the next vertex in the ring, returning to the starting vertex, or "jumping"
to a good vertex. Let S be the sequence of starting vertices visited by the walk,
sl, s2,..., sk. Partition S into subsequences as follows. The first subsequence begins
with sl, and sj begins a new subsequence if and only if phase j 1 was long and
did not end at rj-1 or phase j- 1 was short and did not end at sj-1. Then each
subsequence begins with a good vertex (and a short phase) and continually exhausts
its current vertex and steps to the next vertex in the ring. Because m _> 2A, a

subsequence that begins at sj cannot step completely around the ring and return to

sj. We use the following property: For a subsequence Sj beginning with phase k,
at least 2q(A/t/Af) edges are traversed for the first time in the phases of Sj before
the qth vertex in Xk appears as a starting vertex in Sj. This must be true by the
definition of a good vertex. With each vertex v of Xk we can therefore associate

2AA/Af untraversed edges that must be traversed if v is to start a phase within the
subsequence, associating each untraversed edge with at most one vertex of Xk.

Now consider the 2Af long phases. They start at no more than Af distinct vertices,
so at least Af of them start at a vertex that was the starting vertex of a previous long
phase. Let phase be such a phase, and assume that it is part of a subsequence that
begins with phase k. Then s must already have been exhausted when phase k was
begun, implying that we can identify 2A/A/" edges that were first traversed between
phases k and and associate them with phase i. Altogether, from all long phases, we

SHORT RANDOM WALKS 27

can identify at least Af. 2A/Af 2A distinct traversed edges.
By Lemma 2.9, there are at most 2Af long phases and each long phase takes

expected time no more than 36A / 15, so the long phases contribute a total of
O(Af4) to the expected number of steps in the walk. To analyze the contribution
of the short phases, let vi denote the ith distinct vertex that was discovered by the
walk and E[vi] denote the expected number of short phases that start at v. For
each such phase, the probability that the first step of the walk traverses a yet un-
traversed outedge from v is at least 1/2 since the majority of edges leading out of
v are untraversed. Therefore E[v] is no more than d(v). If d(vi) > 2A, simi-
lar reasoning shows that E[vi] is no more than 2j4 since the walk can stop after
AA distinct outedges of v are traversed. The expected number of steps in a short
phase is no more than 12A/l/d(v)+ 2, so it follows by Wald’s Equation (see Ross [21,
page 38], for example) that the expected number of steps spent on short phases that
begin at v is no more than (12JA/d(v) + 2). min(d(vi),2AA) _< 16AA. The short
phases therefore contribute a total of O(AfA/) to the expected number of steps in the
walk.

Proof of Theorem 1.4. To show that E[T(Af)] O(rnAf), we distinguish between
two cases. The case Af _> n/2 is handled by Aleliunas et al. [4], who show that
E[T(n)] O(rnn). For the case A/" < n/2, consider the proof of Theorem 1.1. The
maximum distance between consecutive vertices on the ring is 3, so the expected time
of each phase is at most 6rn, and the proof follows.

To show that E[T(J4)] O(nA/), we again distinguish between two cases. The
case A/ > rn/2 is handled by Zuckerman [23], who shows that E[T(rn)] O(rnn).
For the case _< rn/2, consider the proof of Theorem 1.3 with Af n. Observe
that by Lemma 2.9, in order to visit A// distinct edges, it suffices to have 2n phases
that start at exhausted vertices. Hence the expected number of steps spent on phases
that start at exhausted vertices is O(]4n). Likewise, since the graph has only n
vertices, the expected number of steps spent on phases that start at vertices that
are not exhausted is also O(AAn) (the fact that the random walk may not stop at
the time that all vertices of G are visited does not affect this argument). The proof
follows.

Acknowledgments. We thank Nati Linial, Prabhakar Raghavan, and Larry
Ruzzo for many helpful discussions and for directing us to relevant literature.

REFERENCES

[1] M. AJTAI, J. KOML(S, AND E. SZEMERIDI, Deterministic simulation in LOGSPACE, in Proc.
19th Annual ACM Symposium on Theory of Computing, New York, May 1987, pp. 132-
140.

[2] D. J. ALDOUS, Lower bounds for covering times for reversible Markov chains and random walks
on graphs, J. Theoret. Probab., 2 (1989), pp. 91-100.

[3] , Reversible Markov chains and random walks on graphs, draft, University of California,
Berkeley, 1993.

[4] R. ALELIUNAS, R. M. KARP, R. J. LIPTON, L. LOVSZ, AND C. W. RACKOFF, Random walks,
universal traversal sequences, and the complexity of maze problems, in Proc. 20th Annum
Symposium on Foundations of Computer Science, San Juan, Puerto Rico, October 1979,
IEEE, pp. 218-223.

[5] G. BARNES AND U. FEIGE, Short random walks on graphs, in Proc. 25th Annual ACM Sympo-
sium on Theory of Computing, San Diego, CA, May 1993, pp. 728-737.

[6] A. Z. BRODER, How hard is it to marry at random? (On the approximation of the permanent),
in Proc. 18th Annual ACM Symposium on Theory of Computing, Berkeley, CA, May 1986,

28 GREG BARNES AND URIEL FEIGE

pp. 50-58. Errata: Proc. 20th Annual ACM Symposium on Theory of Computing, Chicago,
IL, May 1988, p. 551.

[7] A. Z. BtODER AND A. a. KARLIN, Bounds on the cover time, J. Theoret. Probab., 2 (1989),
pp. 101-120.

[8] A. Z. BRODER, A. R. KARLIN, P. RAGHAVAN, AND E. UPFAL, Trading space for time in undi-
rected s-t connectivity, in Proc. 21st Annual ACM Symposium on Theory of Computing,
Seattle, WA, May 1989, pp. 543-549.

[9] A. K. CHANDIA, P. RAGHAVAN, W. L. Ruzzo, R. SMOLENSKY, AND P. TIWAPI, The electrical
resistance of a graph captures its commute and cover times, in Proc. 21st Annual ACM
Symposium on Theory of Computing, Seattle, WA, May 1989, pp. 574-586.

[10] A. COHEN AND A. WIGDERSON, Dispersers, deterministic amplification, and weak random
sources, in Proc. 30th Annual Symposium on Foundations of Computer Science, Research
Triangle Park, NC, October 1989, IEEE, pp. 14-19.

[11] D. COPPERSMITH, P. TETALI, AND P. WINKLEI% Collisions among random walks on a graph,
SIAM J. Discrete Math., 6 (1994), pp. 363-374.

[12] M. DYER, A. M. FRIEZE, AND R. KANNAN, A random polynomial time algorithm for approxi-
mating the volume of convex bodies, in Proc. 21st Annual ACM Symposium on Theory of
Computing, Seattle, WA, May 1989, pp. 375-381.

[13] V. FEIGE, A randomized time-space tradeoff of O(m) for USTCON, in Proc. 34th Annual
Symposium on Foundations of Computer Science, Palo Alto, CA, November 1993, IEEE,
pp. 238-246.

[14] O. GOLDREICH, R. IMPAGLIAZZO, L. LEVIN, a. VENKATESAN, AND D. I. ZUCKERMAN, Security
preserving amplification of hardness, in Proc. 31st Annual Symposium on Foundations of
Computer Science, St. Louis, MO, October 1990, IEEE, pp. 318-326.

[15] R. IMPAGLIAZZO AND D. I. ZUCKERMAN, How to recycle random bits, in Proc. 30th Annual
Symposium on Foundations of Computer Science, Research Triangle Park, NC, October
1989, IEEE, pp. 248-253.

[16] A. ISRAELI AND M. JALFON, Token management schemes and random walks yield self-stabilizing
mutual exclusion, in Proc. 9th Annual ACM Symposium on Principles of Distributed Com-
puting, Quebec City, Quebec, Canada, August 1990, pp. 119-131.

[17] M. JEIRUM AND A. SINCLAIR, Conductance and the rapid mixing property for Markov chains:
The approximation of the permanent resolved, in Proc. 20th Annual ACM Symposium on
Theory of Computing, Chicago, IL, May 1988, pp. 235-244.

[18] J. D. KAHN, N. LINIAL, N. NISAN, AND M. E. SAGS, On the cover time of random walks on
graphs, J. Theoret. Probab., 2 (1989), pp. 121-128.

[19] D. R. KARGER, N. NISAN, AND M. PARNAS, Fast connected components algorithms for the
EREW PRAM, in Proc. 1992 ACM Symposium on Parallel Algorithms and Architectures,
San Diego, CA, June-July 1992, pp. 373-381.

[20] N. NISAN, E. SZEMERIDI, AND A. WIGDERSON, Undirected connectivity in O(log1"5 n) space,
in Proc. 33rd Annual Symposium on Foundations of Computer Science, Pittsburgh, PA,
October 1992, IEEE, pp. 24-29.

[21] S. M. Ross, Applied Probability Models with Optimization Applications, Holden-Day, San Fran-
cisco, CA, 1970.

[22] D. I. ZUCKERMAN, A technique for lower bounding the cover time, in Proc. 22nd Annual ACM
Symposium on Theory of Computing, Baltimore, MD, May 1990, pp. 254-259.

[23] , On the time to traverse all edges of a graph, Inform. Process. Lett., 38 (1991), pp. 335-
337.

SIAM J. DISCRETE MATH.
Vol. 9, No. 1, pp. 29-36, February 1996

1996 Society for Industrial and Applied Mathematics
004

THE BIASED COIN PROBLEM*

RAVI B. BOPPANAt AND BABU O. NARAYANAN$

Abstract. A slightly random source (with bias e) is a sequence x (Xl,X2,... ,Xn) of random
bits such that the conditional probability that Xi 1, given the outcomes of the first i- 1 bits, is
always between e and 1/2 + e. Given a subset S of {0, 1}n, define its e-biased probability to be
the minimum of Pr[x E S] over all slightly random sources x with bias e. It is shown that, for every
fixed e < 1/2 and almost every subset S of {0, 1}n, the e-biased probability of S is bounded away
from 0.

Key words, pseudo-randomness, slightly random sources, randomized algorithms

AMS subject classifications. 68Q25, 60D05

1. Introduction.

1.1. Statement of problem. Randomized algorithms and cryptographic pro-
tocols usually assume access to a source of perfectly random bits. Unfortunately,
physical sources of randomness (see Marry [10]) are not perfectly random. Can we
nevertheless use such biased sources for random purposes? The purpose of this paper
is to analyze the expected performance of one such source, that is, the slightly random
source due to Santha and Vazirani [11].

A slightly random source (with bias 0 <_ e <_ 1/2) is a sequence x (Xl,X2,... ,Xn)
of random bits such that the conditional probability that xi 1, given the outcomes
of the first 1 bits, is always between 1/2 e and 1/2 + e. Intuitively, we are flipping a
bunch of coins, but our adversary, who knows the complete history of previous coin
flips, gets to choose the bias of each coin.

In the application to randomized algorithms, there is a "witness set" S that we
are trying to hit, where S is some subset of (0, 1}n (the set of all binary sequences of
length n). Define the e-biased probability Pr(S) of S by

Pr(S) min Pr[x e S],
X

where x ranges over all slightly random sources with bias e. For example, Pr0(S)
ISI/2n, whereas erl/2(S) 0 (unless S {0, 1}n). Intuitively, the e-biased probabil-
ity measures the minimum odds of hitting S when our adversary, who knows S, gets
to choose the source.

Is the e-biased probability of a witness set S always within a constant factor of
ISI/2n? Unfortunately, the answer is no, as observed by Alon and Rabin [2]. As a

Received by the editors June 13, 1994; accepted for publication (in revised form) January 10,
1995. A preliminary version of this paper appeared in Proc. 25th Annual ACM Symposium on the
Theory of Computing, 1993, pp. 252-257 [6].

Computer Science Department, New York University, New York, NY 10012 (boppana
(C)cs.nyu.edu). The research of this author was supported in part by National Science Foundation
Presidential Young Investigator Award CCR-9196230.

Department of Mathematics, University of Illinois, Urbana, IL 61801 (bnarayo.a(C)math.
u+/-uc.edu). Part of this research was performed while this author was at the Center for Discrete
Mathematics and Theoretical Computer Science (DIMACS), Rutgers University, Piscataway, NJ
08855 and at the Institute for Mathematics and its Applications, University of Minnesota, Min-
neapolis, MN 55455.

29

30 RAVI B. BOPPANA AND BABU O. NARAYANAN

counterexample, consider the majority set (for an odd integer n)

MAJ- {x {0,}. x>
whose unbiased probability is 1/2, but whose e-biased probability is exponentially small
for every fixed > 0. Consequently it is impossible to obtain a strong bound for every
witness set.

Instead, lowering our sights a little, let us aim for a bound that applies to almost
every witness set. (Here S ranges uniformly over all subsets of {0, 1}n, and "almost
every" means a 1- o(1) fraction as n tends to infinity.) Alon and Rabin [2] showed
that for < 1/2(x/- 1) 0.207, the -biased probability of almost every witness set is
bounded away from 0. They posed the question of whether the same conclusion holds
for every < 5"

1.2. Statement of results. Our main result is an affirmative answer to the
Alon-Rabin question. More precisely, we show that for every < 1/2 there is a con-
stant c > 0 such that almost every witness set has e-biased probability at least c.

The constant c necessarily tends to 0 as increases to 1/2. Our proof shows that

c is at least pO(log(1/p)) where p 5 -e. We do not know if this lower bound can
be improved.

Our work actually applies to a more general situation than the one described
above. First, the witness set need not have a uniform distribution; all that matters
is that the events "x E S" (for x in {0, 1}’) be mutually independent. Second, the
source need not output merely bits; any finite alphabet will do (example: dice). For
simplicity, we omit these generalizations.

Our techniques also apply to the problems of collective coin-flipping and leader
election in the perfect-information model [4], [5]. In parallel and distributed com-
puting, a set of processors often has to produce the same random bit in order to
perform some task. We would like to design a coin-flipping protocol that works even
against many faulty processors. A protocol is said to be t-resilient if the probability
of producing "heads" is bounded away from 0 and 1, given that the number of faulty
processors is at most t. Under the perfect-information model, Alon and Naor [1]

Combiningshowed the existence of protocols that are en-resilient for every < .
techniques from their paper and the present paper, we show in [7] that the Alon-Naor
protocols are actually n-resilient for every < 5"

1.3. Significance of work. The slightly random source is quite general and
models many real-world sources. It allows many kinds of correlation among the ran-
dom bits. It permits the adversary to know the witness set, to know the complete
history of previous coins, and to be computationally powerful. Our result holds for
any e less than 1/2, which means that the coins may be arbitrarily biased.

Our proof technique is interesting as well. Alon and Rabin [2] used a second-
moment method to analyze the underlying random process. Unfortunately, this

(/ i) 0.207. Instead, we analyze amethod provably fails for larger than
higher moment of the random process. Because higher moments have fewer proper-
ties than does the second moment, many technical complications arise. Nevertheless,
through the judicious use of classical inequalities, we are able to make this higher
moment method succeed.

THE BIASED COIN PROBLEM 31

1.4. Relation to previous work. Santha and Vazirani [11] invented the model
of slightly random sources. They showed how to approximate perfect randomness by
using more than gt(logn) independent slightly random sources. Later, Vazirani [13]
showed how to approximate true randomness using just two independent slightly
random sources. In both cases, more than one source is required, and the sources are
assumed to be statistically independent. In our problem, only one source is permitted.

Vazirani and Vazirani [14] showed how to simulate the complexity class BPP using
just one slightly random source. Chor and Goldreich [8] showed how to simulate BPP
using a weaker source, called a "probability-bounded" source. Zuckerman [15] showed
how to simulate BPP using an even weaker source, called a "-source." In all three
cases, they transform the bits of the imperfect source to create a polynomial number
of n-bit strings, most of which will be witnesses with high probability. In our problem,
no transformation is permitted; we must use the random bits directly. This restriction
has the advantage that the resulting algorithm, when it works, will be more efficient.

Shamir [12] found an alternative proof of the Alon-Rabin result based on an
interesting martingale technique. Unfortunately, and coincidentally, his proof also
works only when e < 1/2(v 1) 0.207.

Ben-Or, Linial, and Saks [5] have written a delightful survey on imperfect random
sources and the collective coin-flipping problem.

2. Proof of main result. In this section, we prove that the e-biased probability
From nowof almost every witness set is bounded away from 0, for every 0 < e < .

on, fix such an e.
We begin with an interesting function that is intimately connected to slightly

random sources. Given a vector x (xl,x2) in 2, define its biased mean by

(1) B(x) min(plxl / p2x2, p2xl /

where p -e and p2 5 / e. There are three other, equivalent, ways to define
biased mean:

(2) B(x) p max(x, x2) / pg. min(xl, x2),

and

B(x) (Xl / x2) elXl x21,

(4) B(x) min [pxl / (1 p)x2].
pl <_p<_p2

Notice that biased mean is an increasing function of its two arguments, which is easy
to see from (1), (2), or (4).

As an application of biased mean, we show how to calculate recursively the e-
biased probability of a witness set S c_ {0, 1}n (for n _> 1). Let S0 and 1 be the
(n- 1)-dimensional slices of S defined as

{x e {0, 0x e s},
Sl {x e {0, 1}n-" lx E S}.

Then it is not hard to see that

(5) Pre(S) B(Pre(So),Pre(S1)).

32 RAVI B. BOPPANA AND BABU O. NARAYANAN

The proof uses (4) together with the definitions of biased probability and slightly
random source.

We next define a related transformation of probability distributions. Let D be
a probability distribution on the real numbers. Define (D), the biased-mean trans-
formation of D, to be the probability distribution of the random variable B(Xl,X2),
where x and x2 are independent random variables with distribution D.

We are particularly interested in iterating this biased-mean transformation. Let
Do be the uniform distribution on the two-element space {0, 1}. For i >_ 1, define

Di =/(D_I). Then it is not hard to see that the random variable Pr(S), where S
is a random subset of {0, 1}, has distribution Dn. The proof is by induction on n,
using the recursive formula (5). This result provides a useful bridge between biased
probability and the distribution D. Using this bridge, all we need to show is that
the distribution Dn is concentrated away from 0, as n tends to infinity.

We next define a generalization of the variance of a probability distribution. Given
a real probability distribution D and a nonnegative real number d, define the dth too-

ment of D by

E(Ix

where x and y are independent random variables with distribution D. For example,
it is easy to see that M2(D) 2 Var(D), where Var represents variance. There are
some known relations between the various moments. For instance, the power-mean
inequality [9] implies the inequality

(6) Mc(D) 1/c

_
Md(D) 1/d,

whenever 0 < c < d.
We next describe our approach to analyzing the distribution D. Taking expected

values of (3) shows that, for every real probability distribution D,

E((D)) E(D) eMI(D),

and hence (for _> 1)

E(Di) E(Di_I) MI(Di-1).

Therefore, to show that the expectation of D, is large, we will show that the mo-
ments MI(D) are small. Alon and Rabin [2] used the second-moment method. They
showed that M2(Di) geometrically contracts as increases, for small e. This implies an
exponentially small bound for MI(Di), thereby providing the result. Unfortunately,
the contraction holds only when e < 1/2(x/- 1) 0.207.

Instead, we shall show that for every e < 21- and every sufficiently large number d,
the dth moment Md(Di) geometrically contracts as increases.

Given a vector x in 2, define its biased norm by

Ilxll mox(IpXl -+- p2x2l, Ip2xl + pxxl).

Our first lemma says that biased mean is a Lipschitz continuous function.
LEMMA 2.1. If x and y are two vectors in 2, then

IB(x)- B(y)I < IIx- YlI-

THE BIASED COIN PROBLEM 33

Proof. Let 5 --I Ix- YlI. The definition of 5 implies the two inequalities

plxl + p2x2 <_ PlYl + P2Y2 q- 5,
p2xl q- plx2 <_ P2Y + py2 + 5.

By the definition of B, the minimum of the two left-hand expressions is B(x); the
minimum of the two right-hand expressions is B(y) + . Hence B(x) < B(y) + . By
symmetry, it follows that B(y) < B(x) + . Combining these last two inequalities
leads to the desired result. I’l

The next lemma bounds the biased norm by more classical norms.
LEMMA 2.2. If x is a vector in 2 and d > 1 is a real number, then

II(Xl,X2)ll d-- II(-Xl,X2)ll d c(Ixll d--

d/d-1 d/d-1 d-1
where c (p + e2 + pd2.

Proof. Assume that X and x2 are nonnegative. (The other three cases are
similar.) The first term on the left is dealt with using Hhlder’s inequality [9]. That
inequality tells us that

IPlXl-t-pxl a < (pall/d-l+ pd2/a-)a-x(Ixxla + Ix=la).

The same bound holds for Ipex + pxx21 d and, hence, for II(x ,x2)ll d.
The second term on the left is even easier to deal with. We have

pxx + p2x21 d mx(pxlxxl,p2[x21)d

pdlxld + PIx21d

< pd2(lxld + Ix21d).

The same bound holds for I-pex +plxela and, hence, for II(-xl,x2)ll d. Adding the
bounds for the two terms on the left completes the proof. D

We obtain the following corollary by bounding the change in biased mean.
COROLLARY 2.3. If x and y are two vectors in 2 and d > 1 is a real number,

then

IB(Xl,X2) B(yl,Y2)l d + IB(yl,x2) B(x,y2)ld _< c (Ix1 yll d + Ix2 y21d)

{d/d-1 d/d-1 d-1
where c t, + e2 + pd2.

Proof. Apply Lemma 2.1 to both terms on the left, and then apply Lemma
2.2. !-1

Next we introduce randomness into the picture.
COROLLARY 2.4. Let x and y be two random vectors in 2 such that Xl, x2, y,

and Y2 are independent and such that x and y are identically distributed. Then for
every real number d > 1,

E(IB(x B(y)l d) <_ E([x -y[d + [x2 --y2[d),

where c (pall/d-1 + pd2/d-1)d-1 + p2d.
Proof. Take expected values of both sides of the inequality in Corollary 2.3. The

two terms on the left-hand side have the same expected value, because the tuple

34 RAVI B. BOPPANA AND BABU O. NARAYANAN

(Xl,X2, Yl,Y2) has the same distribution as the tuple (yl,x2,xl,Y2). Dividing by 2
gives the result.

We finally obtain the contraction theorem that we have been seeking, namely,
that/ is a contracting transformation.

THEOREM 2.5. If D is a real probability distribution and d > 1 is a real number,
then

Md(/(D)) _< cMd(D),

d/d-1 d/d-1 d-1
where c (Pl + t.2 + pd2.

Proof. Let Xl, x2, Yl, and Y2 be independent random variables with distribu-
tion D. Then Corollary 2.4 applies. The left side of the inequality in Corollary 2.4 is
simply Md(/3(D)) because B(x) and B(y) are independent random variables having
distribution/3(D). The right side has two weighted copies of Md(D), for a total of
cMd(D). The two sides complete the proof.

Theorem 2.5 is a contraction result" The constant c can be made less than 1 by
choosing d sufficiently large. This is because as d tends to infinity the value of c tends
to pl..p2 makes c < 1.Pl p2 < 1. In fact, the choice d log

Next, we will attempt to show that the expectation E(Dn) at the root is bounded
away from 0.

THEOREM 2.6. For every 0 _< e < 1/2, the final expectation E(Dn) is at least

E(D0)- e(Ma"(D))l/a d-1

Proof. Applying Theorem 2.5 iteratively shows that Md(D) _< cMd(Do). By
applying Jensen’s inequality [9] and Theorem 2.5 and summing up the resulting geo-
metric series, we get

E(Dn) E(D0) eE n 1M1 (D)
i=0

_> E(Do) E n I(Md(D)) 1/d

i--0

_> E(Do) E n l(cMd(Do)) 1/d

i--0

_> E(Do)- e(Md(D))l/d
1 clid

[]

We still have not shown that E(Dn) is bounded away from 0 for every
That is because as e approaches 1/2, the value of d approaches infinity, causing 1- c1/d

to approach 0, which renders the bound of Theorem 2.6 useless. Instead, we will
start with another initial distribution for which it is clear that the final expectation is
bounded away from 0, and then we will use a majorizing argument to show the same
for our original initial distribution. The same idea was used by Alon and Rabin [2].

A random variable X is said to stochastically dominate a random variable Y if
Pr[X _> t] is at least Pr[Y _> t] for every t. Denote this by X - Y. We need the
following well-known property of stochastic dominance.

LEMMA 2.7 (Stoyan Theorem 2.2.4). Let the random variables X1, X2, Y1, Y2
be such that X1 - Y1 and X2 - Y2. Then, for all increasing functions
O(XI,X2) O(Y1,Y2). In particular, observe that E(X1)

THEOREM 2.8. For every 0 <_ e < 1/2, the final expectation E(Dn) is bounded away
from O.

THE BIASED COIN PROBLEM 35

Proof. Given a nonnegative integer k to be chosen later, consider the new initial
distribution F0:

0 with probability 2-2k
Y pk otherwise.

For >_ 1, define Fi =/Fi-1, where/ is the biased-mean transformation. The new

initial expectation E(F0) is at least p(1- 2-2k) pkl. The new initial moment

Md(F0) is at most 21-2pld. By Theorem 2.6, the final expectation is

E(F) > E(F0)- (Md(F))I/d
l_cl/d

> pk (1_ 2_2) __(21-2pd) lid

l_cl/d

>p[1 1 2]22 (1__cl/d)22

Therefore, given e < 1/2, we can choose k k(, c, d) k(e) sufficiently large and
independent of n so that the final expectation is bounded away from 0, if our initial
distribution were F0.

Compare the random variables Dk and F0. It is easy to see that the smallest non-

zero value Dk can attain is pl. Also, Pr(D 0) 2-2 From these, it is immediate
that F0 - Dk. Now, note that the biased-mean function B(xl,x2) is increasing in

Xl and x2. Applying Lemma 2.7, we get fl(Fi) - fl(Dk+i). Iterating, F, - D,+k.
Therefore, E(D,) _> E(F,_k); this gives the result. [:]

Not only is the expected value of Pr,(S) bounded away from 0, but in fact almost
every S will have Pr(S) bounded away from 0.

THEOREM 2.9. For every < 1/2, almost every set S C_ {0, 1}n has Pre(S) bounded
away from O.

1MProof. We know that the variance Var(D,) 5 2(D,) Applying the Power-
l(cnlld(Do))2/dMean inequality [9] followed by iterating Theorem 2.5, we get Var(D,

Therefore, there exist positive constants 7,5 so that Var(D,) _< 52-". By Cheby-
Var(D)shev’s inequality [3], Pr(IDn- E(D)I > t) _< t2 Thus, there is a choice of

7’ /’(7,5), so that with probability 1- o(1), ID- E(D)I _< 2-’n. In other
words, for almost every set S, Pr(S) E(D)/ o(1). Applying Theorem 2.8, the
proof is complete.

Acknowledgments. We thank Noga Alon and Joel Spencer for some valuable
discussions.

REFERENCES

[1] N. ALON AND M. NAOR, Coin-flipping games immune against linear-sized coalitions,
SIAM J. Comput., 22 (1993), pp. 403-417.

[2] N. ALON AND M. O. RABIN, Biased coins and randomized algorithms, in Advances in
Computing Research 5, S. MicMi, ed., JAI Press Inc., Greenwich, CT, 1989, pp. 499-
507.

[3] N. ALON AND J. SPENCER, The Probabilistic Method, John Wiley & Sons Inc., New York,
1992.

36 RAVI B. BOPPANA AND BABU O. NARAYANAN

[4] M. BEN-OR AND N. LINIAL, Collective coin flipping, in Advances in Computing Research 5,
S. MicMi, ed., JAI Press Inc., Greenwich, CT, 1989, pp. 91-116.

[5] M. BEN-OR, N. LINIAL, AND M. SAGS, Collective coin flipping and other models of im-
perfect randomness, in Proc. 7th Hungarian Conference on Combinatorics, Colloq.
Math. Soc. Jnos Bolyai 52, North-Holland, Amsterdam, 1987, pp. 77-112.

[6] R. BOPPANA AND B. NARAYANAN, The biased coin problem, in Proc. 25th Annum ACM
Symposium on the Theory of Computing, 1993, pp. 252-257.

[7] , Perfect-information leader election with optimal resilience, manuscript.
[8] B. CHOR AND O. (OLDREICH, Unbiased bits from sources of weak randomness and prob-

abilistic communication complexity, SIAM J. Comput., 17 (1988), pp. 230-261.
[9] G. H. HARDY, J. E. LITTLEWOOD, AND (. PSLYA, Inequalities, 2nd ed., Cambridge Uni-

versity Press, Cambridge, 1952.
[10] H. F. MURRY, A general approach for generating natural random variables, IEEE Trans.

Comput., C-19 (1970), pp. 1210-1213.
[11] M. SANTHA AND U. V. VAZIRANI, Generating quasi-random sequences from semi-random

sources, J. Comput. System Sci., 33 (1986), pp. 75-87.
[12] E. SHAMIR, A Slightly Random Source Confronts a Random Witness-Set, Technical Re-

port CS-87-9d, Leibniz Center for Research in Computer Science, Hebrew University,
Jerusalem, 1988.

[13] U. V. VAZIRANI, Strong communication complexity or generating quasi-random sequences

from two communicating semi-random sources, Combinatorica, 7 (1987), pp. 375-392.
[14] U. V. VAZIRANI AND V. V. VAZIRANI, Random polynomial time is equal to slightly-random

polynomial time, in Proc. 26th Annual IEEE Symposium on Foundations of Computer
Science, 1985, pp. 417--428.

[15] D. ZUCKERMAN, Simulating BPP using a general weak random source, in Proc. 32nd
Annual IEEE Symposium on Foundations of Computer Science, 1991, pp. 79-89.

SIAM J. DISCRETE MATH.
Vol. 9, No. 1, pp. 37-54, February 1996

1996 Society for Industrial and Applied Mathematics
0O5

SPANNERS OF HYPERCUBE-DERIVED NETWORKS*

MARIE-CLAUDE HEYDEMANNt, JOSEPH G. PETERS*, AND DOMINIQUE SOTTEAUt

Abstract. A spanning subgraph G of a simple undirected graph G is a t-spanner of G if
every pair of vertices that are adjacent in G are at distance at most in Gp. The parameter is
called the dilation of the spanner. Spanners with small dilations have many applications, such as
their use as low-cost approximations of communication networks with only small degradations in
performance. In this paper, we derive spanners with small dilations for four closely related bounded-
degree approximations of hypercubes: butterflies, cube-connected cycles, binary de Bruijn graphs,
and shuffle-exchange graphs. We give both direct constructions and methods for deriving spanners
for one class of graphs from spanners for another class. We prove that most of our spanners are
minimum in the sense that spanners with fewer edges have larger dilations.

Key words, networks, spanning subgraphs, butterflies, cube-connected cycles, shuffle-exchange
graphs, de Bruijn graphs

AMS subject classifications. 68M10, 05C12

1. Introduction. Given a simple undirected graph G, a subgraph G of G is
a t-spanner of G if G is a spanning subgraph of G, and every pair of vertices that
are adjacent in G are at distance no greater than t in G. From this definition, it
is immediate that the distance between any pair of vertices in G is at most t times
greater than the distance in G. The factor t is called the dilation of the spanner.
(Some authors use the term stretch factor instead of dilation [6], [14].) It is also
immediate from the definition of spanner that any graph is a 1-spanner of itself and
that a t-spanner of a graph is also a t-spanner of the graph for every t > t. Combining
these two observations, any graph is a t-spanner of itself for every t _> 1. We will use
the terms proper spanner and proper t-spanner to refer to spanners that are proper
subgraphs of the graphs that they span.

If G has the smallest possible number of edges of any t-spanner of G, then G is a
minimum t-spanner of G. A minimum t-spanner is the least expensive approximation
of a network in terms of number of communication links, for which the degradation
in performance can be guaranteed not to exceed a factor of t. If t is small, then a
minimum t-spanner can be a practical alternative to a communication network that
is too expensive or difficult to build.

Spanners have many applications in addition to their use as approximations of
communication networks. They have been used to transform synchronous distributed
algorithms into asynchronous algorithms [2], [18], to solve motion planning prob-
lems [7], to construct small routing tables [19], to broadcast efficiently [3], and even
to solve genetics problems [4].

Spanners are often difficult to find, and most problems involving spanners are NP-
hard [17], [5], [6]. To date, much of the research on spanners has concentrated on the

Received by the editors April 25, 1994; accepted for publication (in revised form) January
10, 1995. Part of this research was performed while the second author was visiting Universit de
Paris-Sud and while the third author was visiting McGill University and Simon Fraser University.

Laboratoire de Recherche en Informatique, Unit de Recherche Associe, 410 du Centre National
de la Recherche Scientifique, Bt. 490, Universit de Paris-Sud, 91405 Orsay, France (mch(C)lri.fr
and sotteau(C)lri.fr). The research of these authors was partially supported by project PRC C3 of
the Centre National de la Recherche Scientifique.

School of Computing Science, Simon Fraser University, Burnaby, BC VhA 1S6, Canada. The
research of this author was partially supported by the Natural Sciences and Engineering Research
Council of Canada (petrs(C)cs.sfu. ca).

37

38 M.-C. HEYDEMANN, J. G. PETERS, AND D. SOTTEAU

construction of spanners of graphs with small diameters and large average or maximum
degrees such as hypercubes [13], [18] and various types of complete graphs [7], [8], [23],
and graphs with small degrees and large diameters such as grids [14] and pyramids [21].
In this paper, we study spanners of graphs that have small constant degrees and small
diameters. In particular, we derive minimum t-spanners for small t for four bounded-
degree approximations of hypercubes: butterflies, cube-connected cycles, binary de
Bruijn graphs, and shuffle-exchange graphs. We give both direct constructions of
spanners and methods for deriving spanners for one class of graphs from spanners for
another class.

The study of spanners is closely related to the study of graph embeddings. In
a graph embedding problem, the goal is to assign the vertices of a guest graph to
the vertices of a host graph in such a way that some parameter, such as dilation or
congestion, is minimized. A spanner is, in fact, a graph embedding in which the host
graph is restricted to being a spanning subgraph of the guest graph. We refer the
reader to [16] for a survey of the many graph embedding results.

In the next section of this paper, we define the four classes of graphs, discuss
some of their properties, and describe mappings and relationships among the classes.
The four classes are quite closely related to each other [I], [12], and we will use the
mappings later in the paper to derive spanners for one class from spanners for other
classes. Some care is needed when using mappings to derive spanners in this way. It is
possible for a graph G3 to be a t-spanner of G2 and G2 to be a t-spanner of G1 while
G3 is neither a t-spanner nor a t-spanner of GI. Figure 1 illustrates this situation.

G G G

FIG. 1. G3 is a 4-spanner of G2; G2 is a 3-spanner of G; G3 is a 9-spanner of G1.

In 3, we construct spanners for cube-connected cycles and butterfly graphs. Di-
lations 3 and 7 are the only possible small dilations for large graphs from these classes.
We give a constructive characterization of all minimum 3-spanners of butterfly graphs
and show that a cube-connected cycles graph of the same order is a minimum 3-
spanner with the additional desirable property of being 3-regular. We briefly describe
an algorithm to find any 3-regular minimum 3-spanner of a butterfly graph. We then
give constructive characterizations of all minimum 7-spanners of butterfly graphs and
cube-connected cycles graphs (for all but the first few graphs of each class). We show
that some minimum 7-spanners of cube-connected cycles graphs are also minimum
7-spanners of butterfly graphs while others are not, and we explain why this is the
case. Small dilation spanners of small cube-connected cycles and butterfly graphs
are briefly discussed. Our results regarding small dilation spanners of cube-connected
cycles and butterfly graphs are summarized in a table at the end of the section.

In 4, we present our results for shuffle-exchange and binary de Bruijn graphs. We
concentrate on dilations 3 and 7, which are the most interesting for these two classes of
graphs. We give a constructive characterization of all minimum 3-spanners of binary
de Bruijn graphs and show how to obtain a minimum 3-spanner of maximum degree
3 from a shuf[le-exchange graph of the same order. We also show that every minimum
3-spanner of a binary de Bruijn graph can be obtained directly from a minimum 3-

SPANNERS OF HYPERCUBE-DERIVED NETWORKS 39

spanner of a butterfly graph, and we briefly describe an algorithm to find the minimum
3-spanners with maximum degree 3 of a binary de Bruijn graph. We then show how
to obtain ’/-spanners of shuffle-exchange graphs from ’/-spanners of cube-connected
cycles graphs and ’/-spanners of binary de Bruijn graphs from ’/-spanners of butterfly
graphs and "/-spanners of cube-connected cycles graphs. We conclude the section with
a table summarizing results regarding small dilation spanners of shuffle-exchange and
binary de Bruijn graphs.

2. Definitions properties and relationships. Binary strings are used as
vertex labels or components of vertex labels for all of the classes of graphs studied in
this paper. We use x(i) or XOXl... -’." x-i to denote the binary string obtained
from x X0Xl "’’Xn-1 by complementing the bit in position i. Similarly, x(i,j) and
xoxl.., x-.., x--f... Xn- mean x with bits i and j complemented, and so on. The
parity of a vertex is either even or odd, depending on the number of 1 bits in the
binary representation of its label. We use iJ to denote a string of j i’s. We will
abbreviate "the vertex with label x" to "vertex x."

The four classes of graphs that we consider in this paper are bounded-degree
approximations of binary hypercubes. The n-dimensional binary hypercube H(n) has
2 vertices which are labelled with the binary strings of length n. Two vertices of
H(n) are adjacent if their labels differ in exactly one bit position. The edge [x,x(i)]
connecting vertices x and x(i) in H(n) is called a dimension edge and x and x(i)
are dimension neighbours. We will only consider graphs with n _> 3 dimensions in
this paper; the spanners of the four bounded-degree approximations of H(2) are not
very interesting and some of our general techniques fail on such small graphs.

The binary shuffle-exchange graph of dimension n, denoted SE(n), has 2 vertices
with the same labels as the vertices of H(n). Each vertex XoXl...x- is connected
to its shuffle neighbour XlX2...x-xo and its unshuffle neighbour Xn-lXo...x,,-2 by
shuffle edges, and to its exchange neighbour XoXl...x- by an exchange edge. The
shuffle edges of the vertices 0n and 1 are removed since they are self-loops. If n is
even, then one of the two parallel shuffle edges between 0101... 01 and 1010... 10 is
also removed.

The binary de Bruijn graph of dimension n, denoted UB(n), has the same vertex
set as H(n) and SE(n). As in SE(n), each vertex X0X "’’Xn-1 is connected to
its shuffle neighbour xlx...x,_xo and its unshuffle neighbour Xn-lXo’"Xn- by
shuffle edges. Shuffle-exchange edges connect xox"’Xn-1 to its shuffle-exchange
neighbour xx x,,-l--5 and its unshuffle-exchange neighbour X-lXo xn-. As
in SE(n), the shuffle edges at vertices 0n and 1 are self-loops and are removed. One
of the two parallel shuffle or shuffle-exchange edges between 0101... and 1010... is
also removed.

The cube-connected cycles graph of dimension n, denoted CCC(n), is derived
from H(n) by replacing each vertex x of H(n) by a cycle of length n. We call such
a cycle a fundamental cycle of CCC(n). Each of the n vertices on the fundamental
cycle that replaces x inherits one of the n edges that were incident to x in H(n). The
vertices of a fundamental cycle are labelled with pairs (i,x), 0 _< _< n- 1, where

is called the level of the vertex. Level of CCC(n) is the set of all vertices with
level i. The edges that connect (i, x) to its neighbours (i / 1, x) and (i- 1, x) on its
fundamental cycle are called C-edges. The edge that (i, x) inherits from the hypercube
vertex x is called an H-edge. The H-edge of (i, x) connects it to vertex (i, x(i)). We

In this paper, all arithmetic on indices and levels is assumed to be modn.

40 M.-C. HEYDEMANN, J. G. PETERS, AND D. SOTTEAU

will abuse terminology slightly by saying that the fundamental cycles containing (i, x)
and (i, x(i)) are adjacent in dimension i.

The butterfly graph of dimension n, BE(n), is derived in a similar way to CCC(n).
BE(n) has the same vertex set as CCC(n) and the same fundamental cycles and C-
edges. The difference is that BF(n) has two H-edges corresponding to each former
hypercube edge instead of one. The H-edges of vertex (i, x) in BF(n) are [(i, x), (i +
1, x(i))] and [(i,x), (i- 1, x(i- 1))]. Note that there are two H-edges between two
fundamental cycles that are adjacent in dimension i: [(i,x), (i + 1, x(i))] and [(i /
1, x),(i,x(i))].

Observation 2.1 below follows immediately from the definitions of CCC(n) and
BF(n). Table 1 lists some of the characteristics of the graph classes that we have
defined. The diameter of CCC(n) shown in the table is from [15] and is for n > 3.
The diameter of CCC(3) is 6.

TABLE
Some parameters of hypercube-derived graphs.

vertices

"(’n) 2 n. 2n-1

SE(n) 2 2 3 + (n mod 2)
UB(n) 2 2.2 3

cgc(n) n2 n2

BF(n) n2 2. n2

edges degree diameter

regular n
maximum 3

maximum 4

regular 3

regular 4

n

2n-- 1

n

2n+[J-2, n>3
n/LJ

Observation 2.1. The graph H(n) results when each fundamental cycle of BF(n)
or CCC(n) is contracted into one vertex and parallel edges are eliminated.

Figure 2 illustrates the close relationships among H(n), CCC(n), and BF(n). In
the figure, the horizontal edges are the C-edges of CCC(3) and BF(3). The numbers
across the top of the diagram are the levels. To simplify the figure, the fundamental
cycles of CCC(3) and BF(3) have been "cut" at level 0, and the level 0 vertices of
each graph have been duplicated. In the right part of the figure, CCC(3) is obtained
from BF(3) by deleting the dashed edges.

H(3)

FIG. 2. Relationships among hypercubes, cube-connected cycles, and butterflies.

The following two propositions describe mappings between classes of graphs. We
will use these mappings later in the paper to derive spanners. The homomorphisms
and used in Proposition 2.3 were studied in an algebraic context in [1].
PROPOSITION 2.2 (see [10]). SE(n) is a spanning subgraph of UB(n) and CCC(n)

is a spanning subgraph of BF(n).

SPANNERS OF HYPERCUBE-DERIVED NETWORKS 41

Proof. The mapping of vertices of SE(n) onto vertices of UP(n), which shows
that SE(n) is a spanning subgraph of UP(n), is f(x) x if x has odd parity and
f(xo...x-l) xn-lxo’" "x-2 if x Xo’" "Xn-1 has even parity. The mapping of
vertices of CCC(n) onto vertices of BF(n), which shows that CCC(n) is a spanning
subgraph of BF(n), is g(i,x) (i,x) if x has even parity and g(i,x) (i + 1, x) if x
has odd parity.

Intuitively, the mapping g of vertices of CCC(n) onto vertices of BF(n) rotates
the labels of fundamental cycles corresponding to hypercube vertices with odd parity
by one position (i.e., one level) so that a vertex at level moves to level q- I. Figure 2
shows these rotations of labels. It is easy to see that g induces a one-to-one mapping
of the C-edges of CCC(n) onto the C-edges of BF(n) and of the H-edges of CCC(n)
onto half of the H-edges of BF(n).

SE(,) UP(,)

FIG. 3. Mappings among hypercube-derived graphs.

PROPOSITION 2.3. There is a homomorphism (of graphs) from CCC(n) onto
SE(n), and there is a homomorphism from BF(n) onto UP(n), such that o

g f o , where f and g are the mappings of vertices of SE(n) onto UP(n), and
CCC(n) onto BF(n), respectively, from the proof Of Proposition 2.2.

Proof. The homomorphism (i, xoxl.. "Xn-) X+lX+2 "x of the vertices of
CCC(n) onto the vertices of SE(n) maps each edge of CCC(n) onto an edge of SE(n).
Similarly, the homomorphism (i, xox ""Xn-) xx+ ""x_ of the vertices of
BF(n) onto the vertices of UP(n) maps each edge of BF(n) onto an edge of UP(n).
It is now mechanical to verify the equality

The relationships of.Propositions 2.2 and 2.3 are shown in Fig. 3 and later in Fig. 6
(and Fig. 7). In the left part of Fig. 6, the labels next to the vertices of CCC(3) in
the interior of the graph are (the labels of) the vertices of SE(3) to which they are
mapped by . Similarly, the labels in the interior of BF(3) in the right part of the
figure are the vertices of UP(3) to which maps the vertices of BF(3).

We conclude this section with a discussion of some properties of cycles in UP(n),
BF(n), and CCC(n). Some of these properties are based on results from [11] and
others are obtained using homomorphism and results from [1].

Each vertex (i,x) of BE(n) belongs to two 4-cycles which we call basic 4-cycles.
One basic 4-cycle has vertices (i, x), (i + 1, x), (i, x(i)), and (i + 1, x(i)). The other
basic 4-cycle has vertices (i, x), (i- 1, x), (i, x(i- 1)), and (i- 1, x(i- 1)). Note that
each basic 4-cycle is an alternating sequence of C- and H-edges. The basic 4-cycles
of BF(3) are clearly visible in Fig. 2. It is easily verified that each edge of BF(n)
belongs to a unique basic 4-cycle. Thus, a butterfly graph can be viewed as the union
of basic 4-cycles. We state this well-known result as an observation.

Observation 2.4. For n _> 3, BF(n) is the edge-disjoint union of n. 2"- basic
4-cycles.

The next proposition describes a graph D(n) that is derived from the basic 4-
cycles of BF(n). We will use this result to establish structural properties of BF(n).
The proof of Proposition 2.5 is based on a similar proof in [11] for the fast Fourier
transform graphs.

42 M.-C. HEYDEMANN, J. G. PETERS, AND D. SOTTEAU

PROPOSITION 2.5. For n >_ 3, let D(n) be the graph obtained from BF(n) as

follows. The vertices of D(n) correspond to the basic 4-cycles of BF(n). There is an

edge between two vertices in D(n) if the corresponding basic 4-cycles in BF(n) have
a common vertex. Then D(n) is an edge-disjoint union of 4-cycles.

Proof. Consider the basic 4-cycle of BF(n), which has vertices (i,x), (i + 1,x),
(i,x(i)), and (i + 1, x(i)) where x x0. "xn-1. Call this cycle X. X corresponds to
a single vertex in D(n) which we will label (i, xo...xi-lxi+l-..xn-1), or (i,x(i)) for
short (with indices taken modn as usual). Each vertex of X in BF(n) is on a second
basic 4-cycle in BF(n), and each of these four basic 4-cycles corresponds to one of the
neighbours of vertex (i, x(il) in D(n). Using the same labelling convention that we
used for the vertex corresponding to X, the four neighbours of (i,x(i)) in D(n) are

(i- 1, x(i- 1)), (i + 1, x(i + 1}), (i- 1,xo...x{_22-...x,_) (i- 1, x(i)(i- 1)),
and (i + 1, x(i)(i + 1}). It can be verified that each vertex (i,x(i}) of D(n) is on two
basic 4-cycles of D(n) and that each edge of D(n) is on one basic n-cycle of D(n).
The vertices on one basic 4-cycle with (i,x(i)) are (i + 1,x(i + 1)), (i,x(i + 1)(i)),
and (i + 1, x(i)(i + 1)). The vertices on the other basic 4-cycle with (i,x(i)) are

(i- 1, x(i- 1)), (i,x(i- 1)(i)), and (i- 1, x(i)(i- 1)). E]

The graph D(n) of Proposition 2.5 and BF(n- 1) have similar structures in that
each graph is the edge-disjoint union of 4-cycles. However, the number of vertices
in D(n) is n. 2-1, the same as the number of basic n-cycles of BF(n), whereas
BF(n- 1) has only (n- 1). 2n-x vertices. The two graphs have the same number
(2n-) of fundamental cycles, but the fundamental cycles of D(n) have length n while
the fundamental cycles of BF(n- 1) have length n- 1.

In the proof of Proposition 2.5, each basic 4-cycle of BF(n) corresponds to a single
vertex in the graph D(n), and each vertex of D(n) is on two basic n-cycles of D(n).
Thus, each basic n-cycle of BF(n) is on two 4-cycles of basic 4-cycles in BF(n). This
property of BF(n) is most easily seen by looking at the neighbourhoods of the basic
4-cycles labelled abcd in Figs. 2 and 4. (In both figures, the edges that are in BF(n)
but not in CCC(n) are shown as thin dashed lines.) We will use this property several
times in the next section, so we state it as a proposition.

C1

FIG. 4. The basic 4-cycle abcd is on two 4-cycles of basic 4-cycles.

PROPOSITION 2.6. Each basic 4-cycle of BF(n) is on two 4-cycles of basic 4-
cycles.

A binary de Bruijn graph can also be viewed as a union of basic cycles. Each vertex
x of UP(n) except 0n and 1n belongs to two basic cycles. 0n and 1n each belong to one
basic cycle. All but two of the basic cycles are 4-cycles and are alternating sequences
of shuffle and shuffle-exchange edges. The basic cycles containing 0n and 1n are 3-

SPANNERS OF HYPERCUBE-DERIVED NETWORKS 43

cycles. In 4, we will use the following propositions and corollaries to derive spanners
for UB(n) from spanners of BF(n). Proposition 2.7 is from [1]. We have included a
proof because some of the details of the proof will be used in 4. Corollary 2.9 is from
[11], and Proposition 2.10 follows directly from a result in [11] for binary de Bruijn
digraphs.

PROPOSITION 2.7 (see [1]). UB(n) can be obtained from BE(n) by taking the
image under of any two adjacent levels and + 1 of BF(n) and then removing the
loops at On and In and one of the two duplicate edges [0101..., 1010...].

Proof. The homomorphism (i, xoxl...Xn_l) xxi+l...x- from Proposi-
tion 2.3 defines a bijection between the vertices of any level i of BF(n) and the
vertices of UB(n). For any given i, maps each of the 2 basic 4-cycles of BF(n)
with edges between levels and + 1 onto a basic 4-cycle (or basic 3-cycle) of UB(n).
More precisely, the basic n-cycle (i,x), (i + 1,x), (i,x(i)), (i + 1,x(i)) of BF(n)
with x xox...xn-1 is mapped to the basic 4-cycle XiXi+l’’’Xi_l, Xi+l’’’Xi_lXi,

X--X+’’’Xi_, X+I’’’X-X- of UB(n)unless x 0n x(i) 0n, x i or

x(i) In. Ifx On or x(i) 0n, then the image in UB(n) is the basic 3-cycle
0n, 0n-11, 10n-1 because the vertices (i, 0n) and (i + 1, 0n) are both mapped to the
vertex 0n of UB(n). Similarly, if x in or x(i) In, then the image in UB(n)is
the basic 3-cycle in, ln-10, 01n-1. Also, each vertex y of UB(n) is the image under

of one level i vertex and of one level i + 1 vertex of BF(n). The level vertex has
two neighbours in level i + 1, and these neighbours are mapped to the shuifie and
shuffle-exchange neighbours of y. The level + 1 vertex has two neighbours in level i,
and these neighbours are mapped to the unshuifie and unshuifie-exchange neighbours
of y. Thus, every edge between levels and + 1 of BF(n) is mapped to a different
edge of UB(n), except edges [(/,0n), (i + 1,0n)] and [(i, ln), (i + 1, ln)], which map
onto loops at vertices On and in, respectively, and the two edges which map onto
[0101..., 1010-.-]. If n is even, then these two edges are [(i, 0101...), (i + 1, 0101...)]
and [(i, 1010...), (i+1, 1010...)]. If n is odd, the two edges are [(i,... 0100101...), (i+
1,-.. 0101101...)] and [(i,... 1011010...), (i 4- 1,... 1010010...)], where the bit posi-
tions shown are 3 through 4- 3 (i.e., the two adjacent O’s in (i,... 0100101...) are
in positions i- 1 and i). El

COROLLARY 2.8. Any two edge-disjoint basic 4-cycles of BF(n) are mapped by
onto either the same basic 4- or 3-cycle of UB(n) or onto edge-disjoint basic 4- or

3-cycles of UB(n).
Proof. It is immediate from Proposition 2.7 that any two 4-cycles of BF(n) using

edges between the same two adjacent levels are mapped onto edge-disjoint basic 4- or
3-cycles of UB(n). In addition, n edge-disjoint basic 4-cycles of BF(n) (one between
each pair of adjacent levels) are mapped by onto the same basic 4- or 3-cycle of

COROLLARY 2.9 (see [11]). For n >_ 3, UB(n) is the union of 2n-- 2 ba-
sic 4-cycles and two basic 3-cycles, and this union is edge-disjoint except for edge
[0101. , 1010. .].

Proof. The number of basic 4-cycles between two levels and + 1 of vertices of
BF(n) is 2n-. The basic 4-cycles containing On and In are mapped by onto basic
3-cycles of UB(n). All other basic 4-cycles are mapped by on edge-disjoint 4-cycles
of UB(n). El

PROPOSiTiON 2.10 (see [11]). For n

_
3, UB(n- 1) is the graph obtained from

UB() of YB(- 1) to
basic 4-cycles of UB(n). There is an edge in UB(n- 1) between two vertices if the

44 M.-C. HEYDEMANN, J. G. PETERS, AND D. SOTTEAU

two corresponding basic cycles in UP(n) have a common vertex.
The following result for binary de Bruijn graphs is the analogue of Proposition 2.6.

It can be proved directly from Corollary 2.9 and Proposition 2.10 in the same way
that Proposition 2.6 was proved directly from Observation 2.4 and Proposition 2.5.
Alternatively, the close relationship between UP(n) and BF(n) is emphasized by
noting that Proposition 2.11 follows directly from Proposition 2.6 by Proposition 2.7.

PROPOSITION 2.11. Each basic 4-cycle of UP(n) is on two 4- or 3-cycles of basic
4- or 3-cycles. Each basic 3-cycle of UP(n) is on one 3-cycle of basic 4- or 3-cycles.

PROPOSITION 2.12. If n >_ 6, every nonfundamental cycle of CCC(n) has length
8 or length at least 12. If n >_ 8, every nonfundamental cycle of BF(n) has length 4
or 8 or length at least 12.

Proof. Any nonfundamental cycle of CCC(n) or BF(n) uses an even number of
H-edges in any dimension.

(a) Let X be a nonfundamental cycle in CCC(n) with H-edges from r different
dimensions. Since no two H-edges are adjacent in CCC(n), there are at least as
many C-edges as H-edges in X, so X has at least 4r edges. In CCC(n), r _> 2, so

IXI _> 8. If r 3, then IXI >_ 12. If r 2, but X uses more than two edges in one
or both of its dimensions, then it has at least six H-edges and IXI >_ 12. Thus, any
nonfundamental cycle X of CCC(n) with fewer than 12 edges has r 2 and uses
exactly two H-edges in each of two dimensions, say dimensions and j with j > i.
But then X must go through the eight vertices (l, x), (/, x(i)), (/, x(i, j)), and (/, x(j))
for some x and and j. Thus X contains four paths of C-edges, one path in
each of the fundamental cycles corresponding to the vertices x, x(i), x(i, j), and x(j)
of the hypercube, and each path has length p j i or n p. The possible lengths
ofZare4p+4, 3p+(n-p)+4=n+2p+4, and2p+2(n-p)+4=2n+4for
1 _< p _< n- 1. None of these gives a cycle length of 9, 10, or 11 when n _> 6.

(b) Let X be a nonfundamental cycle in BF(n) with H-edges from r different
dimensions. In BF(n), r >_ 1 and H-edges can appear consecutively in X if the H-
edges are from consecutive dimensions. If r 1, then X can have length 4, n + 2,
or 2n. If r 2 and the dimensions of the H-edges in X do not alternate, then the
possible cycle lengths are n + 4, 2n / 2, and 3n. If r 2 and the two dimensions
of the H-edges, say and j, alternate, then X contains four paths of C-edges, one
path in each of the fundamental cycles corresponding to the vertices x, x(i), x(i, j),
and x(j) of the hypercube, and each path has length p j or n-p (assuming
j > i). It is not difficult to check that the possible lengths for X in this case are
4p+4, n+ 2p+4, 2n+4 as in CCC(n) (since CCC(n) is a subgraph of BF(n) plus
n+2p+2, n+2p+6,2n, 2n+2, and2n+8for l_p_<n-1. Ifn>_8, thenthe
only possible lengths for X are 4, 8, and 12 or greater. If r >_ 3 and n >_ 8, it is not
hard to verify that no new cycle lengths less than 12 are possible. []

Remark 2.13. It is immediate from the previous proof that the shortest nonfun-
damental cycles in CCC(n) are alternating sequences of H- and C-edges of length
8. Each such cycle is a sequence of vertices of the form (i, x), (i, x(i)), (i / I, x(i)),
(i + 1, x(i, / 1)), (i, x(i, i + 1)), (i, x(i + 1)), (i + 1, x(i + 1)), (i + 1, x), (i, x). The
H-edges of this cycle are from the two adjacent dimensions and / 1. It is easy
to verify that this is the only possible way to select the dimensions of the H-edges
and that each C-edge is on exactly one such 8-cycle. Each H-edge [(i,x), (i,x(i))] is
on exactly two 8-cycles; one 8-cycle uses the adjacent dimensions i and i / 1 and the
other uses adjacent dimensions i and i- 1. There are n2’ C-edges in CCC(n), so
there are n2n-2 nonfundamental 8-cycles, 2n-2 for each possible choice of adjacent

SPANNERS OF HYPERCUBE-DERIVED NETWORKS 45

dimensions and + 1. The four C-edges on an 8-cycle that uses dimensions i and
i + 1 are of the form [(i, xo." x_ax+2.., x), (i / 1, xo." x_a/x+2.., x)] with

a e {00, 01, 10, 11}. F

The lengths of some of the cycles of CCC(n) and BF(n) are also discussed in [20].

3. Spanners of CCC(n) and BF(n). From Proposition 2.12, we know that
the shortest cycles of BF(n) containing H-edges are the basic 4-cycles. Thus, removing
H-edges results in a t-spanner with t >_ 3. The only cycles of BF(n) that do not
contain H-edges are the fundamental cycles, so proper 2-spanners are only possible
for BF(3).

PROPOSITION 3.1. A minimum 2-spanner of BF(3) has 40 edges and is obtained
by removing one edge from each of the eight fundamental 3-cycles. There is no proper
2-spanner of BF(n) for any n > 3.

THEOREM 3.2. A minimum 3-spanner of BF(n), n > 4, has .n2n edges and is
obtained by removing one edge from each basic 4-cycle.

Proof. If n > 4, then the only 4-cycles in BF(n) are the basic 4-cycles. By
Observation 2.4, BF(n) is the edge-disjoint union of n. 2-1 basic 4-cycles. Since
each edge is on exactly one 4-cycle, deleting one edge from each 4-cycle gives a 3-
spanner for BF(n) with 23-. n2 edges. Deleting a second edge from any 4-cycle would
destroy the only remaining path of length 3 between the endpoints of the first deleted
edge, so no 3-spanner of BF(n) can have fewer than . n2 edges. Furthermore, the
only way that a minimum 3-spanner of BF(n) can be obtained is by deleting exactly
one edge from each basic 4-cycle.

PROPOSITION 3.3. For 3 <_ n <_ 7 and max(3,n-1) _< t <_ 6, there is a minimum

t-spanner of BF(n) with . n2n 2n-1 edges.
Proof. BF(n) is the edge-disjoint union of n. 2- basic 4-cycles, so for any t _> 3

a t-spanner can be obtained by deleting one edge from each basic 4-cycle. However,
for 3 _< n _< 7, this spanner is not a minimum t-spanner if max(3, n 1) _< t _< 6; the
2n fundamental cycles in BF(n) have length n and all of them could remain intact
after the deletion of n. 2- edges. If more than one edge is deleted from a basic
4-cycle of BF(n), then none of the edges deleted from the cycle can be an H-edge.
This is because an H-edge is on a unique cycle; if it is deleted, then the other three
edges on its 4-cycle are needed to span it. Thus, the only way to remove more than
one edge from a basic 4-cycle is to remove the two C-edges. When both C-edges
are removed from a basic 4-cycle, all other edges of the two fundamental cycles that
contained the deleted C-edges must be retained to span the deleted C-edges with a

path of length n- 1. Since there are 2 fundamental cycles in BF(n), two C-edges
can be removed from at most 2n- of the basic 4-cycles and at most one edge can be
removed from the remaining basic 4-cycles. This leaves at least . n2 2- edges
in the t-spanner. For max(3, n- 1) _< t <_ 6, a t-spanner with .n2- 2-1 edges can
be constructed by removing one H-edge from each of the basic 4-cycles except those
involving one pair of adjacent levels and + 1. All C-edges between levels and + 1
(i.e., both C-edges of each basic 4-cycle involving levels i and + 1) are then deleted.
For example, if i 0, then for each x the C-edge [(0,x), (1, x)] is removed, and one
of the two H-edges [(j,x), (j + 1, x(j))] and [(j,x(j)), (j + 1,x)] is removed for each
j>0.

By Proposition 2.2, CCC(n) is a spanning subgraph of BF(n) with . n2n edges.
In fact, the following stronger result is true.

THEOREM 3.4. CCC(n) is a minimum n-spanner of BF(n) for n > 4.

Proof. To prove that CCC(n) is a minimum 3-spanner of BF(n), we will show

46 M.-C. HEYDEMANN, J. G. PETERS, AND D. SOTTEAU

that CCC(n) is missing exactly one edge from each basic 4-cycle of BF(n). In Propo-
sition 2.2, the mapping g from [10] of the vertices of CCC(n) to the vertices of
BE(n) induces a one-to-one correspondence between the C-edges of CCC(n) and the
C-edges of BF(n), so we only have to check what happens to the H-edges. Each
basic 4-cycle of BF(n) is an alternating sequence of C- and H-edges of the form
[(i,x), (i + 1, x(i))], [(i + 1, x(i)), (i,x(i))], [(i,x(i)), (i + 1,x)], [(i + 1, x), (i,x)]. g
maps the H-edge [(i,x),(i,x(i))] of CCC(n) to the H-edge [(i,x), (i + 1,x(i))] of
BF(n) if x has even parity and to [(i + 1, x), (i,x(i))] if x has odd parity. Thus, g
maps exactly one H-edge of CCC(n) to one H-edge of each basic 4-cycle of BF(n). It
follows that CCC(n) can be obtained from BF(n) by deleting from each basic 4-cycle
of BF(n) the H-edge that is not the image of an edge under mapping g. This shows
that CCC(n) is a 3-spanner of BF(n) because each H-edge of BF(n) is spanned by
the other three edges of its basic 4-cycle. CCC(n) is a minimum 3-spanner of BF(n)
by Theorem 3.2.

Theorem 3.2 states that every minimum 3-spanner of BF(n) can be obtained by
deleting one edge from each basic 4-cycle. Some of these 3-spanners will have vertices
with degree 4. CCC(n) has the additional property that it is a minimum 3-spanner
with maximum degree 3. Note that any minimum 3-spanner with maximum degree
3 must be 3-regular. By Proposition 2.6, each basic 4-cycle of BF(n) is on two 4-
cycles of basic 4-cycles in BF(n). This leads to an algorithm for finding any 3-regular
minimum 3-spanner of BF(n). The basic idea is to start by deleting any edge from
any basic 4-cycle. For example, consider the basic 4-cycle abcd in Fig. 4. Cycle abcd
is on two 4-cycles of 4-cycles and deleting an edge from abcd reduces to eight the
number of ways in which edges can be deleted from each of the 4-cycles of 4-cycles.
For example, suppose that edge [a, b] is deleted from abcd. An edge incident to c
must be deleted to reduce the degree of c to 3 and it cannot be another edge from
abcd. This leaves only two choices in the other 4-cycle containing c. The deletion of
[a, b] also reduces to two the number of choices in each of the other 4-cycles shown in
Fig. 4, either directly or indirectly. Each subsequent edge deletion further reduces the
remaining choices until all remaining edge deletions are forced. A detailed description
of this algorithm and the proof that it produces 3-regular minimum 3-spanners are
mechanical, so they are omitted.

The analysis of the spanners of CCC(n) for small n is similar to the analysis for
BF(n). By Proposition 2.12, the shortest cycle in CCC(n) containing H-edges has
length 8. The only cycles with no H-edges are the fundamental cycles, so proper t-
spanners with t < 7 are only possible when n < 8. To get a minimum (n- 1)-spanner
when n < 8, it is necessary and sufficient to delete one C-edge from each fundamental
cycle. Thus, we get the following result.

PROPOSITION 3.5. If n >_ 8, CCC(n) has no proper t-spanner for t < 7. For
n < 8, CCC(n) has a minimum (n- 1)-spanner with . n2 2 edges and has no
proper t-spanners for t < n 1.

THEOREM 3.6. For n >_ 3, a 7-spanner of CCC(n) with 1/4. n2n edges can be
obtained by removing one C-edge from each nonfundamental 8-cycle in such a way
that no removed C-edge is common to two nonfundamental 8-cycles. Such a spanner
is a minimum 7-spanner if and only if n > 8, and this is the only way to obtain
minimum 7-spanners if n > 8.

Proof. For any n _> 3, a 7-spanner of CCC(n) can be obtained by removing exactly
one C-edge from each nonfundamental 8-cycle. If none of the removed C-edges is
common to two nonfundamental 8-cycles, then this gives a 7-spanner with 45-.n2 edges.

SPANNERS OF HYPERCUBE-DERIVED NETWORKS 47

For example, deleting the n2n-2 C-edges of the form [(i, x0" "xi-100xi+2"-"xn-),
(i + 1, Xo’"xi_OOxi+2""x_)] with 0 _< <_ n- 1 and xj E {0, 1},j {i,i + 1},
gives a 7-spanner. For n _< 8, this construction will leave some intact cycles of length
8 or less. It is not difficult to show that more edges can be removed, so these 7-
spanners are not minimum spanners for n <_ 8. For n > 8, these 7-spanners are
minimum because the number of edges that can be deleted cannot exceed the number
of 8-cycles of CCC(n). This is because every edge that is deleted must be spanned by
a path of length at most 7 and no such path can be used to span two deleted edges.
By Proposition 2.12, there are no cycles of length less than 8 in CCC(n) when n > 8,
so the path spanning a deleted edge must come from an 8-cycle that contained the
deleted edge. Since each H-edge is on two 8-cycles, and each C-edge is on one 8-cycle
by Remark 2.13, all edges removed from 8-cycles to obtain a minimum 7-spanner must
be C-edges.

THEOREM 3.7. For n >_ 3, there is a 7-spanner of BF(n) with . n2 edges.
For n > 8, such a spanner is minimum and can be obtained by removing one edge
from each basic 4-cycle and then one edge from each remaining 8-cycle in such a way
that at least two edges remain from each basic 4-cycle and no edge common to two
nonfundamental 8-cycles is removed.

Proof. A 7-spanner of BF(n) cannot be a minimum spanner if it contains any
4-cycles. To prove this, we will show that there cannot be a 4-cycle for which all four
edges are needed to span edges that have been deleted elsewhere in the graph. First,
recall that BF(n) is an edge-disjoint union of 4-cycles by Proposition 2.6, so an edge
of a 4-cycle cannot be on a path of length 3 that spans an edge in another 4-cycle.
Now it is not difficult to see that, for n > 8, any 8-cycle of BF(n) that includes an
edge of a 4-cycle must include two consecutive edges of that 4-cycle, one C-edge, and
one H-edge. Consider the 4-cycle abed in Fig. 4. Every 8-cycle that includes an edge
of abed must go through abe, adc, bad, or bed. If an edge e not on cycle abed is deleted
and a path of length 7 spanning e goes through both a and c, then the path can
use either edge [a, b] or edge [c, d]. Similarly, a path that goes through both b and d
can use either [a, b] or [c, d]. Thus, if either [a, b] or [c, d] is deleted from abed, there
will still be a path of length 7 through abed that spans e. Clearly, the edge that is
deleted from abed is spanned by a path of length 3 through the remaining edges of
abed. It follows that at least one edge of each 4-cycle of BF(n) must be deleted to
obtain a minimum 7-spanner. Every possible set of edge deletions from BF(n) that
removes exactly one edge from each basic 4-cycle leaves exactly one 8-cycle in each
4-cycle of basic 4-cycles. To see this, examine Fig. 4. There are n2-2 4-cycles of
basic 4-cycles in BF(n), so the number of 8-cycles remaining after one edge is deleted
from each basic 4-cycle of BF(n) is the same as the number of 8-cycles in CCC(n).
The argument in the proof of Theorem 3.6 can now be used to show that a minimum
7-spanner of BE(n) has at least as many edges as a minimum 7-spanner of CCC(n).

Now, to prove that a minimum 7-spanner of BF(n) has at most 1/4. n2n edges, we
will prove that the minimum 7-spanner of CCC(n) given in the proof of Theorem 3.6
is a 7-spanner of BE(n). Any minimum 7-spanner of CCC(n) can be obtained from
BF(n) by the following two steps. In the first step, one H-edge is removed from
each basic 4-cycle of BE(n) to obtain CCC(n). In the second step, one C-edge is
removed from each 8-cycle of CCC(n). The C-edges deleted in the second step are
spanned by paths of length at most 7. So, to show that the spanner in the proof
of Theorem 3.6 is a 7-spanner of BF(n), it is sufficient to prove that each of the
H-edges deleted in the first step is still spanned by a path of length at most 7. By

48 M.-C. HEYDEMANN, J. G. PETERS, AND D. SOTTEAU

examining Fig. 4, it is not difficult to see that the H-edges deleted from BF(n) to
form CCC(n) (shown as thin dashed lines) are still spanned by paths of length 7 in a
minimum 7-spanner of CCC(n) if the C-edges that are removed from the 8-cycles of
CCC(n) in step 2 are chosen so that at most one C-edge is removed from each basic
4-cycle of BF(n). The C-edges deleted in the proof of Theorem 3.6 have the form
[(i, x0... xi-100xi+2 xn-1), (i+1, x0... xi_00x+2.., xn-1)] with 0 _< i _< n-1 and
xj E {0, 1}, j {i, i + 1}. Half of these edges map to C-edges of BF(n) with the same
labels on the endpoints (when the sum of the xj’s is even) and the other half map to C-
edges of the form [(i / 1, x0... x_100x+2.., x,_l), (i / 2,x0... x_00xi+2.., x_)]
(when the parity is odd). No two of these deleted C-edges can be on the same basic
4-cycle of BF(n); if one of the C-edges is [(i, x), (i + 1, x)], then the other C-edge on
the same basic n-cycle is [(i,x(i)), (i + 1, x(i))]. 13

COROLLARY 3.8. A minimum 7-spanner of CCC(n) that is a 7-spanner of BF(n)
is a minimum 7-spanner of BF(n) for any n > 8.

The proof of Theorem 3.7 shows that some 7-spanners of CCC(n), including the
7-spanner described in the proof of Theorem 3.6, are 7-spanners of BE(n). Figure 5(a)
shows a 7-spanner of CCC(3) that is also a 7-spanner of BE(3). In the figure, solid and
dotted lines indicate edges that are in both CCC(3) and BF(3) while dashed edges
are in BF(3) but not CCC(3). The dotted edges are deleted to obtain a 7-spanner of
both CCC(3) and BF(3).

() (b)

FIG. 5. 7-spanners of CCC(n). The spanner in (a) is also a 7-spanner of BF(n); the spanner
in (b) is not.

However, not all 7-spanners of CCC(n) are 7-spanners of BF(n). We can see why
a 7-spanner of CCC(n) is not necessarily a 7-spanner of BE(n) by looking at 4-cycles
of basic 4-cycles in Fig. 4. The two 8-cycles C and C2 of CCC(n) use the edges of
the basic 4-cycle abcd of BF(n). C1 is shown with heavy solid lines and C2 is shown
with heavy dashed lines. Deleting one C-edge from each 8-cycle gives a minimum
7-spanner of CCC(n), but if the two deleted edges are ab and cd, then the edge ad
of BF(n) is not spanned by a path of length 7 or less. The spanner in Fig. 5(b) is
a 7-spanner of CCC(3), but two C-edges have been removed from the basic 4-cycle
efgh, and the H-edge eh is not spanned by a path of length 7 or less.

The arguments from the proofs of Theorems 3.6 and 3.7 can be used to construct
7-spanners of CCC(n) and BF(n) with . n2n edges for n <_ 8. However, these 7-
spanners are not minimum spanners because the fundamental cycles are short enough
to provide paths of length 7 or less. The presence of these short paths permits the
construction of spanners with fewer edges.

Table 2 summarizes results proved in this section about minimum t-spanners of

SPANNERS OF HYPERCUBE-DERIVED NETWORKS 49

CCC(n) and BF(n) for small t. The first line shows the numbers of edges in CCC(n)
and BF(n) since dilation 1 does not permit the removal of any edges.

TABLE 2
Numbers of edges in small dilation minimum spanners of CCC(n) and BF(n).

Dilation n CCC(n) BF n)
1 2 n2

3<t<6

n>3

n--3

n>3

3<n<tq-1

n>t+l

n>8

-.n2n-2n=28
Proposition 3.5

Proposition 3.5

n2 2

Proposition 3.5

n2

Proposition 2.12

& Proposition 3.5

n2

Proposition 3.6

2n. 2 2 40

Proposition 3.1

2. n2

Proposition 3.1
3_ n2 22

Proposition 3.3
3_ n22

Proposition 2.12

& Theorem 3.2

n2

Proposition 3.7

4. Spanners of UB(n) and SE(n). UB(n) is pancyclic, that is, UB(n) has
at least one cycle of each length i, 3 < < n [24], so there is a proper t-spanner of
UB(n) for every t, 2 < t < n- 1. SE(n) also has many cycle lengths but is not
pancyclic. However, for large n, almost all of the short cycles of UB(n) are 4-cycles
and 8-cycles, and almost all of the short cycles of SE(n) are 8-cycles. This can be seen
by examining the homomorphisms of Propogition 2.3. Under homomorphism , the
basic 4-cycles of BF(n) map to basic 4-cycles (and the two basic 3-cycles) of UB(n).
Homomorphism maps most 8-cycles of CCC(n) to 8-cycles of SE(n). (A few 8-
cycles of CCC(n) are mapped to 5-cycles of SE(n).) Since most of the short cycles
have length 4 or 8, the interesting spanners with small dilations are 3-spanners and
7-spanners. Consequently, we will concentrate on 3-spanners and 7-spanners in this
section. The numbers of edges in spanners with other small dilations are presented in
a table at the end of the section.

THEOREM 4.1. Forn >_ 7, a minimum 3-spanner of UB(n) has exactly 3.2-1-3
edges and is obtained by removing one edge from each basic 4- or 3-cycle.

Proof. By Corollary 2.9, UB(n) is the edge-disjoint union of basic 4-cycles and
basic 3-cycles except for edge [0101..., 1010...]. For n > 7, there are only a few
nonbasic cycles of length 4 or less. So, it is easy to check that at most one edge of
any basic 4- or 3-cycle is also on a nonbasic cycle of length 4 or less. Thus, if more
than one edge is deleted from any basic 4-cycle or basic 3-cycle, there will be two
vertices at distance greater than 3 in the resulting spanner. So, to obtain a 3-spanner,
at most 2-1 edges can be removed from UB(n). UB(n) has 2+1- 3 edges, so a
minimum 3-spanner will have at least 3.2- 3 edges. The fact that there exists
a 3-spanner of minimum size follows directly from Corollary 2.9. It is necessary and
sufficient to remove one edge from each basic 4-cycle and each basic 3-cycle of UB(n),
being careful not to delete [0101..., 1010...], the only edge which belongs to two
basic 4-cycles.

For n < 7 it is not difficult to show that a few more than 2-x edges can be
deleted to get a minimum 3-spanner of UB(n). The constructions that prove the
following proposition are mechanical.

50 M.-C. HEYDEMANN, J. G. PETERS, AND D. SOTTEAU

PROPOSITION 4.2. A minimum 3-spanner of UB(n) has 3.2n-1 5 edges for
n 3, 5, or 6, and 3.2n-1 6 edges for n 4.

THEOREM 4.3. If n >_ 7 and n is even, then SE(n) is a minimum 3-spanner of
UB(n). If n >_ 7 and n is odd, a minimum 3-spanner of UB(n) can be obtained by
deleting one edge from SE(n). In both cases, the minimum 3-spanner has 3.2n- 3
edges and maximum degree 3.

Proof. Consider the inverse f-1 of mapping f from the proof of Proposition 2.2.

f-1 induces a one-to-one mapping of shuffle edges of UB(n) to shuffle edges of SE(n).
Therefore, we have only to determine the dilations due to f-1 of shuffle-exchange edges
of UB(n). Consider a shuffle-exchange edge [xox’"Xn-,Xl"’" Xn--l--5] of UB(n).
If xox’"xn-1 has even parity, then the edge is mapped by f- to the exchange
edge [xx2""xn-xo,xlx2""Xn-l-5] in SE(n) so the dilation is 1. If XoXl ""Xn-1
has odd parity, then the endpoints of the edge are mapped to vertices xox’"Xn-
and X2X3"’’Xn---bX in SE(n), which are connected by the path XoXl ""Xn-,

XlX2 Xn--lXO, XlX2 Xn--lX--, X2 Xn-lX---Xl in SE(n). So, SE(n) is a 3-spanner
of UB(n) with maximum degree 3. Since SE(n) has 3.2n--3+(n mod 2) edges it is a
minimum 3-spanner if n is even for n >_ 7 by Theorem 4.1. If n is odd, SE(n) contains
a 4-cycle with vertices (01)(n-)/20, (10)(n--1)/20, (10)(--)/21, and (01)(n-1)/21. It
is not hard to show that deleting the exchange edge [(10)(n-)/20, (10)(n--1)/1] gives
a 3-spanner of SE(n) which is a minimum 3-spanner of UB(n) with maximum degree
3.

It is also possible to obtain 3-spanners of UB(n) directly from some of the 3-
spanners of BF(n). It follows from Proposition 2.7 that every 3-spanner of UB(n)
can be obtained from BF(n) by deleting exactly one edge from each basic 4-cycle
between two adjacent levels of BE(n) and e.very other edge of BE(n) that has the
same image under as a deleted edge, being careful not to delete any edge that
maps to [0101..., 1010...].

We will conclude our discussion of minimum 3-spanners of UB(n) by briefly de-
scribing an algorithm for constructing any minimum 3-spanner of UB(n) with maxi-
mum degree 3. The algorithm is quite similar to the algorithm in 3 for constructing
any 3-regular minimum 3-spanner of BF(n). The basic idea is to delete exactly one
edge from each of the 2n- basic 4- and 3-cycles of UB(n) in such a way that at least
one edge is deleted at each vertex of degree 4. The only basic 4-cycles with which
we have to be careful are the two basic 4-cycles that have the edge [0101..., 1010...]
in common. We start by deleting one edge adjacent to the common edge from one
of these basic 4-cycles. This choice is important since the process fails if no edge
adjacent to the common edge is deleted. This choice restricts the choices in the two
4- or 3-cycles of basic 4- or 3-cycles that contained the deleted edge. Subsequent
edge deletions further reduce the remaining choices until all remaining edge deletions
are forced. Every valid sequence of edge deletions gives a minimum 3-spanner with
maximum degree 3. The two basic 3-cycles are treated in exactly the same way as
the basic 4-cycles.

THEOREM 4.4. For n >_ 3, there is a 7-spanner of SE(n) with .2-3+(n mod 2)
edges.

Proof. The homomorphism (p from Proposition 2.3 maps a vertex (i, xox Xn-1)
of CCC(n) onto the vertex xi+xxi+2."xi-xxi of SE(n). Thus, maps C-edges of
CCC(n) onto shuffle edges of SE(n) and H-edges of CCC(n) onto exchange edges of
SE(n). (Note that the shuffle edges to which maps C-edges of the form [(i, 0n), (i +
1, 0n)] and [(i, ln), (i + 1, 1)] are loops at O and 1, respectively.) It follows that

SPANNERS OF HYPERCUBE-DERIVED NETWORKS 51

each fundamental n-cycle of CCC(n) is mapped onto a cycle of SE(n) that consists
entirely of shuffle edges. We will call such a cycle in SE(n) a shuffle cycle. The
length of a shuffle cycle of SE(n) is either n or a factor of n. If a fundamental n-
cycle of CCC(n) is mapped by onto a shuffle cycle of length n, then the mapping
of the edges is one-to-one. If the shuffle cycle has length k where 0 < k < n, then
maps C-edges to each shuffle edge. Each fundamental cycle of CCC(n) corre-

sponds to a hypercube vertex XoXl’..xn-1. The fundamental cycles corresponding
to xoxl’"xn-1, XlX2""Xn-lXo, ", Xn-Xo’’’Xn--2, that is, all cyclic permutations
of xoxl...xn-1, will map to the same shuffle cycle in SE(n). Most of the nonfunda-
mental 8-cycles of CCC(n) (which are alternating sequences of C-edges and H-edges)
are mapped by to 8-cycles of SE(n), which are alternating sequences of shuffle and
exchange edges. maps n nonfundamental 8-cycles of CCC(n) to each such 8-cycle
of SE(n). The exceptions are the nonfundamental 8-cycles of SE(n) that contain a
vertex (i, 0n) or (i, ln). The n 8-cycles containing a vertex (i, 0n) are mapped onto
the degenerate 8-cycle of SE(n) consisting of the exchange edge [0n, 0n- 1] and the
5-cycle 0n-l l, 0n-210, 0n--211, 10n-21, 10n-, 0n--l. The mapping for the n 8-cycles
containing a vertex (i, 1n) is symmetric. The construction from Theorem 3.6 for 7-
spanners of CCC(n) can be used with mapping to construct 7-spanners of SE(n)
if the edges deleted from CCC(n) are chosen carefully. The construction removes
exactly one C-edge from each nonfundamental 8-cycle of CCC(n). Since maps
n nonfundamental 8-cycles of CCC(n) to each 8-cycle (or degenerate 8-cycle) Z of
SE(n), the n edges deleted from the nonfundamental cycles mapping to X should all
map to the same edge of X. Also, in the degenerate 8-cycles, the edges [0n, 0n-11] and
[1n, ln-10] must not be deleted because deleting them would disconnect the graph.
Since there are n. 2n nonfundamental 8-cycles in CCC(n), this spanner of SE(n) is

2n edges, leaving 45- 2n 3 + (n mod 2) edges.obtained by deleting
The spanners of SE(n) from Theorem 4.4 are not minimum 7-spanners because

some short cycles will remain intact. However, there is only a constant number of
cycles of length less than 8 in SE(n), and the number of 8-cycles of SE(n) that are
not images under of 8-cycles of CCC(n) is also a constant. So, minimum 7-spanners
of SE(n) have 45-. 2n -O(1) edges.

The following theorem uses the mapping from Proposition 2.3 to obtain 7-
spanners of UB(n) from 7-spanners of BF(n) in the same way that was used in
Theorem 4.4. These 7-spanners of UB(n) are not minimum spanners either, but like
the 7-spanners of SE(n), they are within a constant number of edges of minimum.

THEOREM 4.5. For n >_ 3, there is a 7-spanner of UB(n) with 2n 3 edges.

Proof. The homomorphism from Proposition 2.3, which maps vertices of BF(n)
to vertices of UB(n), acts in a very similar way to in the proof of Theorem 4.4. C-
edges of BF(n) are mapped to shuffle edges of UB(n) (except the C-edges [(i, 0n), (i +
1, On)] and [(i, ln), (i+ 1, ln)]), H-edges of BF(n) are mapped to shuffle-exchange edges
of UB(n), and the n fundamental n-cycles of BE(n) that correspond to hypercube
vertices whose bit strings are cyclic permutations of each other map to the same
shuffle cycle of UB(n). It follows from Proposition 2.7 and Corollary 2.8 that maps
n of the basic 4-cycles of BF(n) to each basic 4- or 3-cycle of UB(n). also maps
n nonfundamental 8-cycles of BF(n) to each 8-cycle of UB(n) that is an alternating
sequence of shuffle and shuffle-exchange edges, n nonfundamental 8-cycles of BF(n)
are also mapped to each of the two degenerate shuffle cycles of UB(n) (which contain
vertex 0 or 1). The construction from Theorem 3.7 for 7-spanners of BF(n) can be
used with mapping to construct 7-spanners of UB(n) as follows. The construction

52 M.-C. HEYDEMANN, J. G. PETERS, AND D. SOTTEAU

of Theorem 3.7 first removes one H-edge from each basic 4-cycle of BF(n) and then
one C-edge from the nonfundamental 8-cycle remaining in each 4-cycle of basic 4-
cycles. The deleted edges should be chosen so that when maps n 8-cycles of BF(n)
to the same 8-cycle (or degenerate 8-cycle) X of UB(n), or n basic n-cycles of BF(n)
to the same basic 4- or 3-cycle X of UB(n), the n deleted edges all map to the same
edge of X. Care should also be taken not to disconnect vertex 0n or vertex In from
the rest of the spanner. If a 7-spanner of BF(n) satisfies these constraints, then its
image under is a 7-spanner of UB(n). !’1

We can also use the mappings of Propositions 2.2 and 2.3 to obtain 7-spanners
of UB(n) directly from some 7-spanners of CCC(n). Any 7-spanner of CCC(n) that
is also a 7-spanner of BF(n) and that is mapped by onto a 7-spanner of SE(n) will
map to a 7-spanner of UB(n) by either of the mappings o g or f o .

Using the same arguments as were used for CCC(n) and BF(n), it can be shown
that some 7-spanners of SE(n) are 7-spanners of gB(n) and others are not. In partic-
ular, if a 7-spanner of CCC(n) is not a 7-spanner of BF(n), then its image under Cog
or f o might not be a 7-spanner of UB(n) even if its image under is a 7-spanner
of SE(n). Figures 6 and 7 show one example of each type. In Figs. 6 and 7, there
are two sets of vertex labels. The labels along the top and left side of each figure are
for CCC(3) and BF(3) and are the same as in Fig. 2. The labels next to the vertices
in the interiors of the graphs are the labels of the vertices of SE(n) and UB(n) onto
which the vertices of CCC(n) and BF(n) are mapped by and , respectively.

i=0 i=1 i=2 i=0 i=0 i=l i=2 i=O
000 000 000

,oo o,0

(")’10i ";’’" 110

J "’’ " ’’2 ’]V
,,o ,o, ,/
oo m0

(i(i, 101)001) 010 -100 / "
,o, ,,:, ,, ,,,

,o,,

(i’ 111)
111 $111 e111 111 111 111

FIG. 6. A 7-spanner S 4 CCC(n) for which (S) is a 7-spanner 4 SE(n), but g(S) is not a

7-pn 4() nd] o e(S)= o (S) not 7-par 4 UB().

Table 3 summarizes results about t-spanners of SE(n) and UB(n) for small t and
n _> 8. The first line shows the numbers of edges in SE(n) and UB(n) since dilation 1
does not permit the removal of any edges. The results for 3-spanners and 7-spanners
were proved in this section. The proofs for the other results in the table are omitted.
There are very few short cycles of lengths other than 4 and 8 in SE(n) and UB(n),
so the omitted proofs involve careful analyses of the cycle structures of the graphs
but no new construction or proof techniques. Results about the numbers of edges in
minimum 7-spanners for UB(n) and SE(n) have not been proved in this paper. All of
the other results for UB(n) in the table are for minimum spanners. However, none of
the results reported in the table for SE(n) are minimum for all n (except the trivial
case of dilation 1) because the formulae for the numbers of edges in small dilation
spanners for SE(n) are functions of both the dilation and n. Rather than list all of the

SPANNERS OF HYPERCUBE-DERIVED NETWORKS 53

i=O i=1 i=2 i=0 i=0 =1 i=2 i=0

,,

110

(,1)i010 21
001 010

,,,,o,,-o,,
"’" "" "’
-o ’2;’-/,,’X ’,,-

("ll)T 11 7011

--’"
011

,’

111 --’")-III -III -III III III III

F,G. 7. A 7-spanner S of CCC(n) for which (S) is a 7-spanner of SE(n), g(S) is a 7-spanner
of BE(n), and f o (S)-- o g(S) is a 7-spanner of UB(n).

cases, we have reported small values that are correct for all n. Also note that there
is a dilation 2 embedding of UB(n) into SE(n) [16], but it does not give a 2-spanner
of UB(n) because SE(n) is not a subgraph of UB(n) in this embedding.

TABLE 3
Numbers of edges in some small dilation spanners of SE(n) and UB(n) for n >_ 8.

Dilation SE(n) UB(n

1..2n-..3+..(.n. mod2) 2.2n-3

."-a+(nmoa) .-

4 .2n-7 .2n--7
3 25 23-, 2 12 " ,-, 12

6

7 45-" 2n- 3 + (’n mod 2)’2n-3

5. Conclusions. In this paper we have concentrated on 3- and 7-spanners. The
next interesting dilation is 11 since the next small cycle length in BF(n) and CCC(n)
is 12. Results for dilation 11 are apparently much more difficult to obtain than those
for dilations 3 and 7, and we believe that new proof techniques will be necessary to
find minimum l 1-spanners. We also believe that the trade-off between the dilation t
and the number of edges that can be deleted in the classes of graphs we are studying
is a well-behaved function of t and n, but without tight bounds for l 1-spanners, we
were not able to make this trade-off precise.

We were able to construct t-spanners of maximum degree 3 for t as small as 3.
It is clearly not possible to lower the maximum degree to 2 and keep t small since
any spanner with maximum degree 2 is a Hamilton cycle or path. It is known that
CCC(n), UB(n), and BF(n) are Hamiltonian and it has recently been shown [9] that
SE(n) has a Hamilton path. An interesting problem is to determine, for each of the
four classes of graphs that we have considered, the minimum value of t for which the
graph has a t-spanner of maximum degree 2. This problem can be solved by finding
the Hamilton cycle or path for which the longest chord has minimum length.

54 M.-C. HEYDEMANN, J. G. PETERS, AND D. SOTTEAU

REFERENCES

[1]

[2]

[3]

[4]

[5]

[6]

[7]

IS]

[9]

[10]

[11]

[12]

[13]

[14]

[16]

[17]

[19]

[2o]

[21]

[22]

[23]

[24]

F. ANNEXSTEIN, M. BAUMSLAG, AND A. ROSENBERG, Group action graphs and parallel archi-
tectures, SIAM J. Comput., 19 (1990), pp. 544-569.

B. AWERBUCH, Complexity of network synchronization, J. Assoc. Comput. Mach., 32 (1985),
pp. 804-823.

B. AWERBUCH, A. BARATZ, AND D. PELEG, Ejficient broadcast and light-weight spanners,
manuscript, 1992.

g. BANDELT AND n. DRESS, Reconstruction of the shape of a tree from observed dissimilarity
data, Adv. in Appl. Math., 7 (1986), pp. 309-343.

L. CAI, Tree 2-spanners, Tech. report CMPT TR 91-4, School of Computing Science, Simon
Fraser University, Burnaby, BC, Canada, 1991.

L. CAI AND M. KEIL, Spanners in graphs with bounded degree, Res. Report 93-1, Department
of Computational Science, University of Saskatchewan, Saskatchewan, Canada, 1993.

L. CItEW, There is a planar graph almost as good as the complete graph, in Proc. 2nd ACM
Symposium on Computational Geometry, Yorktown Heights, NY, 1986, pp. 169-177.

D. DOBKIN, S. FRIEDMAN, AND K. SUPOWIT, Delaunay graphs are almost as good as complete
graphs, Discrete Comput. Geom., 5 (1990), pp. 399-407.

R. FELDMANN AND P. MYSLIWIETZ, The shuffle exchange network has a Hamiltonian path,
in Proc. Mathematical Foundations of Computer Science 92, Lecture Notes in Computer
Science 629, Springer-Verlag, Berlin, 1992, pp. 246-254.

R. FELDMANN AND W. UNGER, The cube-connected cycles network is a subgraph of the butterfly
network, Parallel Process. Lett., 2 (1992), pp. 13-19.

M.-C. HEYDEMANN AND D. SOTTEAU, A note on recursive properties of de Bruijn, Kautz and
FFT digraphs, Inform. Process. Lett., 53 (1995), pp. 255-259.

F. T. LEIGHTON, Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hyper-
cubes, Morgan Kaufmann, San Mateo, 1992.

n. LIESTMAN AND T. SHERMER, Additive spanners for hypercubes, Parallel Process. Lett., 1
(1991), pp. 35-42.
, Grid spanners, Networks, 23 (1993), pp. 123-133.
D. MELIKSETIAN AND C. Y. CHEN, Optimal routing algorithm and the diameter of the cube-

connected cycles, IEEE Trans. Parallel Distrib. Systems, 4 (1993), pp. 1172-1178.
B. MONIEN AND H. SUDBOROUGH, Embedding one interconnection network in another, Comput.

Suppl., 7 (1990), pp. 257-282.
D. PELEG AND A. SCH)FFER, Graph spanners, J. Graph Theory, 13 (1989), pp. 99-116.
D. PELEG AND J. ULLMAN, An optimal synchronizer for the hypercube, in Proc. 6th ACM

Symposium on Principles of Distributed Computing, Vancouver, BC, 1987, pp. 77-85.
D. PELEG AND E. UPFAL, A tradeoff between space and ejficiency for routing tables, in Proc.

20th ACM Symposium on Theory of Computing, Chicago, IL, 1988, pp. 43-52.
n. ROSENBERG, Cycles in networks, Tech. report UM-CS-1991-020, Department of Computer

and Information Science, University of Massachusetts, Amherst, MA, 1991.
D. RICHARDS AND A. LIESTMAN, Degree-constrained pyramid spanners, J. Parallel Distrib.

Comput., 25 (1995), pp. 1-6.
R. STRONG, On Hamiltonian cycles in Cayley graphs of wreath products, Discrete Math., 65

(1987), pp. 75-80.
P. VAIDYA, A sparse graph almost as good as the complete graph on points in k dimensions,

Discrete Comput. Geom., 6 (1991), pp. 369-381.
M. YOELI, Binary ring sequences, Amer. Math. Monthly, 69 (1962), pp. 852-855.

SIAM J. DISCRETE MATH.
Vol. 9, No. 1, pp. 55-62, February 1996

() 1996 Society for Industrial and Applied Mathematics
OO6

LOWER BOUNDS ON REPRESENTING BOOLEAN FUNCTIONS AS
POLYNOMIALS IN Z.*

SHI-CHUN TSAIt

Abstract. Define the MODm-degree of a boolean function F to be the smallest degree of any
polynomial P, over the ring of integers modulo m, such that for all 0-1 assignments Z, F(Z) 0
iff P(Z) 0. By exploring the periodic property of the binomial coefficients modulo m, two new
lower bounds on the MODm-degree of the MODt and -MODm functions are proved, where m is
any composite integer and has a prime factor not dividing m. Both bounds improve from sublinear
to (n). With the periodic property, a simple proof of a lower bound on the MODm-degree with
symmetric multilinear polynomial of the OR function is given. It is also proved that the majority

and the MidBit function has a lower bound x/.function has a lower bound

Key words, boolean function complexity, circuit complexity, computational complexity

AMS subject classifications. 68Q05, 68Q15, 68Q25, 94C10

1. Introduction. Proving lower bounds on explicitly given boolean functions is
a notoriously difficult task. While the problem of proving nonlinear sized lower bounds
for general boolean functions is still not in sight, very powerful results are available
for restricted classes, such as monotone circuits or circuits of unbounded fan-in gates
with small depth [5], [17]. One of the major tools in obtaining these lower bounds
was the use of algebraic techniques [11], [12], [13]. As a result, several researchers
started the study of polynomials that in some sense represent boolean functions. In
particular, one wishes to find lower bounds on the degree of such polynomials: in some
situations this enables us to prove a lower bound on circuit size [12]. In any case,
the degree of the representing polynomial is a natural characteristic of the boolean
function, and it is interesting to try to find bounds on it.

In this paper we prove lower bounds on the MOD,-degree of some functions for
composite m. These bounds substantially improve previous results [2], use elementary
methods, and we hope shed some more light on the power of the MOD, function for
composite m. Recall that the Smolensky-Razborov technique does not seem appli-
cable in this situation, and Szegedy’s dissertation [13] also shows that such gates are
surprisingly powerful. Thus any lower bound for these gates is of interest.

We briefly review previous main results. There are many possible representations
of boolean functions as polynomials over some ring or field. Nisan and Szegedy [9]
studied the degree of real polynomials that represent boolean functions. Paturi [10]
studied the degree of real polynomials that approximate symmetric boolean functions.
In [14], [15] Tarui proved some results on the degree complexity of boolean functions
over rings and applied these results to prove the separations of certain relativized
classes. In [2] Barrington, Beigel, and Rudich studied representing boolean functions
as polynomials modulo m. Our work is an extension of the results in [2].

The techniques of Razborov [11] and Smolensky [12] that show polynomial sized
constant depth circuits with MODp gates cannot compute the MODq function (the

nboolean function MODm(Xl,..., xn) is defined to be 0 if -i=0 xi is a multiple of m
and 1 otherwise) when p and q are distinct primes suggest the following definition

Received by the editors September 14, 1993; accepted for publication (in revised form) January
10, 1995. A preliminary version of this paper appeared in Proceedings of the 8th Annual Structure
in Complexity Theory Conference, San Diego, CA, 1993, pp. 96-101.

Department of Computer Science, University of Chicago, 1100 East 58th Street, Chicago, IL
60637 (tsai@cs. uchicago, edu).

55

56 SHI-CHUN TSAI

[2]. A polynomial P over Z, represents a boolean function F if for all 0-1 valued
assignments , F(2) 0 iff P(Z) 0. The MOD,-degree of F, denoted 5(F, m), is
the degree of the lowest degree polynomial that represents it. This is an interesting
complexity measure on its own and, in the case of prime moduli, yields lower bounds
for circuit size.

For moduli m that are prime, or prime power, the situation is well understood [12],
[3]. It is known that for the OR function of n variables 5(OR, p) [pn__] [12], [16].
It is also known that 5(MODe,p) gt(n) when is not a power of p. These results
depend crucially on the fact that Zp is a finite field.

For composite moduli, when Z, is a ring and not a field, many of the lemmas
simply fall apart. Barrington, Beigel, and Rudich [2] proved the first few lower bounds
for the OR and MOD functions for composite m. They proved that if the representing
polynomial is symmetric, then 5(OR, m) O(nl/r), where r is the number of distinct
prime factors of m. They also proved that for any nonsquarefree composite integer
m, 5(MODe,m) n(1) and 5(-,MODe, m) n(1), where has a prime factor
that is not a divisor of rn and 5(-MOD,, m) ngt(1). If rn is squarefree they have
5(MODe, m) n(), 5(-,MODe, m) t(n), and 5(-,MOD,, m) (n).

Our paper improves these results. First, we give a new simple proof for the lower
bound for the OR function that does not depend on rn being squarefree. We prove
that the MODm-degree of the majority function is at least . We also show a lower
bound, x/, for the MidBit function. (The MidBit function, defined in [4], is the
boolean function that takes Xl,..., x as input and outputs the value of the [2-Jth
bit in the binary representation of the number i= xi.)

Finally, we prove that 5(MODt, m) t(n) and 5(-,MODe, m) t(n) when has
a prime that is not a factor of m and that 5(-MODm, m) gt(n). These improve the
bounds in [2] for the case rn is not squarefree. Our proofs rely on a periodic property
of the binomial coefficients. They are simpler and more straightforward than the
previous proofs of weaker statements.

2. Notation. As a convention, In] denotes the set {1, 2,..., n}. Let A and B be
sets. We write A c_ B if every member of A also belongs to B, i.e., A is a subset of B.
We write A C B to indicate that A is a proper subset of B. Boolean functions on n
variables will be represented as polynomials in the ring Z,[xl,... ,Xn]. Since we will
consider the domain {0, 1} only, we are interested in the multilinear polynomials.
For A c_ In], we define XA l-IA x. It is clear that {XAIA c_ In]} forms a basis
for the multilinear polynomials in Z,[Xl,... ,Xn]. And {XAIA C_ In], IAI _< d} forms
a basis for the multilinear polynomials of degree at most d in Z,[xl,...,x]. Let
P(Xl,... ,x) be any n-variable function with domain {0, 1}n. We say that P(A) has
the value obtained with the assignment xi 1 if E A and 0 otherwise.

DEFINITION 2.1. Define 5(F, m), the MOD,-degree of a boolean function F, to
be the smallest degree of any polynomial P in Zm such that for all 0-1 assignments ,
F(Z) 0 iff P(2) O.

DEFINITION 2.2. Let m, r, and n be positive integers, where 0

_
r

_
m- 1. The

MOD(,,) function of n variables is defined as

MOD(,,r)(X, Xn) { O1 if- xi r (mod m),
otherwise.

We use MOD, to indicate MOD(,,o).

LOWER BOUNDS ON BOOLEAN FUNCTIONS 57

DEFINITION 2.3. Let k and n be any positive integers and k <_ n. The threshold
function TH of n variables is defined as

1
THe(x1,... ,xn) 0

if x >
otherwise.

DEFINITION 2.4. Let n be a positive integer. The MidBit function of n vari-
ables is defined as MidBit(xl,...,xn)= [2n]th bit in the binary representation of

3. Main lemmas. Let j be a nonnegative integer, and let k and rn be any
positive integers. Fix k and m; then the integer function f(j) () mod rn is a

cyclic function of j. As H. Kwong pointed out, this property has been proved by
several other authors by using different methods [6], [7], [18]. For completeness we
show the proof in the following.

LEMMA 3.1. Let p be any prime number, and let a and k be any positive integers.
Then () mod pa has the cycle length pate, where e- [logp

Proof. Define Lk pa+[logpk]. We want to prove (sLk+J) () (mod pC) for
any nonnegative integer s and any positive integer k by induction on j. For the
base case j 0, since (sk) sL

n-k k is an integer and the largest power of

p that divides sLk- k is at most p[logp kJ we know is divisible by pC. Thus

() 0 (mod pC) for all nonnegative integers s and any positive integer k. Suppose
(sLy+y) () (mod pC) for any nonnegative integer s and any positive integer k,
for 0 _< j _< i. Now consider the case when j + 1"

(SLk+i)+ \k-liSLe+i)
(:)-= + k-1

(i+1)(modpak

Next we need to prove that Lk is the smallest cycle. To show L is the smallest cycle

of () mod pC, we prove that there exists an i, 0 _< < k, such that (+j() 0

(mod pC). Without loss of generality, let k pZ / i, where is any positive integer
and 0 _< < pl+l pZ. With this assumption we have [logp kJ 1. By induction on

..p,+a-+ This is clear for the base case i 0. Suppose it holdsi, we will prove pa }((p*+ "
for the case up to i i.e. pa/(p*+a-+m where 0 < rn < < pt+l pt 1 Considerp+m
the case m + 1. We are interested in the case when + 1 < pl+l pl. Then
p+a-q-i+l i+a-+i+l (Pt+a-ZTi] We know Pt+a-zWi+l

pt+i+l pt+i+l pt+i]" pt+i+l is not divisible by p. By

the induction hypothesis we have pa /(p+"-++l) This completes the proof. Cl
p+i+l

By applying the Chinese remainder theorem we can generalize the above lemma
as follows.

LEMMA 3.2. Let ml and m2 be any two relatively prime positive integers. If
() mod m and () mod m2 has the cycle length 11 and 12, respectively, then (J)
mod mlm2 has the cycle length 1112

58 SHI-CHUN TSAI

THEOREM 3.3. Let m pl p be an arbitrary positive integer, where the pi ’s
are distinct prime numbers and the ai’s are positive integers. Let ei [logp kJ for

r1 _< _< I1 :1
Proof. The theorem is proved by Lemmas 3.1 and 3.2. [:]

Let g(xl,... ,Xn) E Zm[Xl,... ,Xn] be a polynomial representing a Boolean func-
tion f(Xl,...,x). If the degree of P is d, then we can write P(xl,...,xn)
AC_[n];IAI<_dCAXA. Recall that we define f(A) f(al,... ,an), where a 1 if
E A and 0 otherwise. P(A) is defined similarly. For convenience, for each A c_ In]

we use bA to denote P(A). Since P represents f, it is clear that if f(A) 0, then
bA 0 and if f(A) 1, then bA can be any nonzero integer in Zm. If there are
M different assignments in {0, 1} satisfying f, then by a simple counting argu-
ment there are (rn- 1)M multilinear polynomials in Z, representing f. For any
A c_ In] it is clear that XD(A) 0 if D A and XD(A) 1 if D C_ A. Thus
bA P(A) DC_A;IDI<_dCD. There are 2n possible inputs. With the given boolean
function we can choose a set of bA’s such that bA 0 if f(A) 0 and bA 7 0 if

df(A) 1. Then we can set up a system of linear equations with -=0 () variables if
the representing polynomial has degree d. By solving the linear equations, we prove
some useful relations among bD’s and CA’S over any ring Zm. Actually, Lemma 3.4.1
is a special case of the well-known MSbius inversion theorem [8].

LEMMA 3.4. 1. If A C In] and IAI <_ d, then

CA E (-1)IAI-IDI bD.
DCA

2. If A C_ In] and IAI > d, then

E (--1)d-IDl([A[-IDI-1)d --[D[bD.
DCA;[D[_d

Proof. 1. The first part of the lemma is proved by induction on the size of A. It
is clear for the cases of IAI 0 and 1. Suppose it is true for all tAI _< k. Consider the
case of d > IAI k + 1. Then

P(A) bA
CA -Jr- E cS

SCA

CA + ScAE (bs + DOSE
The third equality is by induction hypothesis. Then

cA bA E (bs q- E (--1)ISI-]D]bDIDCS

Let Dt be any subset of A with size < [A I. We want to determine the common
coefficient of bD’S for a fixed 1. It can be found as

DCA SCA DCS

LOWER BOUNDS ON BOOLEAN FUNCTIONS 59

CA DICA i=l
i

IAl-l-1
(-11

Dl CA i--0

Da CA

E (--1)’Al-tbD"
DtCA

This proves the first claim.
2.

E

E

CD

TCA;ITI<_d i=0

E (--1)d-’T’(’A’-IT’-I)d- ,T, bT

E (--1)d-’D’(’A’-’D’-I)
DCA;]DI<_d

d-]D] bD.

In the second-to-last equation we use the fact E=0(-1)(?) (--1)t(m-l). []
dFrom the above lemma we know the first (E=0 ()) bA’s will determine the

coefficients of the polynomial P and the rest of the bA’s. With the above lemmas
we can prove several lower bounds systematically. The key of the proof relies on the
periodic property of the binomial coefficients modulo m.

4. Lower bounds. From Lemma 3.4 we have an immediate lower bound for the
threshold function.

THEOREM 4.1. 5(THe, m) > k, where m is any positive integer.
Proof. Let P be a polynomial over Zm, which represents TH and has degree less

than k. By the definition of the threshold function, we know bA 0 for all A C In]
with IAI < k, and by Lemma 3.4.1 we have CA 0 for all A 6 In] with IAI < k. By
Lemma 3.4.2 bA 0 for all A c_ In] with IAI > k, which is a contradiction to the
definition of the threshold function. Thus the degree must be at least k.

Let’s look at the majority function. We define the majority function on n variables
n l’sas MAJ(xl,...,Xn) 1 if there are at least in the input and 0 otherwise.

Clearly, it is a special case of the threshold function. Thus we have the following
immediate corollaries.

COROLLARY 4.2. Let m be any positive integer.
n1. 5(MAJ, m) >_ -.

2. 5(AND, m) n.

60 SHI-CHUN TSAI

3. 5(MidBit, m) (v).
It is clear that part 2 is trivial and part 3 follows from the proof of Theorem

4.1. Next we are going to prove the lower bound for the OR function. With the
previous lemmas we prove it without distinguishing between the cases of squarefree
and nonsquarefree m.

THEOREM 4.3. Let m be any nonprime-power composite number. If the OR
function of n variables is represented by a symmetric polynomial modulo m, then the
degree is t(nl/r), where r is the number of distinct primes dividing m.

Proof. Let P be a symmetric polynomial of degree d that represents the OR
r a e eq-1function over Zm. Saym- 1-I=lp Supposep _< d <p for 1 <_ i_< r. It

is clear that P(}) b0 0 and P(A) bA 0 if A C_ In] and A = 0. Since P is
symmetric for any A, B C_ In], if IAI -IBI, then bA bs and so CA CB. Thus we
can use ClA to indicate CA and the others of the same cardinality. Consider the case

IAI > d. It is easy to see bA .)-=)c. By Theorem 3.3, we know (IAdl) mod m
r ej q-ajhas the cycle length I-[j= Pj when IAI ranges over the nonnegative integers.

We denote the cycle length as n. If > y, then the cycle length of (1]) mod m is a

multiple of the cycle length of (IAI) mod m. Thus (0+L) 0 (mod m), for 1 < i < d,
since (0) 0 (mod m). We must have n < L, otherwise bA 0 for]A]- L, which

r ej +ajcontradicts the definition of the OR function. Hence, n < L YIj=I pj <- mdr,
and therefore d t(n/r).

It is still open to find an upper bound for the nonsymmetric case. A very weak
lower bound can be obtained by a Ramsey argument. Meanwhile in [1], Alon et al.
proved a better lower bound than the one that follows from the Ramsey argument.
To resolve the problem, we can either try to improve the lower bound or find a small
upper bound for the nonsymmetric representation of the OR function.

THEOREM 4.4. Let m be a positive composite integer that is not a prime power;
then 5(-MODm, m) fl(n).

Proof. Let P be a representing polynomial of the -MOD, function of degree d.
Choose pt such that prim and pt co, where p is a prime factor of m. Such p and
exist, since co 0 (mod m). It is clear that b0 co. Without loss of generality,
let n pk+ / pk 1, where k is an arbitrary integer. From Lemma 3.4.2, we have
bA -DCA;IDI<d(--1)d-ID] (IAId-_]DI-)bD for IAI > d. We are interested in the sets

A C In] with]A] pk+t and the sum of the corresponding bA’s:

bA
AC[n] AC[n] DCA;IDI<_d IDI bD

Dc[nl;IDI<_d d-IDI IA iD
bD

DC[nl;IDI<_d d-IDI IA bD.

It is clear that n-lA pk--1 and bA =-- 0 (mod m) since mlA and by the definition
of the "MODm function. If 0 < IDI < pk, then n-IDI pk+t / (pk ID 1). And so

pk_) =-- (Pkp_ 0 (mod pt) since by Lemma 3.1, (p_) mod pt

LOWER BOUNDS ON BOOLEAN FUNCTIONS 61

has the cycle length pk+Z-1. Therefore, we have

O (--1)d(--1)(n_lA)b (modp)

AId- bo (rood pt)=_ (_l)d(1)
If we let d < pk, then () (mod pZ) has the cycle length at most pk+l-1. Thus,

(mod

=(_l)d(pl+l-l dj --1)d b0 (mod p)
(I)

d

(pl/[log,dJ)b0 E(-1) (modp
i--0

b0 (modpt).

The modular equality in (1) follows from the identity E0(-1)() (-1)(-).
It leads to a contradiction. Therefore d > pk +1 The theorem is clear now forp/l"
the case of n pk+l

_
pk 1. For the case pk+ + pk 1 < n < pk+l+l

__
pk+ 1,

the MODm-degree must be at least pa, which is at least n+l and the proof isp+/p
complete. []

By following the above proof we have an immediate corollary.
COROLLARY 4.5. Let p be a prime number that is not a factor of m; then

6(-MODp, m)
It is a fact that for any positive integer l, 6(MODt, m) 6(MOD(z,1), m) + c,

where c is a constant. Thus, following the lines in the proof of Theorem 4.4, we have
the following theorem, which not only improves a previous sublinear lower bound
in [2] but also extends it to any composite integer m.

THEOREM 4.6. Let m be a positive composite integer and q be a prime number
that is not a factor of m; then 6(MODq, m)= f(n).

Proof. Instead of proving the lower bound for the MODq function we prove
it for the MOD(q,I) function. As usual let P be a representing polynomial for the

MOD(q,) function. Choose pZ as we did in Theorem 4.4. Without loss of generality,
let n p(k+l)(q-1) + pk(q-1) 1, where k is an arbitrary integer. Then by follow-
ing the proof in Theorem 4.4 and Fermat’s little theorem we can prove the lower
bound.

Theorems 4.4 and 4.6 show that it is difficult to compute the functions MODp and
-MODp by polynomials over Zm, when p is not a factor of m. By a simple counting
argument, we know that almost every boolean function needs MODm-degree at least

n-2 -o(v/-) for any positive integer m. It will be interesting to see whether y -O(v)
is enough for almost every boolean function when n is big enough.

Acknowledgments. I am grateful to Richard Beigel and Janos Simon for very
useful comments on the earlier version of this paper. I would also like to thank Lance
Fortnow, KatMin Friedl, and Mario Szegedy for helpful discussion; Harris Kwong for
telling me about the papers on the periodic property of binomial coefficients modulo
m; and last but not least the anonymous referees for their useful comments.

62 SHI-CHUN TSAI

REFERENCES

[1] N. ALON, D. KLEITMAN, R. LIPTON, R. MESHULAM, M. RABIN, AND J. SPENCER, Set systems
with no union of cardinality 0 modulo m, Graphs and Combinatorics, 7 (1991), pp. 97-99.

[2] D. A. BARRINGTON, R. BEIGEL, AND S. RUDICH, Representing boolean functions as polyno-
mials modulo composite numbers, in Proc. 24th Annual ACM Symposium on Theory of
Computing, Victoria, BC, Canada, 1992, pp. 455-461.

[3] R. BEIGEL AND J. TARUI, On ACC, in Proc. 32nd IEEE Symposium on Foundations of Com-
puter Science, San Juan, Puerto Rico, 1991, pp. 783-792.

[4] F. GREEN, J. KSBLER, AND J. TOR.N, The power of the middle bit, in Proc. 7th Annual IEEE
Conference on Structure in Complexity Theory, Boston, MA, 1992, pp. 111-117.

[5] J. HSTAD, Computational Limitations of Small-Depth Circuits, MIT Press, Cambridge, MA,
1986.

[6] Y.H. KWONG, Minimum periods of binomial coefficients modulo M, Fibonacci Quart., 27
(1989), pp. 348-351.

[7] , Periodicities of a class of infinite integer sequences modulo M, J. Number Theory, 31
(1989), pp. 64-79.

[8] L. Lov.sz, Combinatorial Problems and Exercises, 2nd ed., North-Holland, Amsterdam, 1993.
[9] N. NISAN AND M. SZEGEDY, On the degree of boolean functions as real polynomials, in Proc.

24th Annual ACM Symposium on Theory of Computing, Victoria, BC, Canada, 1992,
pp. 462-467.

[10] R. PATURI, On the degree of polynomials that approximate symmetric boolean functions, in
Proc. 24th Annual ACM Symposium on Theory of Computing, Victoria, BC, Canada,
1992, pp. 467-474.

[11] A. A. RAZBOROV, Lower bounds for the size of circuits of bounded depth with basis {A,
Math. Notes of the Academy of Science of the USSR, 41-4 (1987), pp. 333-338.

[12] R. SMOLENSKY, Algebraic methods in the theory of lower bounds for boolean circuit complexity,
in Proc. 19th Annual ACM Symposium on Theory of Computing, New York, NY, 1987,
pp. 77-82.

[13] M. SZEGEDY, Algebraic Methods in Lower Bounds for Computational Models with Limited
Communication, Ph.D. thesis, Department of Computer Science, University of Chicago,
Chicago, IL, 1989.

[14] J. TARUI, Randomized polynomials, threshold circuits, and the polynomial hierarchy, in Proc.
8th Annual Symposium on Theoretical Aspects of Computer Science, Springer-Verlag,
Berlin, New York, 1991, pp. 238-250.

[15] , Degree complexity of boolean functions and its applications to relativized separations,
in Proc. 6th Annual IEEE Conference on Structure in Complexity Theory, Chicago, IL,
1991, pp. 382-390.

[16] S. C. TSAI, A Simple Proof of Representing Boolean Functions as Polynomials Modulo p, Tech-
nical report CS 92-27, Department of Computer Science, University of Chicago, Chicago,
IL, 1992.

[17] A. C-C. YAO, Separating the polynomial-time hierarchy by oracles, in Proc. 26th IEEE Sym-
posium on Foundations of Computer Science, Washington, D.C., 1985, pp. 1-10.

[18] S. ZABEK, Sur la pdriodicitd modulo m des suites de nombres (), Ann. Univ. Marine Curie-
Sklodowska, A10 (1956), pp. 37-47.

SIAM J. DISCRETE MATH.
Vol. 9, No. 1, pp. 63-70, February 1996

() 1996 Society for Industrial and Applied Mathematics
OO7

ON CONVEX SUBSETS IN TOURNAMENTS*

DAVID J. HAGLINt AND MARTY J. WOLF:

Abstract. A tournament is a complete directed graph. A convex subset is a vertex subset
with the property that every two-path beginning and ending inside the convex subset is contained
completely within the subset. This paper shows that every nontrivial convex subset is the closure of
a subset of vertices of cardinality two. This result leads to algorithms that find all convex subsets
in a tournament in O(n4) serial time and in O(log2 n) parallel time using O(n4) processors. Several
variations of the problem that are solvable with this new algorithm are also presented.

Key words, tournament decomposition, convex subsets, jkfC algorithm

AMS subject classification. 05C20

1. Introduction. A tournament is a directed graph on n vertices that is ob-
tained by directing all of the edges in a complete undirected graph. A convex subset
is a subset of the vertices such that any vertex not in the subset either dominates or is
dominated by all of the vertices in the convex subset. A convex subset partitions the
vertex set into three subsets: the convex subset, those vertices that dominate all of
the vertices in the convex subset, and those vertices that are dominated by all of the
vertices in the convex subset. This observation leads to a complete characterization
of the convex subsets in a tournament, which leads to a serial algorithm that finds
all convex subsets in any tournament within O(na) time. Although it is known that
a single convex subset can be found in O(n3) time [2], our algorithm enumerates all
of them (potentially O(n2) [5]) in O(n4) time. Furthermore, we give a work-efficient
Arc algorithm that takes O(log2 n) time and O(n4) processors for finding all convex
subsets in any tournament. Finally, our algorithm (in both the parallel and sequential
versions) can be easily modified to provide solutions to variations of the convex sub-
sets problem, including finding all of the convex subsets that contain a given subset of
vertices and efficiently finding the smallest convex subset that contains a given subset
with two or more vertices.

1.1. Background. Varlet investigated many properties of convexity in tourna-
ments and suggested that "it would be nice to have a simple algorithm giving all
convex subsets of a tournament" [5, p. 574]. Determining a single convex subset in
a tournament is essentially equivalent to finding a split in a directed graph (digraph)
when the digraph is a tournament. This fact is alluded to in [1], although no proof is
given in the literature. For completeness we have included a proof in the appendix.
The graphs induced by a split are called a simple decomposition of the graph. Cun-
ningham gives an O(n4) algorithm for determining whether a graph has a split and for
computing a generalization of a simple decomposition called a prime decomposition
[3]. When restricted to a tournament, a simple decomposition yields a convex subset
if one exists. A prime decomposition of a tournament yields a list of graphs such that
each graph directly corresponds to either a convex subset that does not properly con-
tain another convex subset (i.e., a minimal convex subset) or a subtournament that

Received by the editors June 29, 1993; accepted for publication (in revised form) January 11,
1995. This research was supported in part by a Mankato State University Academic Affairs Research
Fund grant.

Computer and Information Sciences Department, Mankato State University, Mankato, MN
56002 (haglinhnankato.msus. edu).

Computer and Information Sciences Department, Mankato State University, Mankato, MN
56002 (mjwolf@mankato.msus. edu).

63

64 DAVID J. HAGLIN AND MARTY J. WOLF

contains no (nontrivial) convex subsets. The prime decomposition of a tournament
of size n has O(n) graphs. Since there are tournaments with t(n2) convex subsets
[5], the prime decomposition will not immediately give rise to all convex subsets in a
tournament. An obvious algorithm that extracts all convex subsets from a prime de-
composition by repeatedly considering the union of known convex subsets with other
known convex subsets and parts of the prime decomposition takes O(n5) time. Any
approach that repeatedly checks candidate subsets for convexity will likely take gt(n4)
time in the worst case since (n2) subsets might be considered, and each convexity
check takes (n2) time in the worst case.

Bouchet gives an O(n3) time algorithm for finding a split of a digraph [2] (a
convex subset in a tournament) if one exists. This algorithm shares the limitations
of Cunningham’s algorithm in generating all convex subsets of a tournament. Astie-
Vidal and Matteo were the first to give an algorithm that enumerates all of the
convex subsets of a tournament [1]. However, their Mgorithm applies only to regular
tournaments (tournaments where the outdegree of each vertex is equal to its in-
degree). They claim that the number of "elementary operations" for their algorithm is

O(n3). However, they include operations such as set intersection and set subtraction
as elementary operations. In this paper, we view those operations (as well as other
related operations) as taking O(n) time. Their algorithm has an O(n4) time bound
with this interpretation. Our Mgorithm with that same time bound computes all of
the convex subsets of any tournament. Furthermore, we parallelize our algorithm
to show that the problem of computing all of the convex subsets of a tournament
is in Aft2. The algorithm given by Astie-Vidal and Matteo does not have an obvious
parallelization. Also note that Cunningham’s algorithm is not obviously parallelizable
since it requires vertices to be considered in a very special order.

1.2. Definitions. Let T (V, E) be a tournament on n vertices. Assume that
V { 1, 2,..., n }. For vertices v, w E V, we say that v dominates w (denoted v - w)
if the edge between v and w is directed from v to w. A convex subset in T is a set
C c_ V such that for any v E V- C either v dominates every vertex in C (denoted
v = C) or every vertex in C dominates v (denoted C = v). This notion is illustrated
in Fig. 1. Since every subset of V of size 0, 1, and n is convex, these convex subsets
are called trivial. This paper deals only with finding the nontrivial convex subsets
and, henceforth, we use the term convex to mean nontrivial convex. Finally, note
that we call sets A, B, and C strongly incomparable if A B 2 C, B A t2 C, and
C_AUB.

Let S c V be any set of vertices within a tournament. S partitions the remaining
vertices into three sets" winners, losers, and mediocre players. The winners are the
vertices that dominate all of the vertices in S. The losers are the vertices dominated
by all of the vertices in S. We are interested in the mediocre players, those that
dominate some of the vertices in S and are dominated by others. Let M(S) { v
V Slx, y S, where x v and v y } be the set of mediocre players relative to
S.

Since a nontrivial convex subset contains at least two vertices, we use every two-
vertex subset of V as a starting point for computing all of the convex subsets. For
i,j V, j, let C,j(k) be defined inductively as follows:

{i,j},
Ci,j(k 1)u M(Ci,j(k 1)) for k > O.

This definition implies a closure operator and immediately suggests an obvious

ON CONVEX SUBSETS IN TOURNAMENTS 65

a) Tournament b) Winners, losers, and
convex subset

FIG. 1. Example tournament with a convex subset.

O(n5) time algorithm for computing all convex subsets. In 2 we present this algo-
rithm more completely and prove its correctness. We also show that every convex
subset is the closure of a subset of cardinality two by showing that every convex
subset is equal to some C,j (defined below). The time bound is easy to verify. Com-
puting M(C,j(k- 1)) takes O(n2) time since at most each pair of vertices needs
to be considered. We can stop computing each C,j(k) when k n- 1 or when
C,j(k) C,j(k- 1). Let C,j denote the resulting set. Since there are O(n2) sets to
compute, the claimed bound is immediate.

We use the following notation and lemma in the demonstration of a polylogarith-
mic time bound for our parallel algorithm in 3 as well as in our improvement of the
time bound of the obvious algorithm in 4. The lemma shows a simple relationship
among vertices in a convex subset and, curiously, allows us to ignore the vertex j in
our algorithms.

Let r,(v) denote the round of induction when vertex v is brought into C,y. Thus,
r,(v) k if and only if v e C,j(k) and v C,j(k- 1). Note that r,(i) r,(j) O.
If a vertex v C,j, then r,j(v) oc. We use R,j(k) { v e Yl r,j(v) k } to
denote the set of vertices brought into C,j in round k.

LEMMA 1.1. Let i, j, v E C,j be three distinct vertices such that r,j(v) k > O.
Then there exists a vertex w C,j such that ri,j(w) k 1 and either w --. v -- i
or i -. v -. w.

Proof. For a given v where r,j(v) k > 0, let x,y e C,j(k- 1) be as in the
definition of M(C,(k- 1)). Note that either r,j(x) k- 1 or r,y(y) k- 1,
otherwise ri,j(v) would be less than k.

Suppose r,j(x) r,j(y) k- 1. Now, either v -. or i v. Because of the
nature of x and y, either x or y dominates v and the other is dominated by v. In
either case, we have the claimed two-path.

Now suppose exactly one of ri,j(x) and r,j(y) is k- 1. Without loss of generality,
assume it is r,j(x). Thus, r,(y) <_ k- 2 and y must have the same orientation to v
as i does; otherwise r,y(v) would be one more than r,j(y). This implies that either
x--- v--. or i--- v--. x. D

Since we know there is always at least one such "predecessor" vertex, w, we define
a function Pi,y (Ci,y (i,j }) --. Ci,j such that Pi,(v) w, where w is the lowest
numbered vertex satisfying ri,j(w) ri,j(v) 1 and either w -- v - or i - v --. w.
Note that these predecessor functions compose with themselves. We will use P,j to
denote the composition of Pi,j with itself times.

66 DAVID J. HAGLIN AND MARTY J. WOLF

2. Finding all convex subsets. In this section we show that the algorithm in
Fig. 2 finds all convex subsets of a tournament. The modifications used to provide
a faster serial algorithm and an Arc algorithm do not invalidate the results of this
section. We begin with a useful lemma from [5].

1 For each pair (i, j) with 1 _< < j <_ n do
2 Ci,j(0) { i,j }
3 k 0
4 Repeat
5 k.--k+l
6 M,j M(C,j(k- 1))
7 C,(k) C,(k 1) U Mi,j
S Until IC,(k)l IC,j(k- 1)l

FIG. 2. Sequential algorithm.

LEMMA 2.1 (see [5]). Let A,B be convex subsets such that A B . Then
A U B is convex.

The following lemma is of particular importance in proving the correctness of
our algorithms. We use this lemma to show that three strongly incomparable convex
subsets cannot be related to one another via various "intersection" properties. Three
of these intersection properties are identified in the corollaries that follow the lemma.

LEMMA 2.2. There do not exist three distinct vertices x,y,z E V and three
distinct convex subsets A,B, and C such that x A, y,z A, y B, x,z B,
z C, and x, y C.

Proof. Assume that three such vertices x, y, z V along with the corresponding
convex subsets A, B, and C do exist. Consider the triangle of vertices x, y, and z.
Without loss of generality, assume that y z. Since y, z A and A is convex, either
x y and x z or y --. x and z --. x. If x y, then the set B cannot be convex
because of the two-path x y z, which is a contradiction. So it must be that
y --. x and z x. Similarly, the two-path y --. z x implies that C cannot be
convex, leading to a contradiction and thus implying the claim.

The following corollaries provide a more concrete interpretation of the previous
lemma. The first one shows that no three strongly incomparable convex subsets share
a common intersection as shown in Fig. 3a.

a) Clover leaf b) Goal post c) Triangle

FIG. 3. Impossible convex subset overlaps.

COROLLARY 2.3. For any vertex i V, there do not exist three strongly incom-
parable convex subsets X, Y, and Z such that X g Y N Z.

ON CONVEX SUBSETS IN TOURNAMENTS 67

Proof. Assume the claim is not true and let X, Y, and Z be three strongly in-
comparable convex subsets such that i E X N Y N Z. Now, A Y U Z, B X [9 Z,
and C X [9 Y are all convex due to Lemma 2.1. Since X, Y, and Z are strongly
incomparable, there exists x E X such that x Y [9 Z, there exists y Y such that
y X [9 Z, and there exists z Z such that z X [9 Y. Lemma 2.2 implies that
vertices x, y, and z and convex subsets A, B, and C cannot exist. This contradiction
gives the desired result. [:]

Another impossible overlap is shown in Fig. 3b.
COROLLARY 2.4. Let X, Y, and Z be disjoint convex subsets. There does not

exist a convex subset W such that W g X , W Y , and W Z
Proof. Assume the claim is not true and let A Y [9 Z [9 W, B X [9 Z [9 W,

and C X [9 Y U W. The rest of the argument is similar to Corollary 2.3. [:]

The next corollary of Lemma 2.2 is central to the proof of correctness of our
algorithms. It demonstrates that the overlap shown in Fig. 3c is also impossible.

COROLLARY 2.5. There do not exist strongly incomparable convex subsets X, Y,
and Z such that X Y O, Y C Z O, and Z N X O.

Proof. Assume the claim is not true and let A Y[gZ, B X[gZ, and
C X [9 Y. The result now follows as in the previous two corollaries.

We also use the following simple observation, stated without proof, in the proof
of Theorem 2.7.

LEMMA 2.6. Let a, b, i, j V. If a, b Ci,j, then Ca,b

_
Ci,j.

THEOREM 2.7. Let C be any convex subset in a tournament or the trivial convex
subset consisting of the entire tournament. Then C Ci,j for some i, j V.

Proof. Suppose there are convex subsets which are different than every Ci,j for
i, j V. Let C be such a convex subset of minimal cardinality. Pick any vertex x C.
Consider Cx,c for all c C, c x. None of these Cx,c’s can be C by our assumption,
and each of these C,c’S must be a subset of C by the definition of C,c. Now choose
all of the "largest" Cx,c’s where largest means that C,c is not a proper subset of
any other C,c, for c C. Note that by Corollary 2.3 there are at most two such
largest convex subsets. Also note that there must be at least two such largest convex
subsets, otherwise the largest would be equal to C, violating our initial assumption.
Therefore, vertex x divides C into two subsets A c C and B C C such that A [9B C
and x E A N B. Choose a vertex y A and z B such that Cx,y A and C,z B.
Such a y and z must exist because of the minimality of C. Note that y, z @ A N B
since Ca,b C_ A B for any a, b e A B.

We now turn our attention to Cy,z and ask the question, "How big is Cu,z?"
Using Cx,y, Cx,z, and Cu,, Corollary 2.5 implies that x Cu,z. But, since x, y Cy,z,
we know that C,y c_ Cu,z by Lemma 2.6. Similarly, since x, z Cv,, we know that
Cx,z c_ Cy,z. We therefore have Cy,z C, a statement which contradicts our original
assumption.

Note that Theorem 2.7 does not extend to half-splits in general digraphs because
half-splits are not necessarily the closure of subsets of cardinality two. However, a
direct result of this theorem is a tight upper bound on the number of convex subsets
in a tournament.

COROLLARY 2.8. There are at most n(n + 1)/2 + 1 convex subsets (including
trivial ones) in any tournament on n vertices. Furthermore, this bound is tight.

Proof. Theorem 2.7 implies an upper bound of n(n- 1)/2 1 nontrivial convex
subsets. Clearly, there are exactly n / 2 trivial convex subsets. The tightness of the
bound follows from Varlet’s claim that a transitive tournament has exactly n(n
1)/2 + 1 convex subsets [5].

68 DAVID J. HAGLIN AND MARTY J. WOLF

3. Finding convex subsets in parallel. In this section we describe a parallel
algorithm that finds all convex subsets in O(log2 n) time using O(n4) processors on a
CREW-PRAM. (See J J [4] for a description of CREW-PRAM.)

An obvious parallelization of the sequential algorithm given in 2 assigns a group
of processors to each set Ci,j. This algorithm, however, may not result in a polylog-
arithmic time algorithm since the computation of each C,j may require as many as
n- 1 rounds. A more aggressive approach that takes advantage of Lemmas 1.1 and
2.6 substantially reduces the number of rounds.

We introduce slightly different notation for the intermediate sets in the parallel
computation of Ci,j. This new notation is used to differentiate between the two
constructions. Intuitively, C,j(k) denotes the set of vertices in Ci,j after k rounds
of the parallel algorithm. A more formal notion comes from the algorithm given in
Fig. 4.

1 For each pair (i, j) with 1 _< <: j _< n pardo
c .(0) {,},3

3 k-0
4 Repeat
5 k--k+l
6 M’i,j M(C,j(k- 1))
7 C,j(k) C,j(k 1) U M.,j

M. pardo8 For each x E
,3

c,() c,() c,()
10 Until IC,(k)l--IC,(k- 1)1

FIG. 4. Parallel algorithm.

THEOREM 3.1. The algorithm in Fig. 4 finds all of the convex subsets of a
tournament.

Proof. The only difference between Fig. 4 and the algorithm in Fig. 2 is the extra
loop in lines 8 and 9. This does not alter the output of the algorithm as demonstrated
by Lemma 2.6. [3

The following lemma shows the time bound for the algorithm in Fig. 4.
LEMMA 3.2. The Repeat loop in lines 4-10 of Fig. 4 stops after O(logn) itera-

tions.

Proof. We show this by proving the following claim. For every vertex v E V,
either r,j(v) cx) or v e C,(k), where k [log2(r,(v + 1)]. We prove this by
induction on k. The base case of k 0 is trivial in that the only vertices that cause
k 0 are i and j. Assume that the claim holds for k _> 0. We now show that the
claim holds for k + 1. Consider a vertex v such that 2k

_
ri,j(v) < 2k+l By following

the sequence of vertices P,j(v),Pi2,j(v),...,P,(v) until r,j(Pli,j(v)) 2k- 1, we

find a "magnet" vertex m i, (v). If 1, then m v, and by our induction
hypothesis, Pi,y(m) C,j(k). Even though m C,j(k), after line 7 of the algorithm
m C,j(k + 1). What remains to be shown is that if m # v, then v C,y(k / 1)
after line 9 of the algorithm. Since m Pf-:l(v) and < 2k r,m(V) < 2k. This
implies that v e C,m(k by our induction hypothesis. Thus v e C,j(k + 1) and the
lemma follows.

THEOREM 3.3. The algorithm in Fig. 4 finds all convex subsets in an n vertex
tournament in O(log2 n) time using O(na) processors in the CREW-PRAM computing
model.

Proof. We begin by analyzing the work required for a single vertex pair (i, j).

ON CONVEX SUBSETS IN TOURNAMENTS 69

Then, we simply multiply the processor requirement by O(n2) to arrive at the claimed
resource bound.

O(n2) processors can compute M. (line 6) in O(log n) time without the need for
concurrent write. We assign a processor to each pair of vertices x, y, for x E C,j(k-1),
y C,j(k-1). Each processor checks whether x y ori- y x. If so,
this processor outputs a 0, otherwise it outputs a 1. (Note that by Lemma 1.1 this
check is sufficient.) The output goes into an array where the IC,j(k- 1)1 outputs
associated with the vertex y are stored. Adding these outputs will determine whether
y belongs in the set M,j. The union at line 7 can clearly be done in O(1) time using
O(n) processors without using concurrent write. The O(n) unions at line 9 of the
algorithm take O(log n) time using O(n2) processors using the exclusive write model.

Since there are O(n2) vertex pairs, the total processor requirement is O(n4).
Furthermore, since each of the O(logn) iterations of the repeat loop of lines 4-10
takes O(log n) time, the claimed time bound holds. []

4. A better analysis of the sequential algorithm. The running time we
originally gave for the sequential algorithm in Fig. 2 is not as tight as possible. Here
we improve our analysis by showing that the computation of the mediocre sets at line
6 is not as expensive as first observed.

THEOREM 4.1. The algorithm in Fig. 2 finds all the convex subsets of a tourna-
ment in O(n4) time.

Proof. Clearly the For loop at line 1 requires O(n2) iterations. Thus, to remain
within our claimed time bound the Repeat loop at lines 4-8 must not consume more
than O(n2) time. We already know that it may take as many as n- 1 iterations and
that the union operation requires O(n) time. We have already consumed O(n2) time
in the Repeat loop.

What remains to be shown is that the computation of M(Ci,j(k- 1)) does not
cause the time bound to be exceeded. This is done by looking at the total work
performed over all such computations of mediocre sets (hence, over all iterations
of the Repeat loop). Lemma 1.1 tells us that we need consider only the vertices
x R,j(k- 1), vertices y V- Ci,j(k- 1), and the vertex i in the following manner.
For x e Ri,j (k- 1) and all vertices y Ci,j (k- 1) we determine whether there exists
a two-path of the form x - y - or y x. The vertex y is included in
M(C,j(k 1)) only if such a two-path exists. This observation implies every pair of
vertices will be considered at most once. Since this check is done in O(1) time, the
Repeat loop at lines 4-8 will take O(n2) time. [:]

This algorithm is asymptotically not as fast as Bouchet’s algorithm for finding a
split of a digraph. However, our algorithm finds all convex subsets (or splits) in O(n4)
time, whereas Bouchet’s algorithm finds only one in O(n3) time. It is not clear how
to modify Bouchet’s algorithm to find all of the convex subsets.

5. Summary. We have proven properties about the relationships among convex
subsets in tournaments that provide a basis for sequential and parallel algorithms for
finding convex subsets in tournaments. Because of these properties, our algorithm
can be easily modified to an O(n3) time algorithm to determine all of the convex
subsets that contain a given subset of vertices. Let S be a given subset. Let V S
{ vl, v2,..., v }. Now all convex subsets that contain S can be computed by using
S, S U { Vl },..., S U { v } as starting points for computing mediocre sets.

Computing the smallest convex subset that contains a set S can be done simply
by using S as the starting point. This can be done in O(n2) time if S has at least

70 DAVID J. HAGLIN AND MARTY J. WOLF

two vertices. If IS 1 then, using this approach, all the starting subsets mentioned
above must be used and the time bound is O(n3).

Finally, note that the parallel version of our algorithm will solve both of the
variations mentioned above in O(log2 n) time using O(n4) processors.

Appendix: Splits in tournaments. Here we show the relationship between
finding convex subsets in a tournament and finding splits in a digraph when the
digraph is restricted to a tournament. We use notation adapted from [3]. Let
G1 (VI,A) and G2 (V2, A2) be two digraphs such that V n V2 {v}.
Define a composition of G1 and G2, written as G G G2, as follows. Let
A, { (x, y) (x, y) e A U A2, x v y }. Let Across { (x, y) (x, v) e AI
and (v,y) e A2 or (x,v) e A2 and (v,y) e A}. Now, let G (V,A), where
V V U V2 { v } and A A 2 Across. Given a digraph G G G2, we call
{ G, G2 } a simple decomposition of G, and { V1, V2 } is a split of G with the associated
marker element v. This discussion assumes that the convex subsets are nontrivial and
that IVll _> 2 _<

We now claim that a split of a tournament exists if and only if the tournament
has a convex subset. We show this by demonstrating that a convex subset implies a
split and that either V or V2 is a convex subset if { V, V2 } is a split.

THEOREM A.1. If a tournament has a convex subset, then the tournament has a
split.

Proof. Let C be a convex subset of the tournament G (V, A). We create the
simple decomposition as follows. Let V1 C t2 { v } and V2 (Y C) { v }. Let
A { (x,y) Ix, y e C}t2{ (x,v) Ix e C}t2{ (v,x) ix
Y-V}[J{ (x,v)Ix e Y-C and x = C}U{ (v,x)Ix e Y-C and C = x}. Clearly
{ V, V2 } is a split.

THEOREM A.2. If a tournament has a split { V1, V2 }, then either VI {v} or
V2 {v} is a convex subset, where v is the associated marker.

Proof. Suppose that V1 {v} is not convex. Then, there exists vertices a, c E V1
and b E V2 such that either a b c or c b -- a. Thus, the edge set A2 must
contain (b, v) and (v, b). This condition implies that for every vertex x V either
(x, v) e A1 or (v,x) A, but not both, since the tournament does not have any
bidirectional edges. Furthermore, since the tournament must have an edge between
every pair of vertices, if the edge (x, v) A1, then x = V2. Similarly, if the edge
(v, x) E A1, then V2 = x. Hence, V2 {v} is convex.

Acknowledgments. We extend our gratitude to Max Hailperin and Giora Slutzki
for their careful reading of and comments on an early draft of this paper and to the
anonymous referee for comments that led to clarification of many points in the paper.

REFERENCES

[1] A. ASTIE-VIDAL AND A. MATTEO, Non-simple tournaments: Theoretical properties and a poly-
nomial algorithm, in Proc. of the Fifth Applied Algebra, Algebraic Algorithms and Error-
Correcting Codes International Conference, Lecture Notes in Computer Science Vol. 5,
Springer-Verlag, Berlin, New York, 1989, pp. 1-15.

[2] A. BOUCHET, Digraph decompositions and eulerian systems, SIAM J. Algebraic Discrete Meth.,
8 (1987), pp. 323-337.

[3] W. H. CUNNINGHAM, Decomposition of directed graphs, SIAM J. Algebraic Discrete Meth., 3
(s), . a-2s.

[4] J. J. Jk, An Introduction to Parallel Algorithms, Addison-Wesley, Reading, MA, 1992.
[5] J. C. VARLET, Convexity in tournaments, Bull. Soc. Roy. Sci. Litge, 45 (1976), pp. 570-586.

SIAM J. DISCRETE MATH.
Vol. 9, No. 1, pp. 71-86, February 1996

1996 Society for Industrial and Applied Mathematics
008

HORIZONTAL PRINCIPAL STRUCTURE OF LAYERED MIXED
MATRICES: DECOMPOSITION OF DISCRETE SYSTEMS BY

DESIGN-VARIABLE SELECTIONS*

SATORU IWATAt AND KAZUO MUROTA$

Abstract. A matrix A QT is called a layered mixed matrix (LM-matrix) if the set of nonzero
entries of T is algebraically independent over the field to which the entries of Q belong. This concept
has been proposed as a mathematical tool for describing discrete physical/engineering systems. It
is known that there uniquely exists a finest block-triangularization of an LM-matrix, which is called
the combinatorial canonical form (CCF).

In this paper, associated with an LM-matrix we introduce a new submodular function q charac-
terizing its rank. This submodular function q is defined on a modular lattice. It will be shown that
the principal structure of q gives the coarsest decomposition of the row side that is finer than any
decomposition induced by the CCF of the submatrix consisting of a base of the column vectors of
A. This gives a best possible bound on the extent to which the whole system can be decomposed by
a suitable choice of design variables.

Key words, layered mixed matrix, design variable, combinatorial canonical form (CCF), prin-
cipal structure, submodular function

AMS subject classifications. 15A21, 93A15, 05C50

1. Introduction. Consider a discrete physical/engineering system described by
a set of variables x (xj J E C) subject to a set of linear equations Ax b such
as an electric network. When the system of equations is not uniquely solvable, i.e.,
the rank r of A is smaller than n, the number of variables, we must pick suitable
n r variables and specify their values so that the state of the system is determined
uniquely. The variables to be picked are called design variables in engineering terms,
and usually we have a chance to choose a nice set of design variables. From a com-
putational point of view, it is desirable to select a set of design variables that makes
the remaining system hierarchically decomposable as finely as possible. Even though
we may not expect an optimal system in this respect, we would like to know "How
fine can we decompose the system after a clever choice of design variables?" We will
answer this question in this paper by using the extension of the principal structure
for submodular systems proposed by Fujishige [5].

To be more concrete, let us begin with an electric network shown in Fig. 1. Such
a network is called a two-port network since it has two pairs of terminals open for
the connection with other elements such as current/voltage sources (cf. Iri [7] and
Recski [19]). We denote by and the current in branch e and the voltage across
branch e, respectively. All these variables are governed by the following system of

Received by the editors May 14, 1993; accepted for publication (in revised form) January 11,
1995.

Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606, Japan
(+/-wata(C)kur+/-ms. kyoto-u, ac. jp). The research of this author was supported by the Japan Society
for the Promotion of Science Fellowship for Japanese Junior Scientists.

Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606, Japan. The research
of this author was partially supported by the Sumitomo Foundation.

71

72 SATORU IWATA AND KAZUO MUROTA

u: current

: voltage

(#= 1,... ,6)

ra" resistance

(a 1,...,4)

FIG. 1. An electric network (from Iri [71).

equations-

(1)

Y 1 0 0 -1 0 -1 0 0 0 0 0 0
0 1 0 -1 -1 -1 0 0 0 0 0 0
0 0 1 -1 -1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 1 1 0 0
0 0 0 0 0 0 0 1 1 0 1 0
0 0 0 0 0 0 1 1 0 0 0 1
rl 0 0 0 0 0 -1 0 0 0 0 0
0 r2 0 0 0 0 0 -1 0 0 0 0
0 0 r3 0 0 0 0 0 -1 0 0 0

\ 0 0 0 r4 0 0 0 0 0 1 0

3
4

6

/o
()

0
0
,0
0

0
0
,0

\o

The coefficient matrix is of row-full rank, but the rank is less than the number of
variables by two, which implies the system of equations is not uniquely solvable un-
less we specify the values of these certain two variables. Although we have various
candidates of such variables, we pay attention here to two examples.

For the first instance, we choose {5, 6} as a set of design variables. This means
in practice that we attach current sources to branch e5 and branch e6. The coefficient
matrix of the system of equations that governs the remaining variables can be rewrit-
ten in a block-triangular form with three diagonal blocks by certain permutations of

HORIZONTAL PRINCIPAL STRUCTURE 73

the row-set and the column-set as follows:

1
0
0
0
rl
0
0

k 0

The block-triangularization of
row-set and the column-set is
(or DM-decomposition) [4] of a
of the matrix.

4 1 2 3 4
1 1

1 1
0 0 -1 0 0 0 0
1 0 -1 0 0 0 0
0 1 -1 0 0 0 0
0 0 0 1 1 1 1
0 0 0 -1 0 0 0
r2 0 0 0 --1 0 0
0 r3 0 0 0 --1 0
0 0 r4 0 0 0 --1

a matrix under two independent permutations of the
obtained by the Dulmage-Mendelsohn decomposition
bipartite graph representing the zero/nonzero patterns

When we talk about a decomposition of a discrete physical/engineering system,
we must consider a transformation group of physical importance. In this respect the
mere permutations are not adequate to be considered. It is an essential observation
that the equations that govern a discrete physical/engineering system are classified
into two types: structural equations such as Kirchhoff’s laws and constitutive equations
such as Ohm’s laws. Accordingly, the rows of the coefficient matrix are divided into
two groups. For example, the first six rows of the matrix in (1) represent structural
equations, and the last four rows represent constitutive equations. Such a matrix is
called a layered mixed matrix or LM-matrix (see 2 for the precise definition). As a
natural transformation for an LM-matrix we should admit not only permutations but
also the linear combinations of the structural equations. Such transformation is called
an admissible transformation and the finest block-triangularization of an LM-matrix
under admissible transformations is known to exist and is called the combinatorial
canonical form or CCF [14], [18] (see 2 for more detail). It can be shown that the
above matrix cannot be decomposed any more by admissible transformations.

Suppose instead that we choose {5, 76} as a set of design variables or, in other
words, we attach a current source to branch e5 and a voltage source to branch e6.
Then the coefficient matrix of the remaining system can be decomposed into four
blocks as follows by an admissible transformation for an LM-matrix:

1 1 1
-1 1 0 0
0 0 1 1
rl 0 -1 0
0 r2 0 -1

73 4

1 -1 0 0
0 0 1 1
r3 0 -1 0
0 r4 0 -1

Thus we observe that how fine the remaining system can be decomposed depends
on the selection of design variables. In this paper we are interested in an upper bound

74 SATORU IWATA AND KAZUO MUROTA

on the decomposition, i.e., the coarsest decomposition of the row side that is finer
than any decomposition induced by the CCF of a submatrix consisting of a base of
the column vectors. See Example 2.1 for a concrete example.

A matrix is said to be a generic matrix if its nonzero elements are independent
indeterminates (see Brualdi and Ryser [2] for the precise definition). Admissible
transformations for a generic matrix are independent permutations of the row-set and
the column-set. In this case the finest block-triangularization is obtained by the DM-
decomposition. When we are restricted to generic matrices, the bound of our present
interest has been given by McCormick [12] and called "SP-decomposition." See also
Chang and McCormick [3] and McCormick and Chang [13] for related topics.

As to LM-matrices, Murota [16] characterized the coarsest decomposition of the
column-set finer than any decomposition induced by the CCF of a submatrix consist-
ing of a base of row vectors by applying the concept of principal structure of submod-
ular systems proposed by Fujishige [5] to a submodular function p associated with
an LM-matrix. This result gives an interpretation of McCormick’s SP-decomposition
in terms of submodular systems as well. However, it does not lead us directly to a
solution of our present problem, because what we would like to know is concerned
with submatrices consisting of a base of not row vectors but column vectors and the
transpose of an LM-matrix is no longer an LM-matrix.

Recently, block-triangularizations of partitioned matrices, which contain the CCF
of LM-matrices as a special case, were investigated in [8], where a submodular function
p on a modular lattice was introduced in association with a partitioned matrix. The
transpose of an LM-matrix is also a partitioned matrix as well, and we are lead to
the idea of introducing a new submodular function q associated with an LM-matrix.
Although we will not explicitly deal with a transposed LM-matrix, the definition
of the new submodular function q in this paper comes from the application of the
submodular function for partitioned matrices to transposed LM-matrices. The new
submodular function q is defined on a nondistributive lattice. Therefore we need to
extend the notion of principal structure to a submodular function on general lattices,
whereas Fujishige [5] assumes boolean lattices. Such an extension was already given
by Tomizawa and Fujishige [20]. Then we will show in Theorem 4.3 that the principal
structure of the submodular function q gives the best possible upper bound on the
extent to which the discrete physical/engineering system described by the LM-matrix
can be decomposed after a suitable choice of design variables.

This result leads us to call the principal structure of the submodular function q the
horizontal principal structure of an LM-matrix. In contrast, the principal structure
of p will be called here the vertical principal structure of an LM-matrix, although
Murota [16] simply called it the principal structure of an LM-matrix.

The outline of this paper is as follows. Section 2 covers the preliminaries on
the CCF of LM-matrices. Section 3 is devoted to the extension of the notion of
the principal structure. Sections 4 and 5 contain the main theorem and its proof,
respectively.

2. Preliminaries on LM-matrices. Let K be a subfield of F. An m n
matrix A- (QT) is called an LM-matrix with respect to FIg when Q is an mQ n
matrix over K, T is an mT n matrix over F, and the set of nonzero entries of T is
algebraically independent over K. For a matrix M in general, we denote the row-set
and the column-set of M by Row(M) and Col(M), respectively, and the submatrix
with the row-set R, and the column-set C, by M[R,, C,].

The rank of an LM-matrix is characterized by a submodular function p defined

HORIZONTAL PRINCIPAL STRUCTURE 75

on column subsets as follows. Given an LM-matrix A (TQ), set RQ Row(Q),
RT Row(T), and C Col(A). Put

P(J) P(J) + 3’(J) JI, J c_ C,

where p(J) denotes the rank of Q[RQ, J] and 3’(J) the number of nonzero rows in
T[RT, J]. Then the function p" 2C - Z is submodular:

P(J1)+P(J2) >P(J1UJ2)+P(JI NJ2), Jh C_C (h-1,2).

The following identity is fundamental.
LEMMA 2.1 (rank identity for an LM-matrix [14], [18]). For an LM-matrix A,

rankA min{p(J) J c_ C} + IC[.

The combinatorial canonical form (CCF) of an LM-matrix A is the finest proper
block-triangularization by admissible transformations:

where Se is an me-dimensional nonsingular matrix over the subfield K and IT is the
rnT-dimensional unit matrix. We say that A and A are LM-equivalent if they are
connected by an admissible transformation.

We say that A is in block-triangular form or is block-triangularized if R Row(A)
and C Col(A) are split into a certain number of blocks, that is, (R0;/1,...,/b; R)
and (Co; C1.,.. Cb; C) in such a way that

no[< ICol or IRol ICol O,
> o for k 1,... ,b,

and

A[Rk, Cz] O if 0<l<k<.

An LM-matrix A is said to be properly block-triangularized if in addition

rankA[Rk, Ck] min(IRk[, [Ck[) for k 0, 1,..., b, cx3

is satisfied. Note that

(2) rankA rn -IRI + ICI- n -IC0[+ Inol

if A is properly block-triangularized. The submatrices AIR0, Co] and A[R, C] are

called the horizontal tail and the vertical tail of A, respectively. It is clear that if A
is block-triangularized in the above sense, we can put it into an explicit upper block-
triangular form PrAPc in the usual sense by using certain permutation matrices

Pr and
Moreover, for .a block-triangularized matrix A, a partial order is naturally induced

among the blocks (C1,... Cb) by the zero/nonzero structure of A. The partial order
_

is the reflexive and transitive closure of the relation defined by

Ck is "smaller" than or equal to Cz if A[Rk, Cz] # O.

76 SATORU IWATA AND KAZUO MUROTA

As is well known [1], the ideals of the poset ({C1,. Cb }, _) constitute a distributive

lattice, which we denote by :D,(A). By adding Co to each element of ,(A), we obtain
an isomorphic lattice T(A), i.e.,

(3) :D(A) {C, U Co lC, e T,(A)}.

Suppose both A and A ar_e LM-ecuivalent to A. Then we_ say that A is finer, as a
decomposition of A, than A’ if 7:)(A’) is a sublattice of 7)(A).

LEMMA 2.2 (the CCF of an LM-matrix [14], [18]). For an LM-matrix A, there
uniquely exists a properly block-triangularized matrix A that is finer than any other
properly block-triangularized matrix LM-equivalent to A.

The block-triangular matrix A in Lemma 2.2 is called the CCF (combinatorial
canonical form) of an LM-matrix A. The submodular function p has played an essen-
tial role in the construction of the CCF. In particular, the set of minimizers of p is a
sublattice of 2c, which agrees with the distributive lattice :D() for , i.e., the CCF
of A.

It should be noted here that the CCF of LM-matrices is a proper extension of the
Dulmage-Mendelsohn decomposition for bipartite graphs [2], [4], [11]. See [15], [17]
for other properties and applications of LM-matrices.

Example 2.1. Consider the LM-matrix

Xl x2 x3 x4 x5

yl 0 1 1 1 1

A= Y2 0 2 0 2 0
Zl tl t2
z2 t3 t4 t5

where C {Xl,X2,X3, X4,Xh}, RQ {Y,Y2}, and RT {z,z2}. The whole matrix
A is the horizontal tail of its CCF, i.e., Co -C.

Let us illustrate our present problem using this instance. Put Bh C- {Xh};
then submatrix AIR, Bh] is nonsingular for each h 1,..., 5. The CCFs of AIR, Bh]’S
are as follows:

1 1 0 1 1 1 1
t5 t4 2 tl 0 t2 A-3= t5 t3A= 1 1 ta t 0 t t t:t2

0 1 1 1 1
tl 0 t2 A- t5 t3 t4A t3 t4 0 tl

1 1

where Ah denotes the CCF of AIR, Bh]. We are interested in the common refinement
of these decompositions.

3. Principal structure of submodular functions. This section is devoted to
the extension, proposed in [20], of the principal structure of submodular systems [5]
to that of submodular functions on arbitrary lattices. The following definition agrees
with the original one when/: is a boolean lattice, as will be explained in Remark 3.1.

HORIZONTAL PRINCIPAL STRUCTURE 77

Let L: be a lattice with finite length and f a submodular function on it, i.e.,

f(X) + f(Y) >_ f(X V Y) + f(X A Y), X, Y e .
The partial order in is defined by

X _---< Y if X V Y Y or equivalently X A Y X.

Given an element X E we denote by D(f; X) the minimum element of the sublattice

{Y e 1X
_

Y, f(Y) min{f(Y’) X

_
Y’ e } }.

A mapping qo L: --+ is said [1] to be a closure function if it satisfies the following
three conditions.

(CL0) VX " X (X).
(CLI) VX, Y " X

__
Y = (X) -<_ 9(Y).

(CL2) VX e " ((X))= (X).
Then we have the following lemma.

LEMMA 3.1. The mapping D(f f -. f is a closure function on

Proof. The conditions (CL0) and (CL2) are immediate from the definition. The
condition (CL1) is proved as follows. Because of the definition of D(f;), we have

f(D(f; Y)) <_ f(D(f; X) V D(f; Y)).

It follows from the submodularity of f and the above inequality that

f(D(f; X)) >_ f(D(f; X) A D(f; Y)).

On the other hand, if X _-< Y, it holds that X -< D(f; X) A D(f; Y). Thus from
the minimality of D(f;X) we have D(f; X) D(f; X)A D(f; Y), which implies
D(f X) -< D(f Y).]

For a closure function , it can easily be shown that (X A Y) X A Y if
(X) X and (Y) Y. That is to say, the family {X e (X) X} of "closed
sets" is a lower semilattice. Therefore the subset/C(f) defined by

E(f)- {X e lD(f;X)- X}

is a lower semilattice containing the maximum element of . We say that/C(f) is the
principal structure of (, f). Denoting the minimum sublattice that contains/C(f) by
(f), we will call (f) the principal sublattice of (, f).

Remark 3.1. Originally in [5], the principal structure of submodular systems is
defined as follows. See also [6] for the details on submodular systems.

Let E be a finite set and f 2E -+ Z be a submodular function, i.e.,

f(X) + f(Y) >_ f(X Y) + f(X f Y), X, Y c_ E.

The pair (E, f) is called a submodular system. Given an element e E, we denote by
D(f; e) the minimum element of the distributive lattice

)(f; e)-- (X c_ E le e X, f(X) min{f(Y) e e Y c_ E}}.

Since the relation

_
defined by

e

_
e’ :> e D(f; e’)

78 SATORU IWATA AND KAZUO MUROTA

is reflexive and transitive, E is decomposed into partially ordered blocks as follows.
Consider the equivalence relation defined by

and split E into the equivalence classes (El,..., Es). A partial order -4 is induced
among the equivalence classes in such a way that Ek E iff e

_
e for e E Ek and

e E E. This decomposition, together with the partial order _--4 among the blocks, is
called the principal structure of the submodular system (E, f).

Put 2E, and then the principal sublattice (f) in the sense of the present
paper is a distributive lattice, which, according to Birkhoff’s representation theorem
[1], can be represented as a family of ideals of a poset. This poset is nothing but the
principal structure of submodular system (E, f) in Fujishige’s sense.

4. Result. In addition to the function p described in 2 we introduce here an-
other submodular function q associated with an LM-matrix A. This submodular
function turns out to give a solution to our problem as is stated in Theorem 4.3.

For an LM-matrix A (QT), we may interpret the mQ n matrix Q as a rep-
resentation of a linear transformation from K to the dual space VQ* of Ve, where
VQ " gmQ and Ve* Km.

Consider the lattice Z: that consists of the pairs of a subspace of Ve and a subset
of RT. The operations A and V in Z: are defined by

(w, &) (w, &)
(w,, &) v (w, &)

(w,_nw,&n&) }(w + w.,& u&) Wh C_ VQ, Ih C_. RT (h--l,2).

Obviously/: is a modular lattice. For a subspace W of V, we denote by W- the
subspace of VQ* annihilating W, i.e.,

wz= { eye* (, v)= 0, w e w},

where (., means the inner product (dual pairing). For H C_ R, we denote by
T(H) the subspace of VQ defined by

T(H) {w e ye (, ,)= 0, vi H},

where ei VQ is the ith unit vector. Note that dim T(H) IHI.
We introduce a function " Z: x 26 -. Z defined by

a((W,I), J)= I{J e J]Qj W+/- or Si e I s.t. Tij 0}1,

where Qy denotes the column vector of Q indexed by j C and Tij the (i,j)-
component of T. Note that Qy VQ* and ImQ c_ VQ*.

The intuitive meaning of this function can be explained as follows. Take a basis
of W and augment it to a basis of VQ. Let H denote the index set for the basis of W.
Then re-express the matrix Q. Define

{j e J IQj e W+/-, T[I,j] 0},

This setting might seem strange because the column vectors belong to the "dual" space VQ*.
However, we adopt this convention since the "primal" space VQ is the linear space on which the
transpose of Q acts, and we introduce a submodular function q by implicitly considering the transpose
of A.

HORIZONTAL PRINCIPAL STRUCTURE 79

and further put

K-J-f, RQ--RQ-H, RT--RT-I.
Then we have the form

R’ [R’, C’]

.[R, J] [RQ, J]) H ?\T[RT, g] RT T[RT, C’]
I 0

K

Q[H,K]
T[RT, K]
T[I,K]

from which it is clear that a((W, I), J) coincides with the cardinality of K.
Put

q((W, I), J) a((W, I), J) dimW III.
We now have the following lemma.

LEMMA 4.1. The function q . x 2C --, Z is bisubmodular, i.e.,

q(X1, J1) -t- q(X2, J2) >_ q(X1 V X2, J CI J2) + q(X1 A X2, J1 U J2),
Xh E, Jh C_C (h=1,2).

Proof. Put w((W, I), J) If((W, I), J)l, where

f((W, I), J) {j e J IQj e W+/-, T[I,j] 0}.

Since we have

q((W, I), J) [J[I((W, I), J)l dimW [II, (W, I) e :, J c C,

it suffices to show the bisupermodularity of w as

(x,, j) + (x, g) _< (x, v x, J, J.) + (x x, g g),
Xh E, Jh C_C (h--1,2).

Noting that

(Xl, J1) CI (X2, J2) (Xl V X2, J1 f’l J2)

and

n(x, Ja) (x, J) c_ n(x x, J1 u J),

we obtain

If(X, J)l + If(X2, J2)l If(X, J) N f(X2, J2)l + If(X1, J) U f(X2,
< In(z v z:, J1 J)l + In(x x:, J u J)l,

which establishes the bisupermodularity of
Fix J C C and put qj(q(., J); then qj is a submodular function on :. It

may be remarked that the function qc agrees with the submodular function defined

80 SATORU IWATA AND KAZUO MUROTA

in [8] associated with the transpose of A when it is considered as a partitioned matrix.
In this context it should be clear that the transpose of an LM-matrix is no longer an
LM-matrix, but it stays in the wider class of partitioned matrices.

As to the submodular function qc, we have the following identity, which is quite
similar to Lemma 2.1.

THEOREM 4.2. For an m n LM-matrix A,

rankA min{qc(X) IX E } + m.

Proof. For any X (W, I) E , A can be transformed, by taking a basis extended
from W, to the form

C K
RQ Q[RQ,C’] Q[RQ,K]

=(Q)= H ,[H,K]
RT T[RT, C’ T[RT,K]
I 0 T[I,K]

whereK= {j e C j W+/-or3ieIs.t. Tij 0}, C’=C-K, IHI =dimW,
R RQ H, and Rc RT I. Now we have the inequality

rankA rank _< R t2 Rrl + KI qc(X) + m

from the above form of A.
Considering the CCF of A with the notation of 2, put W T(RQ A R) and

I RT R. Since rankA m -]RI + ICI from (2), ICl ((W, I), C),
and dimW + I] RI, we have

rankA q((W, I), C) + m.

Thus we have obtained rankA min{qc(X) IX } + m.

As is evident from the proof of Theorem 4.2, the CCF A of an LM-matrix A
yields a distributive sublattice of . To be more precise, put

CCF {(W, I) e W T(Ro -c(C,)), I RT- a(C,), C, e 7:)(A)},

where c(. denotes the naturM correspondence from the blocks (Co; CI,. Cb; Coe)
to (R0; R1,... Rb; R), i.e., c(C0) R0, c(C0tAC1) RotAR1, and so on, and where

T)(A) is defined by (3). Because of the uniqueness of the CCF, CCF is determined
uniqu%ly from A. Now .CCF is a distributive sublattice of , since it is isomorphic
to T)(A) as the above expression of .CCF shows. Note that CCF agrees with the set
of minimizers of the submodular function qc.

We denote by K.ps and PS, respectively, the principal structure and the principal
sublattice of (,qc) in the sense of 3. Then CCF C_ K.ps, and in particular,
-’CCF]PS -’PS if Co 0, i.e., A is of column-full rank.

For J C_ C, consider the submatrix AIR, J], which is also an LM-matrix. As we
define CCF from A, we can define a sublattice of/: from the submatrix AIR, J],
which will be denoted by ff-.CCF(J). Put

B {B C_ C rankA rankA[R, B]

HORIZONTAL PRINCIPAL STRUCTURE 81

That is, B is the base family of the matroid M(A) that represents the linear depen-
dency among the column vectors of A.

Now we are ready to state the main result of this paper, the proof of which is
postponed to 5.

THEOREM 4.3. For an LM-matrix A,

BEI

Let A be the family of all the sublattices of augmented by the empty set . As
is well known, A is a lattice whose minimum element is and maximum element is
itself. Then PS E A and CcF(B) E A. We have the following corollary to Theorem
4.3.

COIOLLAPY 4.4. For an LM-matrix A,

V
BE13

where V designates the join operation in the lattice A.
Example 4.1. Consider the LM-matrix in Example 2.1. We denote by V1 and

V2 the one-dimensional vector spaces spanned by (0 1) e VQ and (2 -1) e VQ,
respectively.

As is easily verified, we have

{(0, (0, (Ye,

where Z1 {z} and Z2 {z2}. The principal structure ICps IC(qc) and the
principal sublattice -,PS -’(qc) are illustrated in Fig. 2.

On the other hand, we have B- {Bh C--{Xh} h 1,...,5}. Figure 3
illustrates the sublattices -,CcF(Bh) for h 1,... 5, which correspond to the CCFs
Ah for h 1,... 5 given in Example 2.1. For example, the height of I:CcF(Bh) is four
since A5 is in a block-triangular form with four diagonal blocks, and a parallelogram
appears in -.CcF(Bh) since the (3, 4)-component of A5 is zero. We can easily observe

5that lops agrees with Uh= .CcF(Bh). Furthermore -PS .CcF(B) for any B
B.

Remark 4.1. For an LM-matrix A of rank r, what is the coarsest simultaneous
decomposition of the row and the column sides that is finer than any decomposition
induced by the CCF of an r-dimensional nonsingular submatrix of A? Theorem 4.3
(or Corollary 4.4), together with the main theorem of [16], give a solution to this
question. All the diagonal blocks of the CCF of A should remain in the CCF of an
r-dimensional nonsingular submatrix. The refinement of the horizontal tail of the
CCF of A is given by the principal structure of q, while the principal structure of p
gives the refinement of the vertical tail. This is the reason why we name the former
"horizontal principal structure" and the latter "vertical principal structure" in this
paper.

5. Proof. Consider a submatrix AIR, B] for B B. Since AIR, B] is of column-
full rank, having no horizontal tail in its CCF, the principal structure (qs) coincides
with the distributive lattice induced by the CCF of AIR, B], i.e.,

(4) l(qB) .CcF(B).

82 SATORU IWATA AND KAZUO MUROTA

(Yl,O)

(o, 0)

(0, Z1)

FIG. 2. The Hasse diagram for the principal sublattice -’PS in Example 4.1. The double circles
correspond to the elements of 1Cps.

Hence, in order to prove Theorem 4.3, we shall reveal the relation between 1C(qc) and
K:(qB), i.e., the relation between D(qc;X) and D(qs; Z).

LEMMA 5.1. For any X E f. and any J c_ C,

D(qc; X) -< D(qg; X).

Proof. The following argument is the same as that in [16]. Fix X E and put
De D(qc; X) and Dj D(qg; X) for notational simplicity. To establish Dc -< Dj,
it suffices to show

qc(Dc) >_ qc(Dc A Dj).

By the bisubrnodularity of q, we have

q(Dc, C) q(Dc i Dj, C) >_ q(Dc V Dj, J) q(nj, J).

That is,

qc(Dc) qc(Dc A Dj) > qj(Dc V Dj) qj(Dj),

where the right-hand side must be nonnegative since X -< De V Dj.

LEMMA 5.2. For any X 6 f, there exists B 6 B such that

D(qc; X) D(qs; X).

HORIZONTAL PRINCIPAL STRUCTURE 83

(ye, R)

(0,)

CcF(B CcF(B2) CcF(B3)

(ye, R) (Ye, R)

(o,o)

cc(B) cc(B)

,) (y, R)

,) (v,z)

FIC. 3. The Hasse diagrams for CcF(Bh)’8 in Example 4.1.

Proof. Fix X E and put Dc (We, Iv) D(qc; X) for notational simplicity.
By taking a basis in VQ extended from Wc, A can be transformed to the form

C K

R’ Q[R,C’] Q[R’,K]

.=(T)= H f Q[H,K]
R’T T[RT, C’ T[R’T,K
Ic 0 T[Ic, K]

84 SATORU IWATA AND KAZUO MUROTA

where g {j e C lj q We+/- or 3i e Iv s.t. Tj 0}, C’ C-K, IHI dim We,
R RQ H, and RT RT Ic.

Put R’ R UR and we will claim that the submatrix AIR’, C’] is of row-full
rank, i.e.,

(5) rank[R’, C’] IR’I.
Since A[H U Iv, C] 0 and the rank of an LM-matrix is invariant under admissible
transformations, it holds that

(6) rank[R’, C’] rankS[R, C’] rankA[R, C’].

Applying Theorem 4.2 to the LM-matrix AIR, C], we have from Q E We+/- and
T[Ic, j] 0 for all j C’ that

(7) rankA[R, C’] min{q((W, I), C’) (W, I) e } + m
min(q((W, I), C’)[W D_ We, I D_ Iv} + m.

Assume that W D_ We and I D_ Iv; then we have

((W, I), C’) ((W, I), C) [g
5, c) c).

Hence it holds that

(8) q((W, I), C’) ((W, I), C’) Ill dimW
q((W, I), C) q((Wc, Iv), C) [Iv[dim We.

It follows from the definition of De (Wc, Iv) and (V, I) X that

(9) qc(W, i) qc(Wc, Ic) >_ O.

Combining (6), (7), (8), (9), and m- [Iv[- dim Wc JR’I, we obtain (5).
Therefore there exists J c C such that

rank[R’, J’] JR’]]J’l.

At the same time, there exists Jg C_ K such that

rankA[g U Iv, K] rankA[g U Ic, Jg] [Jgl.

Put B J’ U Jg. Since both AIR’, J’] and A[H U Iv, Jg] are of column-full rank,

A[R, B] H U Ic 0 [H U Ic, JK]

is of column-full rank, i.e.,

(10) rankA[R,B]

On the other hand, since AIR, C] is of row-full rank,

rank rank[R’, C’] + rank[H U Ic, K]

HORIZONTAL PRINCIPAL STRUCTURE 85

Thus we obtain B E B.
Applying Theorem 4.2 to the LM-matrix A[R, B], we have from rankA[R, B]

rankA[R, B] and (10)that

min{qs(Y) Y e } IBI m,

which together with qB(Dc) IJg[IIcI dim We IBI m and X Dc implies

qB(Dc) min{qB(Y) X Y e }.

Thus we obtain .De D(qB;X), which completes the proof since we have already
shown De - D(qs; X) in Lemma 5.1. D

Now we are ready to prove Theorem 4.3. It follows from Lemma 5.1 that D(qj; X)
X implies D(qc; X) X. Hence,

](qj) C_ (qc)

holds for any J C_ C. On the other hand, from Lemma 5.2, X D(qc; X) implies
the existence of B B such that X D(qB; X). That is to say,

[.J

Thus we have l(qc) [JBE (qB), which establishes Theorem 4.3 when combined
with (4).

6. Conclusion. It is shown that the principal structure of the submodular func-
tion q defined on a modular lattice associated with an LM-matrix gives the coarsest
decomposition of the row side that is finer than any decomposition induced by the
CCF of the submatrix consisting of a base of the column vectors of A. This gives a
best possible bound on the extent to which the whole system described by an LM-
matrix can be decomposed by a suitable choice of design variables. This result can
be extended to multilayered matrices [18] under a certain genericity assumption.

Computing the principal structure of the submodular function qc involves the
minimization of submodular functions on nondistributive modular lattices and com-
pact representations of them. Unfortunately, little is known on this matter. However,
the projection of the principal sublattice (qc) to the Boolean lattice 2RT can be
computed efficiently. Although this projection has only partial information on the
horizontal principal structure of the LM-matrix, it is still interesting because it gives
the best possible upper bound on the decompositions of RT, which corresponds to
the set of physical elements of the system in question.

A unification of horizontal and vertical principal structure is given in [10] in terms
of independent matchings, and a further extension is presented in [9].

Acknowledgments. The authors are grateful to Professor Satoru Fujishige of
the University of Tsukuba for the relevant reference [20] and to an anonymous referee
for comments on presentation.

REFERENCES

[1] M. AIGNER, Combinatorial Theory, Springer-Verlag, Berlin, 1979.
[2] R. A. BRUALDI AND H. J. RYSER, Combinatorial Matrix Theory, Cambridge University Press,

London, 1991.

86 SATORU IWATA AND KAZUO MUROTA

[3] S. F. CHANG AND S. T. MCCORMICK, A hierarchical algorithm for making sparse matrices
sparser, Math. Programming, 56 (1992), pp. 1-30.

[4] A. L. DULMAGE AND N. S. MENDELSOHN, A structure theory of bipartite graphs of finite
exterior dimension, Trans. Roy. Soc. Canada, 53 (1959), pp. 1-13.

[5] S. FUJISHIGE, Principal structures of submodular systems, Discrete Appl. Math., 2 (1980),
pp. 77-79.

[6] Submodular Functions and Optimization, North-Holland, Amsterdam, 1991.
[7] M. IaI, Applications of matroid theory, Mathematical Programming--The State of the Art,

A. Bachem, M. GrStschel, and B. Korte, eds., Springer-Verlag, Berlin, 1983, pp. 158-201.
[8] H. Iwo, S. IWATA, AND K. MUROTA, Block-triangularizations of partitioned matrices under

similarity/equivalence transformations, SIAM J. Matrix Anal. Appl., 15 (1994), pp. 1226-
1255.

[9] S. IWATA, Principal structure of submodular systems and Hitchcock-type independent flows,
Combinatorica, 15 (1995).

[10] S. IWATA AND K. MUROTA, A theorem on the principal structure for independent matchings,
Discrete Appl. Math., 61 (1995), pp. 229-244.

[11] L. Lovhsz AND M. PLUMMER, Matching Theory, North-Holland, Amsterdam, 1986.
[12] S. T. McCORMICK, A Combinatorial Approach to Some Sparse Matrix Problems, Technical

Report SOL 83-5, Department of Operations Research, Stanford University, 1983.
[13] S. T. MCCORMICK AND S. F. CHANG, The weighted sparsity problem: complexity and algo-

rithms, SIAM J. Discrete Math., 6 (1993), pp. 57-69.
[14] K. MUROTA, Systems Analysis by Graphs and Matroids--Structural Solvability and Control-

lability, Springer-Verlag, Berlin, 1987.
[15] Some recent results in combinatorial approaches to dynamical systems, Linear Algebra

Appl., 22/23/24 (9s9), pp. 725-759.
[16] Principal structure of layered mixed matrices, Discrete Appl. Math., 27 (1990),

pp. 221-234.
[17] Mixed matrices--Irreducibility and decomposition, Combinatorial and Graph-

Theoretical Problems in Linear Algebra, R. A. Brualdi, S. Friedland, and V. Klee, eds.,
The IMA Volumes in Mathematics and Its Applications, Springer-Verlag, New York, 1993,
pp. 39-71.

[18] K. MUROTA, M. IaI, AND M. NAKAMURA, Combinatorial canonical form of layered mixed
matrices and its application to block-triangularization of systems of equations, SIAM J. Al-
gebraic Discrete Methods, 8 (1987), pp. 123-149.

[19] A. RECSKI, Matroid Theory and Its Applications in Electric Network Theory and in Statics,
Springer-Verlag, Berlin, 1989.

[20] N. TOMIZAWA AND S. FUJISHIGE, Theory of hyperspace (XIV)--Principal decompositions and
principal structures of metric lattices with respect to supermodular functions, CAS 82-2,
Institute of Electronics and Communication Engineers of Japan, 1982. (In Japanese.)

SIAM J. DISCRETE MATH.
Vol. 9, No. 1, pp. 87-100, February 1996

() 1996 Society for Industrial and Applied Mathematics
0O9

DATA SECURITY EQUALS GRAPH CONNECTIVITY*

MING-YANG KAOt

Abstract. To protect sensitive information in a cross-tabulated table, it is a common practice
to suppress some of the cells in the table. This paper investigates four levels of data security of a
two-dimensional table concerning the effectiveness of this practice. These four levels of data security
protect the information contained in, respectively, individual cells, individual rows and columns,
several rows or columns as a whole, and a table as a whole. The paper presents efficient algorithms
and NP-completeness results for testing and achieving these four levels of data security. All these
complexity results are obtained by means of fundamental equivalences between the four levels of data
security of a table and four types of connectivity of a graph constructed from that table.

Key words, statistical tables, linear algebra, graph theory, mixed graphs, strong connectivity,
bipartite-(k + 1)-connectivity, bipartite completeness

AMS subject classifications. 68Q22, 62A99, 05C99

1. Introduction. Cross-tabulated tables are used in a wide variety of documents
to organize and exhibit information. The values of sensitive cells in such tables are
routinely suppressed to conceal sensitive information. There are two fundamental
issues concerning the effectiveness of this practice [1], [4], [5], [6], [7], [8], [9], [20],
[21], [22], [23]. One is whether an adversary can deduce significant information about
the suppressed cells from the published data of a table. The other is how a table
maker can suppress a small number of cells in addition to the sensitive ones so that
the resulting table does not leak significant information.

This paper investigates how to protect the information in a two-dimensional table
that publishes three types of data (see [16] for examples): (1) the values of all cells
except a set of sensitive ones, which are suppressed, (2) an upper bound and a lower
bound for each cell, and (3) all row sums and column sums of the complete set of
cells. The cells may have real or integer values. They may have different bounds, and
the bounds may be finite or infinite. The upper bound of a cell should be strictly
greater than its lower bound; otherwise, the value of that cell is immediately known
even if that cell is suppressed. The cells that are not suppressed also have upper and
lower bounds. These bounds are necessary because some of the unsuppressed cells
may later be suppressed to protect the information in the sensitive cells.

The focus of this paper is how to protect the type of information defined here. A
bounded feasible assignment to a table is an assignment of values to the suppressed
cells such that each row or column adds up to its published sum and the bounds of
the suppressed cells are all satisfied. A linear combination of the suppressed cells
is a linear invariant if it has the same value at all bounded feasible assignments
(see [16] for examples). Intuitively, the information contained in a linear invariant
is unprotected because its value can be uniquely deduced from the published data.
Five classes of linear invariants are of special significance. A positive invariant is
one whose coefficients are all nonnegative with at least one positive coefficient. A

Received by the editors January 21, 1993; accepted for publication (in revised form) February
22, 1995. A preliminary version of this work appeared in Proc. 2nd International Workshop on
Discrete Mathematics and Algorithms, Guanzhou, China, December 18-20, 1994, pp. 134-147.

Department of Computer Science, Duke University, Durham, NC 27708 (kao@cs.duke.edu).
This research was supported in part by National Science Foundation grants MCS-8116678, DCR-
8405478, and CCR-9101385. Part of this research was performed while the author was at the De-
partment of Computer Science, Yale University, New Haven, CT 06520.

87

88 M.-Y. KAO

unitary invariant is one whose coefficients are +1, 0, or -1. A sum invariant is one
whose coefficients are /1 or 0. A rectangular sum invariant is one that sums over all
suppressed cells shared by a set of rows and a set of columns. An invariant cell is a
suppressed cell that forms a linear invariant all by itself.

Four levels of data security of a table are discussed in this paper. To motivate
the discussion, suppose that a given table tabulates the quantities of several products
made by different factories. A row represents a factory, a column records the quantities
of a product, and a cell contains the quantity of a product made by a factory. Level
1 protects the suppressed cells individually. A factory wishes to conceal the quantity
of a particular product. Naturally, that quantity should be suppressed and its precise
value should not be uniquely determined from the published data of the table. Thus,
a suppressed cell is protected if it is not an invariant cell [12]. Level 2 protects a
row (or column) as a whole. After all suppressed cells are protected, an adversary
may still be able to obtain useful information by combining the suppressed cells. If a
factory wishes to protect the information about the quantities of all its products as
a whole, it must ensure that no information of a sensitive type can be extracted by
combining the suppressed cells in the row representing that factory. Hence, a row is
protected if there is no linear invariant of a desired type that combines the suppressed
cells in that row. Level 3 protects a set of k rows (or k columns) as a whole. Suppose
that a company owns k factories. It wishes to conceal aggregate information about
all its factories, not just the information about each individual factory. It should
require that no information of an important type can be derived by combining the
suppressed cells in the k rows for its k factories. Thus, a set of k rows is protected
if there is no linear invariant of a desired type that combines the suppressed cells in
those rows. Level 4 protects the given table as a whole. Further suppose that the
above company owns all the factories tabulated in the table. It wishes to protect
aggregate information about all its factories and all their products. It stipulates that
only trivial information may be found among a desired class of combinations of the
suppressed cells. Thus, a table is protected if it has no linear invariant of a desired
type that combines its suppressed cells.

The key contribution of this paper is to establish that the latter three levels of
data security of a table are equivalent to three types of connectivity of a graph called
the suppressed graph of that table. Previously, Gusfield showed that the first level of
data security is equivalent to a certain type of connectivity of the suppressed graph
[12]. The paper further uses these fundamental equivalences to obtain three sets of
complexity results. First, the second and fourth levels of data security of a table can
be tested in optimal linear time and the third level can be tested in polynomial time.
Previously, Gusfield showed how to find all invariant cells of a table and test for its
first level of data security in optimal linear time [12]. Second, for each of the four
levels of data security, it is an NP-complete problem to compute and suppress the
minimum number of additional cells in a table in order to achieve the desired level
of data security. Third, for a large and practical class of tables, the above optimal
suppression problem for the second and fourth levels of data security can be solved
in optimal linear time. For the first level of data security, Gusfield showed that the
optimal suppression problem can be solved in optimal linear time [11]. For the third
level of data security the optimal suppression problem remains open.

We review basics of graphs and tables in 2, discuss the four levels of data security
in 3 through 5, and compare them in 6.

DATA SECURITY EQUALS GRAPH CONNECTIVITY 89

column a b c sum
index

1 10

c(luummn][]]
R C R

C R C

The number in a table cell is its value. A cell with a box is suppressed. The lower
and upper bounds of the cells are 0 and 9. The graph is the suppressed graph of
the table. Vertex Rp corresponds to row p and vertex Cq to column q.

FIG. 1. A table and its suppressed graph.

2. Preliminaries. Every graph in this paper is a mixed graph, i.e., it may con-
tain both undirected and directed edges with at most one edge between two ver-
tices. Let T be a table. The suppressed graph Tl (A, B,E) and the total graph
Tl’ (A, B,E’) of T are the bipartite graphs constructed here (see Fig. 1 for an
example). For each row (respectively, column) of T, there is a vertex in A (respec-
tively, B); this vertex is called a row (respectively, column) vertex. For each cell x
at row i and column j, there is an edge e E E’ between the vertices of row and
column j. If the value of x is strictly between its lower and upper bounds, then e
is undirected. Otherwise, if the value equals the lower (respectively, upper) bound,
then e points from the row endpoint to the column endpoint (respectively, from the
column endpoint to the row endpoint). E consists of the edges corresponding to the
suppressed cells. Note that 7-/ is a subgraph of 7-/’ and 7-/’ is complete (i.e., for all
u E A and v B, E’ has exactly one edge between u and v). Also, given an arbitrary
complete bipartite graph and a subgraph on the same vertices, it takes only linear
time to construct a table with these two graphs as its total and suppressed graphs.

A traversable cycle or path is one that can be traversed along its edge directions.
A direction-blind cycle or path is one that can be traversed if its edge directions are
disregarded; we often omit the word direction-blind for brevity. A graph is connected
if each pair of vertices are in a path. A connected component is a maximal connected
subgraph. A nonsingleton connected component is one with two or more vertices. A
graph is strongly connected if each pair of vertices are in a traversable cycle. A strong
component is a maximal strongly connected subgraph.

The effective area of a linear invariant F of T, denoted by EA(F), is the set of

90 M.-Y. KAO

suppressed cells in the nonzero terms of F. EA(F) is also regarded as a set of edges
in ?-/. F is nonzero if EA(F) O. F is minimal if it is nonzero and has no nonzero
linear invariant whose effective area is a proper subset of EA(F). Note that given a
minimal linear invariant F, if F’ is a nonzero linear invariant with EA(F’) C_ EA(F),
then F’ is also minimal and is a multiple of F. Thus, a minimal linear invariant is
unique up to a multiplicative factor with respect to its effective area.

An edge set of a graph is an edge cut if its removal disconnects a connected
component. An edge cut is minimal if no proper subset of it is an edge cut.

FACT 1. Let Z be an edge set of a strong component TI’ of l. Z is a minimal
edge cut of’ if and only if ’ Z has exactly two connected components, say, -1
and Tl, and each edge of Z is between Tll and Tl2.

Assume that Z is a minimal edge cut of T/. Z is bipartite if the endpoints of Z
in 7-/1 are all row vertices or all column vertices. An edge set of 7-/is a (respectively,
bipartite) basic set if it consists of an edge not in any strong component of or is a
(respectively, bipartite) minimal edge cut of some strong component.

THEOREM 2.1 (see [14]). 1. A linear invariant of :Y is minimal if and only if its

effective area is a basic set of Tl. Also, for each basic set Z of Tl, there is a minimal
linear invariant F of :Y with EA(F) Z.

2. Every mininal linear invariant is a multiple of a unitary invariant. Further-
more, a minimal linear invariant F of 7" is a multiple of a sum invariant if
and only if EA(F) is a bipartite basic set of Tl.

3. For each nonzero linear invariant F of :Y, there exist unitary mininal lin-
ear invariants F,..., Fk of :Y such that F =c.F for some c > O,
EA(F) U=IEA(Fi), and for each Fi and each e e EA(F), the coefficients
of e in F and are either both positive or both negative.

Remark. A referee has indicated that a different proof for Theorem 2.1 from that
in [14] can be constructed by means of conformal vector decomposition [18], [19].

3. Protection of a cell. A suppressed cell of T is protected if it is not an
invariant cell.

3.1. Cell protection and bridge-freeness. A graph is bridge free if it has no
edge cut consisting of a single edge.

THEOREM 3.1 (see [12]). 1. A suppressed cell of T is protected if and only if it
is an edge in an edge-simple traversable cycle of TI.

2. The suppressed cells of T are all protected if and only if each connected com-
ponent of 7-t is strongly connected and bridge free.

COROLLARY 3.2 (see [12]). Given Tl, the unprotected cells of T can be found in

o(1 1)
3.2. Optimal suppression problems for cell protection. The problem be-

low is concerned with suppressing the minimum number of additional cells in T such
that the original and the new suppressed cells in the resulting table are all protected.

PROBLEM 1 (protection of all cells).
Input: T and an integer p _> 0.
Output: Is there a set P consisting of at most p published cells of T such
that all suppressed cells are protected in the table formed by T with the cells
in P also suppressed?

Problem 1 can be reformulated as the graph augmentation problem below.
PROBLEM 2.

Input: A complete bipartite graph 7-/’, a subgraph -/, and an integer p _> 0.

DATA SECURITY EQUALS GRAPH CONNECTIVITY 91

Output: Is there a set P of at most p edges in T/-T/such that each connected
component of 7-/ P is strongly connected and bridge free?

LEMMA 3.3. Problems 1 and 2 can be reduced to each other in linear time.

Proof. The proof follows from Theorem 3.1(2). [-1

The next problem is NP-complete [10]. It is used here to prove that Problems 1
and 2 are hard.

PROBLEM 3 (hitting set).
Input: A finite set S, a nonempty set W c_ 2S, and an integer h >_ 0.
Output" Is there a subset S’ of S such that IS’I _< h and S’ contains at least
one element in each set in W?

THEOREM 3.4. Problems 1 and 2 are NP-complete.
Proof. Problems 1 and 2 are both in NP. To prove their completeness, by

Lemma 3.3, it suffices to reduce Problem 3 to Problem 2.
Given an instance S {Sl,...,ss}, W {S1,...,S}, h of Problem 3, an

instance ?-l’ (A, B, E’), ?-I (A, B, E), p of Problem 2 is constructed as follows:
Rule 1" Let A {a0, al,...,as}. The vertices al,...,as correspond to
s,..., ss, but a0 corresponds to no
Rule 2: Let B {bo, bl,...,b}. The vertices b,...,bz correspond to
S,..., Sf of S, but b0 corresponds to no Sj.
Rule 3: Let E’ consist of the following edges:

1. The edge between a0 and b0 is b0 --* a0.
2. For all j with 1 _< j _</, the edge between a0 and by is a0
3. For all i with 1 _< i

_
a, the edge between ai and b0 is ai b0.

4. For each si and each Sy, if si e Sj, then the edge between ai and by is

by - hi; otherwise it is ai --* by.
Rule 4: Let E {b0 a0} U {a0 --* bl,... ,a0 - b}.
Ruleh: Letp=h+.

The above construction can be easily computed in polynomial time. The next
two claims show that it is indeed a desired reduction from Problem 3 to Problem 2.

CLAIM l. If some S’ c_ S with IS’I <_ h has at least one element in each Sy, then
some P c E’-E consists of at most p edges such that every connected component of
TI U P is strongly connected and bridge free.

To prove this claim, observe that for each Sy, some sit E S’ N Sy exists. By Rule
3(4), P {bl hi1,..., b --. aim} exists. By Rule 3(3), P2 {hi1 -- b0,..., aim
b0} exists. Let P P1 U P2. Note that P consists of edges. P2 consists of at
most IS’ edges. Thus P has at most p + h edges. For all j with 1 _< j _</, the
edges b0 a0, a0 by, by ai, and ai b0 form a vertex-simple traversable cycle.
Because E P consists of the edges in these cycles, every connected component of
7-/U P is strongly connected and bridge free. This finishes the proof of Claim 1.

CLAIM 2. If some P C_ E’-E consists of at most p edges such that every
connected component of Tl [P is strongly connected and bridge free, then some S C_ S
with IS’]

_
h has at least one element in each Sy.

To prove this claim, observe that for all j with 1 <_ j <_/, by Rule 4, E contains

a0 --* by but no edge pointing from by. Because every connected component of 7-/UP is
strongly connected, P contains an edge by ai for some iy. By Rule 3(4), sit
Let S’ {si,..., sin }. Note that P contains bl ai,..., b aim but E contains
no edges pointing from {ai,..., aim }. Because every connected component of ?-/UP is
strongly connected, P must also contain at least one edge pointing from each vertex
in {ai,...,aim}. Thus P contains at least IS’ + edges. Then IS’ _< h because

92 M.-Y. KAO

IPI _< + h. This finishes the proof of Claim 2 and thus that of Theorem 3.4.
The next two problems are optimization versions of Problems 1 and 2 for undi-

rected graphs and tables whose total graphs are undirected.
PROBLEM 4 (protection of all cells).

Input: The suppressed graph of a table 7" whose total graph is undirected.
Output: A set P consisting of the smallest number of published cells of
such that all suppressed cells are protected in the table formed by T with the
cells in P also suppressed.

PROBLEM 5.
Input: A bipartite undirected graph ?-/= (A, B, E).
Output: A set P consisting of the smallest number of undirected edges
between A and B but not in E such that every connected component of
(A, B, E [9 P) is bridge free.

Note that Problem 5 need not specify ?-/ because it is undirected and thus is
unique for ?-/. Similarly, 7-/t2 P is always strongly connected.

LEMMA 3.5. Problems 4 and 5 can be reduced to each other in linear time.

Proof. The proof is similar to that of Lemma 3.3. [:]

THEOREM 3.6 (see [11]). Problem 5 is solvable in linear time; thus so is Prob-
lem 4.

4. Protection of rows and columns. This section discusses the data security
of a table at levels 2 and 3 in a unified framework. Let EA(R) denote the set of
suppressed cells in a row or column R. Let R eeEA(R)e. Let R1,..., Rk be k
rows or k columns of T, but no mixed case. For level 3 data security, (R1,... ,Rk)
is protected with respect to the linear invariants (respectively, the positive invariants,
the unitary invariants, the sum invariants, or the rectangular sum invariants) if the
conditions below hold:

1. Each linear invariant (respectively, positive invariant, unitary invariant, sum
invariant, or rectangular sum invariant) F of T with EA(F) C_ Uik=IEA(Ri)
is a linear combination of R1,..., Rk.

2. No suppressed cell of R1,..., Ra is an invariant cell.
Level 2 data security is a special case of level 3 with k 1, and its definitions can
be simplified. A row or column R is protected with respect to the linear invariants
(respectively, the positive invariants, the unitary invariants, or the sum invariants) if
the conditions below hold:

1. Each linear invariant (respectively, positive invariant, unitary invariant, or
sum invariant) F with EA(F) c_ EA(R) is a multiple of R.

2. No suppressed cell in R is an invariant cell.
We do not explicitly consider the protection of R with respect to the rectangular sum
invariants because for k I these invariants are the same as the sum invariants. Also,
the five types of invariants here are implicitly considered for cell protection because
a linear invariant with exactly one nonzero term is essentially an invariant cell.

The two conditions in the definitions are based on technical considerations. No
matter how many ceils in T are suppressed, R1,..., R and their linear combinations
are always linear invariants. Thus the first condition gives the best possible protection
for RI,..., Rk as a whole. If Ri has either no suppressed cell or at least two, the first
condition implies the second one; otherwise, the first condition holds trivially but the
only suppressed cell in Ri is an invariant. The second condition is adopted to avoid
this undesirable situation.

DATA SECURITY EQUALS GRAPH CONNECTIVITY 93

These definitions also require that R1,... ,Rk be all rows or all columns. In
these two pure cases, EA(R1),... ,EA(Rk) are pairwise disjoint. Therefore, a linear
combination of R1,..., Rk has a very simple structure and encodes essentially the
same information as R1,... ,Rk. In contrast, if at least one R is a row and at
least one Rj is a column, then a linear combination of R1,..., Rk may have a very
complex structure and may encode very different information from that contained in
R1,..., Rk. Furthermore, unlike in the two pure cases, these definitions do not seem
to have useful characterizations in the mixed case.

The importance of the first four types of invariants considered in the definitions
are evident. The fifth type, a rectangular sum invariant, is motivated by a popular
technique for protecting information in a table. Let e be an invariant cell at row i
and column j. To protect e, row i can be split into several rows and column j into
several columns. Correspondingly, e is split into four or more cells. Then enough
of these refined cells can be suppressed to ensure that each suppressed refined cell is
protected. However, the sum of the suppressed refined cells of e is a rectangular sum
invariant. This property can be used to uniquely determine the value of e. Thus the
consideration of rectangular sum invariants renders this refinement approach useless
at the third level of data security.

4.1. Equivalence of k row-column protection. This section shows that the
five definitions of k row-column protection are all equivalent.

LEMMA 4.1. Every sum minimal invariant is rectangular.
Proof. Let F be a sum minimal invariant of T. If EA(F) consists of an edge

not in any strong component of 7-/, then F is trivially rectangular. Otherwise, by
Theorem 2.1, EA(F) is a bipartite minimal cut set of a strong component 7-/’ of 7-/.
By Fact 1, 7-/’- EA(F) has two connected components 7-/ and 7-/.. Let U1 and U2
be the sets of endpoints of EA(F) in 7-/ and 7-/, respectively. By the bipartiteness
of EA(F), without loss of generality the vertices in U1 are rows in T and those in U2
are columns. Then F is rectangular because EA(F) consists of the edges between
and U2 in T/.

LEMMA 4.2. If no EA(Ri) is empty, the statements below are equivalent:
1. Every positive invariant F with EA(F) c_ Uik__IEA(R) is a linear combina-

tion of R1, Rk
2. Every sum invariant F with EA(F) C_ Uk=IEA(Ri) is a linear combination

of R1, Rk.
3. Every rectangular sum invariant F with EA(F) C_ U=IEA(Ri) is a linear

combination of R1,..., R.
4. R1,..., R are the only sum minimal invariants of T whose effective areas

are subsets of
Proof. The directions 1 2 = 3 are straightforward. The direction 4 = 1 follows

from the fact that by statement 4, R1,..., Rk are the only factors in the decomposition
in Theorem 2.1(3) for a positive invariant F with EA(F) c_ (Ak=IEA(R). To prove
3 4, note that because R--j is a positive invariant for all Rj, by Theorem 2.1(3) there
is a sum minimal invariant F with EA(F) C_ EA(Rj). Since F is also rectangular,
by statement 3, F ik__ ci.i for some ci. Because 1,...,k share no variable,
by the minimality of F and coefficient comparison Rj equals F and thus is a sum
minimal invariant. To prove the desired uniqueness of R1,..., Rk, let F’ be a sum
minimal invariant with EA(F’) C_ =IEA(R). By Lemma 4.1, F’ is rectangular.
By statement 3, F’ -]i=lk ci.’Ri for some ci.’ Because F’ is nonzero, some ch__ 0.
Because 1,..., do not share variables, EA(-h) c_ EA(F’). Then, F’ Rh by

94 M.-Y. KAO

coefficient comparison and the minimality of F.
LEMMA 4.3. If no EA(Ri) is empty, the statements below are equivalent:
1. Every linear invariant ofT whose effective area is a subset of Ui= EA(Ri) is

a linear combination of R1,..., Rk.
2. Every unitary invariant whose effective area is a subset of Uk=EA(Ri) is a

linear combination of R,..., Rk.
3. R, Rk and their nonzero multiples are the only minimal linear invariants

of T whose effective areas are subsets of t2ik=EA(Ri).
Proof. The proof is similar to that of Lemma 4.2.
LEMMA 4.4. {RI,...,Rk} is protected with respect to the positive invariants

(respectively, the linear invariants) if and only if the following statements hold:
1. For each strong component D of TI and each vertex Ri contained in D, the

component D contains all edges incident, to Ri in
2. The nonempty sets among EA(RI),..., EA(Rk) are the only bipartite mini-

mal edge cuts (respectively, the only minimal edge cuts) of the strong compo-
nents of T-I among the subsets of k=EA(Ri).

3. Each vertex Ri is either isolated or incident to two or more edges in

Proof. The proofs of the lemma for the positive invariants and of that for the
general invariants are similar; only the former is detailed here. For the direction
=, statement 3 follows from the second condition of the definition of {R,...
being protected. Then statements 1 and 2 follow from Lemma 4.2(1), 4.2(4) and
Theorem 2.1 (1), 2.1 (2). For the direction , by statements 1 and 2, Theorem 2.1,
and Lemma 4.2, the first condition of {R1,..., Rk} being protected is satisfied. The
second condition then follows from statement 3.

A set of vertices in a connected graph is a vertex cut if its removal disconnects
the graph.

FACT 2. If each EA(Ri) is included in the strong component of 7-l that contains
Ri, then the following statements are equivalent:

1. Among the subsets of k=EA(Ri), the nonempty sets EA(Ri) are the only
minimal edge cuts of the strong components of 7-l.

2. Among the subsets of t2ik=EA(Ri), the nonempty sets EA(Ri) are the only
bipartite minimal edge cuts of the strong components of

3. {RI,..., Rk} includes no vertex cut of any strong component of
THEOREM 4.5. The five definitions of a set of k rows or k columns being protected

are all equivalent.
Proof. If some EA(Ri) q}, then {R,...,Rk} is protected if and only if

{R,... ,Rk} {R} is protected. Thus, without loss of generality, assume that no

EA(Ri) is empty. Then, by Lemma 4.2, the protection definitions with respect to the
positive, sum, and rectangular invariants are all equivalent. Similarly, by Lemma 4.3,
those with respect to the general and unitary invariants are also equivalent. This
theorem then follows directly from Lemma 4.4 and Fact 2. [:]

4.2. k row-column protection and bipartite-(k + 1)-connectivity. A con-
nected bipartite graph (X, Y,I) is bipartite-(k + 1)-connected if IXl _> k + 1,
IYI _> k + 1, and neither X nor Y includes a vertex cut of at most k vertices. G is
(k + 1)-connected if IX t YI -> k / 1 and there is no vertex cut of at most k vertices.

LEMMA 4.6. (R,... ,Rk} is protected if and only if the statements below hold:
1. For each strong component D of TI and each vertex Ri E D, D contains all

the edges incident to Ri in 7-l.
2. {R,..., Rk} includes no vertex cut of any strong component of

DATA SECURITY EQUALS GRAPH CONNECTIVITY 95

3. Each Ri is either isolated or incident to two or more edges in

Proof. This lemma follows from Theorem 4.5, Lemma 4.4, and Fact 2. 13

THEOREM 4.7. Every set of at most k rows or k columns of T is protected if
and only if every nonsingleton connected component of is strongly connected and
bipartite-(k + 1)-connected.

Proof. This theorem follows directly from Lemma 4.6. 13
COROLLARY 4.8.
1. Given Tl and {R1,...,Rk}, whether {RI,...,Rk} is protected can be deter-

mined in 0(17-ll) time.
2. Given 7-I and k, whether T has any unprotected set of at most k rows or k

columns can be answered in O(k4n2) time, where n is the number of vertices
in

Proof. Statement 1 follows from Lemma 4.6 in a straightforward manner using
linear-time algorithms for connectivity and strong connectivity [3]. Statement 2 fol-
lows from Theorem 4.7. The key step is to test the bipartite-(k / 1)-connectivity of
7-/within the stated time bound. We first construct two auxiliary graphs ’A and
S. For each vertex u E A, replace u with k / 1 copies in 7-/A. For each u E A
and each edge e in 7-/ between u and a vertex v B, replace e with k + 1 copies
between v and the k / 1 copies of u in A. -B is obtained by exchanging A and
B in the construction. Because 7-/is connected and each vertex in A is duplicated
k / 1 times, ’IA has a vertex cut U of at most k vertices if and only if U is a subset
of B and is a vertex cut of 7-/. A symmetrical statement for B also holds. Thus 7-/
is bipartite-(k + 1)-connected if and only if both ’IA and ’B are (k + 1)-connected.
This corollary then follows from the fact [2], [17] that the (k / 1)-connectivity of an
m-vertex graph can tested in O(k2m2) time if k <_ x/-. [:!

COROLLARY 4.9. Given 7-l, it takes O(]Tll) time to find the unprotected rows and
columns ofT and decide whether all individual rows and columns ofT are protected.

Proof. This corollary follows from Lemma 4.6 in a straightforward manner using
linear-time algorithms for strong connectivity and 2-connectivity [3]. 13

4.3. Optimal suppression problems for k row-column protection.
PIOBLEM 6 (protection of all sets).

Input: T and two integers k > 0 and p _> 0.
Output: Is there a set P consisting of at most p published cells of T such
that every set of at most k rows or k columns is protected in the table formed
by 7" with the cells in P also suppressed?

Problem 6 can be reformulated as the following graph augmentation problem.
PROBLEM 7.

Input: A complete bipartite graph /’, a subgraph 7-/, and integers k > 0 and
p>0.
Output: Is there a set P of at most p edges in /’ 7/such that each non-
singleton connected component of 7-/(2 P is strongly connected and bipartite-
(k + 1)-connected?

LEMMA 4.10. Problems 6 and 7 can be reduced to each other in linear time.

Proof. The proof follows from Theorem 4.7. [3

THEOREM 4.11. For k 1, Problems 6 and 7 are NP-complete. Thus, both
problems are NP-complete for general k.

Proof. Problems 6 and 7 are both in NP. To prove their completeness for k 1,
by Lemma 4.10, it suffices to reduce Problem 3 to Problem 7 with k 1. Given an in-
stance S {s,...,s}, W {S,...,S}, h of Problem 3, let 7-l’= (A,B,E’),7-I

96 M.-Y. KAO

(A, B, E),p be the instance constructed for Theorem 3.4. The next two claims show
that this transformation is indeed a desired reduction.

CLAIM 3. If some S C_ S with ISI <_ h has at least one element in each Sj, then
some P C_ E E consists of at most p edges such that every nonsingleton connected
component of Tl [2 P is strongly connected and bipartite-2-connected.

To prove this claim, observe that for each Sj, some s E S N Sj exists. Let
P1 {bl - al,..., bz --. a }, which exists by Rule 3(4) of the construction of
?-/, and p. By Rule 3(3), P2 {al b0,..., a b0} exists. Let P P1U P2. Note
that P1 consists of edges. P2 consists of at most ISI edges. Thus P has at most
p / h edges. For each j with 1 _< j _< , the edges b0 a0, ao bj, bj a, and

a b0 form a vertex-simple traversable cycle. These cycles all go through b0 --* a0
and form the only nonsingleton connected component of t2 P. This component
is clearly strongly connected and bipartite-2-connected. This finishes the proof of
Claim 3.

CLAIM 4. If some P C_ E- E consists of at most p edges such that every
nonsingleton connected component of Tl t2 P is strongly connected and bipartite-2-
connected, then some S c S with IS’I <_ h has at least one element in each Sj.

The proof of this claim is the same as that of Claim 2 and uses only the com-
ponentwise strong connectivity of ?-/t2 P. This, then, finishes the proof of Theorem
4.11.

The next two problems are variants of Problems 6 and 7.
PROBLEM 8 (protection of all sets).

Input: The suppressed graph of a table :Y whose total graph is undirected
and a positive integer k.
Output: A set P consisting of the smallest number of published cells of
such that every set of at most k rows or k columns is protected in the table
formed by T with the cells in P also suppressed.

PROBLEM 9.
Input: A bipartite undirected graph /= (A, B, E) and a positive integer k.
Output" A set P consisting of the smallest number of undirected edges be-
tween A and B but not in E such that every nonsingleton connected compo-
nent of (A, B, E t2 P) is bipartite-(k + 1)-connected.

LEMMA 4.12. Problems 8 and 9 can be reduced to each other in linear time.

Proof. The proof is similar to that of Lemma 4.10.
THEOREM 4.13 (see [13]). For k 1, Problem 9 can be solved in linear time.
THEOREM 4.14. For k 1, Problem 8 can be solved in linear time.

Proof. The proof follows from Lemma 4.12 and Theorem 4.13.

5. Protection of a table. Let R,..., Rn be the rows and columns of :Y. :T is
protected with respect to the positive invariants (respectively, the sum invariants or
the rectangular sum invariants) if it holds the, conditions below:

1. Every positive invariant (respectively, nonzero sum invariant or nonzero rect-
angular sum invariant) of :Y is a positive linear combination of R,... ,Rn,
where a positive linear combination is one that has no negative coefficients
and at least one positive coefficient.

2. :Y has no invariant cell.
These definitions allow only positive linear combinations because general linear com-
binations of R1,...,R generate all linear invariants and leave nothing for protection.
This restriction excludes the protection with respect to the general linear invariants.

DATA SECURITY EQUALS GRAPH CONNECTIVITY 97

As a result, the protection with respect to the unitary invariants is also not consid-
ered, because by Theorem 2.1, these invariants have the same structures as the general
linear invariants do.

THEOREM 5.1. The three definitions of a table being protected are all equivalent.
Proof. Because a protected table has no invariant cells, each row or column has

either no suppressed cell or at least two suppressed cells. It suffices to prove that if
7" holds this condition, then the following statements are equivalent"

1. Every positive invariant is a positive linear combination of R1,..., RE.
2. Every nonzero sum invariant is a positive linear combination of R1,..., RE.
3. Every nonzero rectangular sum invariant of T is a positive linear combination

of R1,...,Rn.
4. The nonzero linear invariants among R1,..., R are the only sum minimal

invariants of T.
The directions 1 = 2 and 2 = 3 are straightforward. The direction 4 = 1

follows from Theorem 2.1(3). To prove the direction 3 = 4, note that for each Rj
with EA(Rj) , Rj is a nonzero sum invariant. By Theorem 2.1 there is a sum
minimal invariant F with EA(F) C_ EA(Rj). F is also rectangular. By statement

k3, F =1 ci’, where ci >_ 0. By coefficient comparison there is some Ch > 0
with EA(Rh) O. Because c >_ O, 0 EA(Rh) c_ EA(F) c_ EA(Rj). Then
Rh Rj because two distinct R’s cannot share more than one cell and each nonempty
EA(R) contains at least two cells. Thus Rj equals F and is a sum minimal invariant.
To prove the desired uniqueness of R,... ,R, let F be a sum minimal invariant
with EA(F’) C_ U=EA(R). By Lemma 4.1, F’ is rectangular. By statement 3,
F -=lk c., where c _> 0. By coefficient comparison there is some c > 0 with

EA(Rj) . Because c >_ O, EA(Rj) c_ EA(F’). Then F’ Rj by coefficient
comparison and the minimality of F. [:]

5.1. Table protection and bipartite completeness. A graph G (X, Y, I)
is bipartite complete if it is complete, IXI _> 2, and IYI _> 2.

FACT 3. Let u,...,Ug be the vertices in . Let EA(ui) be the set of edges
incident to ui. Then is bipartite complete if and only if it is bridge free and has
more than one vertex and the sets EA(ui) are its only bipartite minimal edge cuts.

THEOREM 5.2. 7 is protected if and only if each nonsingleton connected compo-
nent of Tl is strongly connected and bipartite complete.

Proof. By Fact 3, it suffices to prove that the following statments are equivalent:
1. T is protected.
2. The nonzero invariants among R,...,R are the only sum minimal invari-

ants of T. Also, each Ri contains either no suppressed cell or at least two
suppressed cells.

3. Each connected component of T/is strongly connected and bridge free. Also,
the nonempty sets among EA(R1),... ,EA(Rn) are the only bipartite mini-
mal edge cuts of the strong components of

The equivalence 1 2 follows from the proof of Theorem 5.1. The equivalence 2 3
follows from Theorems 2.1 and 3.1.

COROLLARY 5.3. Given Tl, it takes linear time in the size of Tl to determine
whether T is protected.

Proof. This is an immediate corollary of Theorem 5.2.

5.2. Optimal suppression problems for table protection.
PROBLEM 10 (protection of a table).

98 M.-Y. KAO

Input" T and a nonnegative integer p.
Output: Is there a set P consisting of at most p published cells of T such
that the table formed by T with the cells in P also suppressed is protected?

Problem 10 can be reformulated as the following graph augmentation problem.
PROBLEM 11.

Input" A complete bipartite graph /t, a subgraph ?-/, and an integer p _> 0.
Output: Is there a set P of at most p edges in ?_/t ?./such that each non-
singleton connected component -/L P is strongly connected and bipartite
complete?

LEMMA 5.4. Problems 10 and 11 can be reduced to each other in linear time.

Proof. The proof follows from Theorem 5.2. E]

THEOREM 5.5. Problems 10 and 11 are NP-complete.
Proof. Problems 10 and 11 are both in NP. To prove their completeness, by

Lemma 5.4, it suffices to reduce Problem 3 to Problem 11. Given an instance S
{sl, s}, W {SI, S}, h of Problem 3, let ?-/’= (A, B, E’), TI (A, B, E), p
be the instance constructed for Theorem 3.4 with the modification below:

Rule 5’: Let p (+ 1).h.
This construction can be computed in polynomial time. The next two claims

show that it is .a desired reduction from Problem 3 to Problem 11.
CLAIM 5. If some S C_ S with S’I <_ h has at least one element in each Sj, then

some P c_ E E consists of at most p edges such that every nonsingleton connected
component of Tl P is strongly connected and bipartite complete.

To prove this claim, observe that for each Sj, some si S Si exists. Let
A’ {a,...,a }. Let B’ {b,..., b}. Let P1 be the set of edges in E’ from B’
to At. Let P2 be the set of edges in E from A to b0. Let P P t P2. Note that P
has at most p- (+ 1).h edges because A’ has at most IS’I _< h vertices. For each
j with 1 <_ j <_ , the edge bj ai is in P1 by Rule 3(4) of the construction of
T/, and p. Also, b0 a0, a0 by, and ai - b0 are in ?-/t2 P. These four edges form
a vertex-simple traversable cycle. These cycles form the only nonsingleton connected
component in t P. Because these cycles all go through a0, this component is
strongly connected. By the choice of P, this component is bipartite complete. This
finishes the proof of Claim 5.

CLAIM 6. If some P C_ E E consists of at most p edges such that every non-
singleton connected component of Tl P is strongly connected and bipartite complete,
then some S c_ S with Stl <_ h has at least one element in each Sj.

To prove this claim, observe that because every connected component of /t9 P is
strongly connected, for each j with 1 _< j _< , the set P contains some edges bj ai
and ai b,. Then ij = 0 and si exists in Sj by Rule 3 of the construction of
7-/, and p. Let S {si,..., si }. Let D be the connected component of T/t2 P that
contains a0. Then D also contains ai,..., ai and b0,..., b. By the completeness of
D, the set P has at least (+ 1).IS’ edges. Thus IS’I _< h because IPI _< p (+ 1).h.
This finishes the proof of Claim 6 and thus that of Theorem 5.5.

The next two problems are variants of Problems 10 and 11.
PROBLEM 12 (protection of a table).

Input: The suppressed graph 7-/of a table T whose total graph is undirected.
Output" A set P consisting of the smallest number of published cells ofT such
that the table formed by T with the cells in P also suppressed is protected.

PROBLEM 13.
Input: A bipartite undirected graph /- (A, B, E).

DATA SECURITY EQUALS GRAPH CONNECTIVITY 99

Output: A set P consisting of the smallest number of undirected edges be-
tween A and B but not in E such that every nonsingleton connected compo-
nent of (A, B, E t2 P) is bipartite complete.

LEMMA 5.6. Problems 12 and 13 can be reduced to each other in linear time.

Proof. The proof is similar to that of Lemma 5.4. [:]

THEOaEM 5.7 (see [15]). Problem 13 can be solved in optimal 0(17-I + p) time,
where p is the output size.

THEOREM 5.8. Problem 12 can be solved in optimal O(ITll + p) time, where p is
the output size.

Proof. This theorem follows from Lemma 5.6 and Theorem 5.7. [:]

6. Discussions. The relationship between the data security of 7" and the con-
nectivity of 7-/is summarized and compared in Table 1.

TABLE

Levels of data security Degrees of graph connectivity

all cells strongly connected, bridge free
all rows and columns strongly connected, bipartite-2-connected
all sets of k rows or k columns strongly connected, bipartite-(k + 1)-connected
the whole table strongly connected, bipartite-complete

LEMMA 6.1. Let R be a row or column of T. Let k be the smallest number of
row vertices or column vertices in any nonsingleton connected component of

1. If R is protected, then every suppressed cell in R is also protected.
2. If a set of k rows or k columns of :Y is protected, then every subset of that

set is also protected.
3. IfT is protected, then every set ofk-1 rows or k-1 columns is also protected.

Note that the converses of the above statements are all false.
Proof. Statements 1 and 2 are straightforward. Statement 3 follows from Theo-

rems 4.7 and 5.2.

Acknowledgments. The author is deeply grateful to Dan Gusfield for his help.
The author wishes to thank the anonymous referees for very helpful and thorough
comments.

REFERENCES

[1] G. J. BRACKSTONE, L. CHAPMAN, AND (. SANDE, Protecting the confidentiality of individual
statistical records in Canada, in Proc. of the Conference of the European Statisticians 31st
Plenary Session, Geneva, 1983.

[2] J. CHERIYAN, M. Y. KAO, AND a. THURIMELLA, Scan-first search and sparse certificates:
An improved parallel algorithm for k-vertex connectivity, SIAM J. Comput., 22 (1993),
pp. 157-174.

[3] T. n. CORMEN, C. L. LEISERSON, AND R. L. RIVEST, Introduction to Algorithms, MIT Press,
Cambridge, MA, 1991.

[4] L. H. Cox, Disclosure analysis and cell suppression, in Proc. of the American Statistical
Association, Social Statistics Section, 1975, pp. 380-382.

[5] , Suppression methodology in statistics disclosure, in Proc. of the American Statistical
Association, Social Statistics Section, 1977, pp. 750-755.

[6] ., Automated statistical disclosure control, in Proc. of the American Statistical Associa-
tion, Survey Research Method Section, 1978, pp. 177-182.

[7] ., Suppression methodology and statistical disclosure control, J. Amer. Statist. Assoc.,
Theory and Method Section, 75 (1980), pp. 377-385.

100 M.-Y. KAO

[8] L. H. Cox AND G. SANDE, Techniques for preserving statistical confidentiality, in Proc. of
the 42nd Session of the International Statistical Institute, the International Association of
Survey Statisticians, 1979.

[9] D. DENNING, Cryptography and Data Security, Addison-Wesley, Reading, MA, 1982.
[10] M. GAREY AND D. JOHNSON, Computers and Intractability: A Guide to the Theory of NP-

Completeness, Freeman, New York, NY, 1979.
[11] D. (USFIELD, Optimal mixed graph augmentation, SIAM J. Comput., 16 (1987), pp. 599-612.
[12] ., A graph theoretic approach to statistical data security, SIAM J. Comput., 17 (1988),

pp. 552-571.
[13] T. S. Hsu AND M. Y. KAO, Optimal augmentation for componentwise bipartite biconnectivity

in linear time, 1994, manuscript.
[14] M. Y. KAO, EJcient detection and protection of information in cross tabulated tables II:

Minimal linear invariants, in Proc. of the 1995 Asian Computing Science Conference,
Pathumthani, Thailand, December 11-13, 1995.

[15] ., Linear-time optimal augmentation for componentwise bipartite-completeness of graphs,
Inform. Process. Lett., (1995), pp. 59-63.

[16] M. Y. KAO AND D. GUSFIELD, Efficient detection and protection of information in cross tab-
ulated tables I: Linear invariant test, SIAM J. Discrete Math., 6 (1993), pp. 460-476.

[17] H. NAGAMOCHI AND T. IBARAKI, A linear-time algorithm for finding a sparse k-connected
spanning subgraph of a k-connected graph, Algorithmica, (1992), pp. 583-596.

[18] R. T. ROCKAFELLAR, The elementary vectors of Rn, in Combinatorial Mathematics and its
Applications, R. C. Bose and T. A. Dowling, eds., University of North Carolina Press,
Chapel Hill, NC, 1969.

[19] , Network Flows and Monotropic Optimization, Wiley, New York, NY, 1984.
[20] G. SANDE, Towards automated disclosure analysis for establishment based statistics, Tech.

report, Statistics Canada, 1977.
[21] , A theorem concerning elementary aggregations in simple tables, Tech. report, Statistics

Canada, 1978.
[22] , Automated cell suppression to preserve confidentiality of business statistics, Statist. J.

United Nations, 2 (1984), pp. 33-41.
[23] , Confidentiality and polyhedra, an analysis of suppressed entries on cross tabulations,

Tech. report, Statistics Canada, unknown date.

SIAM J. DISCRETE MATH.
Vol. 9, No. 1, pp. 101-117, February 1995

() 1995 Society for Industrial and Applied Mathematics

010

ON LINEAR RECOGNITION OF TREE-WIDTH AT MOST FOUR*

DANIEL P. SANDERS

Abstract. A graph G has tree-width at most k if the vertices of G can be decomposed into a
tree-like structure of sets of vertices, each set having cardinality at most k+ 1. An alternate definition
of tree-width is stated in terms of a k-elimination sequence, which is an order to eliminate the vertices
of the graph such that each vertex, at the time it is eliminated from the graph, has degree at most
k. Arnborg and Proskurowski showed that if a graph has tree-width at most a fixed k, then many
NP-hard problems can be solved in linear time, provided this k-elimination sequence is part of the
input. These algorithms are very efficient for small k, such as 2, 3, or 4, but may be impractical
for large k as they depend exponentially on k. A reduction process is developed, and reductions are
shown that can be applied to a graph of tree-width at most four without increasing its tree-width.
Further, each graph of tree-width at most four contains one of these reductions. The reductions are
then used in a linear-time algorithm that generates a 4-elimination sequence, if one exists.

Key words, tree-width, partial k-tree, graph algorithms

AMS subject classifications. 05C85, 05C75, 68Q25, 68R10

1. Introduction. Many NP-hard problems can be solved in polynomial time on
restricted classes of graphs. An important class of graphs for which this is the case is
the class of series-parallel graphs. A graph is series-parallel if it can be reduced to the
null graph by a finite sequence of deleting loops, deleting vertices of degree at most
one, series-reductions, and parallel-reductions. (Remark. Series-parallel was originally
defined in terms of networks, or 2-connected graphs. A 2-connected graph is series-
parallel if it can be reduced to the graph consisting of one vertex and one loop by a
finite sequence of series-reductions and parallel-reductions.) This same class of graphs
can be decribed as all graphs with no minor isomorphic to Ka. A third characterization
is important here: a graph is series-parallel if and only if it has tree-width at most two
[21] (equivalently, is a partial 2-tree). This is where the generalizations arise. Now
tree-width at most k, for any fixed k, will be defined.

A tree-decomposition of a graph G is a pair (T,B), where T is a tree and B is
a collection of bags satisfying B := {Bt C V(G) t E V(T)}, with the following
properties.

1. Ut6V(T) B V(G).
2. If vw 6 E(G), then for some t 6 V(T), {v, w} c B.
3. For every x 6 V(G), the induced subgraph of {t 6 V(T) :x 6 B} with

respect to T is a tree.
The width of a tree-decomposition is max{IB 1: t 6 V(T)}. The tree-width of

a graph G is the minimum width of a tree-decomposition of G.
The flexibility of tree-decompositions is important for proofs, as will be shown

later. But an alternate definition of tree-width is more useful for algorithms. For a
graph G, a clique of G is a complete subgraph of G. For x 6 V(G), the graph of G
with x eliminated, in symbols G x, is defined to be the graph obtained from G by

*Received by the editors January 19, 1993; accepted for publication (in revised form) February
22, 1995.

Department of Mathematics, The Ohio State University, Columbus, OH 43210-1174 (dsanders(C)
math. ohio-state, edu).

101

102 DANIEL P. SANDERS

first adding a clique on the neighborhood of x and then deleting x (see [19]). A k-
elimination sequence for a graph G is a labeling of its vertices, say, g(G) {vl,..., v,}
such that for each satisfying 0 _< < n, in the graph Gi "= G, vl ,..., vi, the degree
of Vi+l is at most k. It is easy to show [23] that a graph has tree-width at most k if
and only if it has a k-elimination sequence.

Extensive research has been performed in the area of fast algorithms for graphs
of bounded tree-width. Over 200 papers in this area are listed in Hedetniemi’s bib-
liography [13]. A special issue of Discrete Applied Mathematics (volume 54, issues
2-3, pages 97-291) was dedicated to the subject. Arnborg and Proskurowski [7] first
showed that several NP-hard problems such as maximum independent set, minimum
dominating set, chromatic number, Hamilton circuit, and network reliability can be
solved in linear time for graphs of bounded tree-width. This paper sparked a rash of
papers by these and others, showing linearity for more NP-hard problems on graphs
of bounded tree-width [2], [5], [16], [22], eventually leading to a logical consideration
of exactly what kind of problems can be solved on graphs in linear time [11]. Other
problems, such as isomorphism [8], [18], have been shown to be polynomial for graphs
of bounded tree-width. All of these algorithms, however, require a tree-decomposition
or a k-elimination sequence to be part of the input.

Thus research has focused on finding a practical algorithm to produce the k-
elimination sequence. A probabilistic algorithm was found by Matouek and Thomas
[17]. Deterministic algorithms of successively better complexity were found by Arn-
borg, Corneil, and Proskurowski [3] (O(nk+2)); Bodlaender and Kloks [10] (O(n log n));
Reed [20] (O(n log n)); and Bodlaender [9] (O(n)). Although Bodlaender’s linear-time
algorithm is theoretically the best possible, the constants of his algorithm and the
others mentioned are too large to be used in practice.

For small k, a k-elimination sequence can be found efficiently. This was first
shown for series-parallel graphs (k 2). It is not hard to construct a 2-elimination
sequence in linear time. For k 3, Arnborg and Proskurowski [6] (independently
[14]) found a set of reductions--the series-parallel reductions and three others--to
characterize graphs of tree-width at most three. Matougek and Thomas [17] (see also
[14]) were able to use a modification of these reductions to create a practical quadratic
algorithm to produce 3-elimination sequences.

This paper extends and improves this work to the case k 4. A set of reduc-
tions is first presented such that a graph has tree-width at most four if and only if
it can be reduced to the null graph by a finite sequence of these reductions. Then
these reductions are used to produce a simple, practical linear algorithm that finds a
4-elimination sequence (or a 3-elimination sequence). This case is of particular inter-
est for a number of reasons. First, graphs of tree-width at most four arise naturally
in several applications where a fast algorithm is required. The reliability graph of a
battleship, constructed for weapons-effect simulations, has several thousand vertices
but tree-width at most four [1]. At Bellcore, determining whether a SONET ring is
present in certain communication networks is solvable in linear time, as the networks
have small tree-width [12]. Also, in [7] it is admitted that the linear-time optimization
algorithms mentioned previously contain constants that grow exponentially or super-
exponentially in k. Thus algorithms of this type can be expected to be impractical
for large k.

2. Reductions. Sections 2-7 of this paper consider only simple graphs. Thus
any multiple edges created by performing the union of two graphs are assumed to be
automatically deleted. The addition of an edge xy to a graph G, in symbols G + xy,

ON LINEAR RECOGNITION OF TREE-WIDTH AT MOST FOUR 103

is the graph on the same vertices as G with the edge xy added to E(G) if not present
already. The contraction of an edge xy in a graph G, in symbols G.xy, is the graph
formed by adding a new vertex z not in V(G), adding edges from z to each vertex
that is a neighbor of either x or y, and then deleting the vertices x and y.

A separation of a graph G is a triple (A, B, (vl,..., vk)), where A, B are subgraphs
ofGwithAUB G, E(A)E(B) , and V(A)V(B) {vl,...,vk}. Let a
structure S be a pair (G(S), (Ul,..., uj)), where G(S) is a graph and Ul,... ,uj are
distinct vertices of G(S), called the vertices of attachment of S. For a structure S
(G(S), (ul,..., uj)), define V(S)"= V(G(S)). Two structures S (G, (ul,..., uj))
and T :-- (H, (vl,..., vk)) are isomorphic if j k, and there is an isomorphism from
G to H taking u to v for all _< j. A graph G has a structure S if G has a separation
(A,B,(v,...,v)) where (B,(v,...,v))is isomorphic to S. For graphs G and H
and structures S and T, the graph H is obtained from G by replacing S by T if G has
a separation (A, B, (v,..., vk)) and H has a separation (A, C, (Vl,..., vk)) such that
(B, (v,... ,v)) is isomorphic to S and (C, (vl,... ,v)) is isomorphic to T. Thus,
loosely speaking, a copy of S in G is replaced by a copy of T.

A reduction R is a pair of structures, SR and TR, with the same sequence of
vertices of attachment and IV(SR)I > IV(TR)I. For graphs G, H and reduction R, the
graph H is obtained from G by performing R if H is obtained from G by replacing
SR by TR. For each reduction R, define the following partial order: H _<R G if there
is a sequence of graphs H G, (2,..., (k (such that for every < k, G is
obtained from G+I by performing R. If A is a set of graphs, a reduction R is A-safe
if for all graphs G, H satisfying H _<R G, G E A if and only if H E A. By saying a
graph has or contains a reduction R, it is meant that the graph has an SR such that
every edge of SR between two of its vertices of attachment is incident to at least one
vertex whose image in G has degree at most six in G (this restriction is essential for
the linear algorithm). A set Q of reductions is A-complete if every nonnull graph G
in A has some R in Q.

As an example, consider TW2, the set of all simple series-parMlel graphs or
simple graphs of tree-width at most two. In the following figures, some reductions are
represented. For each reduction represented, the vertices of attachment are precisely
the solid vertices, ordered in a consistent geometric fashion. Define the reductions
Zero, One, Series by Fig. 1. Note Tzero is meant to be the null graph. A well-known
result is that {Zero, One, Series} is a TW2-complete set of TW2-safe reductions.

The next example is for TW3, the set of all simple graphs of tree-width at
most three. Define the reductions Triangle, Buddy, Cube by Fig. 2. Arnborg and
Proskurowski [6] showed that {Zero, One, Series, Triangle, Buddy, Cube} is a TW3-
complete set of TW3-safe reductions.

Let TW4 be the set of all simple graphs with tree-width at most four. This paper
will determine a TW4-complete set of TW4-safe reductions. A graph G is a minor of
H if G can be obtained from a subgraph of H by a finite sequence of edge contractions.
Two partial orders are helpful here. Let G _<, H if G is isomorphic to a minor of H.
Let G _<, H if G is isomorphic to a graph that can be obtained from H by a finite
sequence of eliminations of vertices of degree at most four. The following lemmas are
easy to prove.

LEMMA 1. If G TW4 and H <_, G, then H TW4.
LEMMA 2. If G E TW4 and G <_, H, then H TW4.
LEMMA 3. If G _R H implies G <_, H and G <_, H, then R is TW4-safe.
It follows as a corollary that Zero, One, Series, Triangle, and Buddy are TW4-

safe. To proceed further, reductions must be found that are not so straightforwardly

104 DANIEL P. SANDERS

Szero Sone Sseries

FIG. 1. Reductions for TW2.

S S S
Triangle Buddy Cube

T Triangle T Buddy T Cube

FIG. 2. Reductions for TW3.

TW4-safe. This can be done by the use of the following lemma, which is proven in
various places.

LEMMA 4. Every graph in TW4 is a subgraph of a chordal graph in TW4.
The short proof of Lemma 5 demonstrates how Lemma 4 is used to help show that

certain reductions are TW4-safe. Let Star-O (SO) be the reduction defined as follows.
Let Sso :- (W5, (a, b, c, d)), where W5 is the wheel on the five vertices x, a, b, c, d with

ON LINEAR RECOGNITION OF TREE-WIDTH AT MOST FOUR 105

hub x and circuit abcd. Let Tso :-- (K4, (a, b, c, d)), where Ka is the complete graph
on the vertices a, b, c, d.

LEMMA 5. Star-O (SO) is a TW4-safe reduction.

Proof. Let G, H be given satisfying G _<so H. Without loss of generality, assume
G is obtained from H by performing SO. Let a, b, c, d,x be the vertices of G
corresponding to a, b, c, d, x.

Assume H E TW4. Since H is isomorphic to G x, by Lemma 2, G TW4.
Assume G TW4. Since abcd is a circuit in G, by Lemma 4, either G + ac

or G + bd is in TW4. If G + ac TW4, since (G + ac) bx is isomorphic to H,
by Lemma 1, H TW4. If G + bd TW4, since (G + bd) ax is isomorphic to
H, by Lemma 1, H TW4. D

3. Simple Y-A reductions are TW4-safe. Let a reduction R be a 4-star
reduction if TR <_. SR. This type of reduction is important algorithmically. If a
sequence of 4-star reductions takes a graph G to the empty graph, a 4-elimination
sequence for G is created, showing that G TW4. Every reduction used in the linear
algorithm in this paper will be a 4-star reduction. The first two groups of reductions in
this paper are performed by eliminating vertices of degree three and, thus, are called
Y-A reductions. This section discusses simple Y-A reductions, while the following
section discusses Ladder Y-A reductions. Let YO, H7, TO, YI be defined by Fig. 3.
This section shows that the simple Y-A reductions--YO, H7, TO, YI--are TW4-safe
by a proof similar to that of Lemma 5.

S YO S H7 S TO S YI

lcXxdl,z".ab’.
T YO T H7 TTO T YI

FIG. 3. The simple y-A reductions.

For a graph G and a vertex x of G, G has a structure S at x if G has S such that
the isomorphic copy of S in G has x as one of its vertices. For the ease of presentation
of the following lemmas, assume that the structures for the reductions are equal to,
instead of isomorphic to, one side of a separation of the indicated graphs.

LEMMA 6. The reduction YO is a TW4-safe 4-star reduction.

Proof. Clearly YO is a 4-star reduction. Let G, H be given satisfying G _<Yo H.
Without loss of generality, assume G is obtained from H by performing YO.

Assume G TW4. Since G H x, by Lemma 2, H TW4.
Assume H TW4. By Lemma 4, a chord of ayxz may be added to H without

increasing the tree-width. Assume first that H / ax TW4. Then since J :=

106 DANIEL P. SANDERS

(H + ax) by. cz has an So structure at x, J x E TW4 by Lemmas 1 and 5. Since
G, y, z J, x, by Lemma 2, G TW4.

Assume next that H + yz TW4. In this case, since H / yz has an
structure at x, (H + yz) x TW4, by Lemma 3. But clearly, (H + yz) x H x

LEMMA 7. The reduction H7 is a TW4-safe 4-star reduction.

Proof. Clearly H7 is a 4-star reduction. Let G, H be given satisfying G H H.
Without loss of generality, assume G is obtained from H by performing HT.

Assume G TW4. Since G H x, by Lemma 2, H TW4.
Assume H TW4. By Lemma 4, a chord of abxy may be added to H without

increasing the tree-width. Assume first that H + ax TW4. Then J "= (H + ax)
cy. dx TW4 by Lemma 1. Since G y J, by Lemma 2, G TW4.

Assume next that H + by TW4. In this case, since H + by h an ’iangle
structure at x, (H + by) x TW4, by Lemma 3. But clearly, (H + by) x H x

LEMMA 8. The reduction TO is a TW4-safe 4-star reduction.

Proof. Clearly TO is a 4-star reduction. Let G, H be given satisfying G TO H.
Without loss of generality, assume G is obtained from H by performing TO.

Assume G TW4. Since G H x, by Lemma 2, H TW4.
Assume H TW4. By Lemma 4, a chord of cyxw may be added to H without

increasing the tree-width. Assume first that H + cx TW4. Then J (H + cx)
ay. bz dw TW4, by Lemma 1. Since J has an So structure at x, J x TW4,
by Lemma 5. But since G w y z J x, by Lemma 2, G TW4.

Assume next that H + yw TW4. Here, since H + yw h an Siangle structure
at x, (H + yw) , x TW4, by Lemma 3. But clearly, (H + yw) , x H,

LEMMA 9. The reduction YI is a TW4-safe 4-star reduction.

Proo Clearly YI is a 4-star reduction. Let G, H be given satisfying G u H.
Without loss of generality, assume G is obtained from H by performing YI.

Assume G TW4. Since G H x, by Lemma 2, H TW4.
Assume H TW4. By Lemma 4, a chord of ayxz may be added to H without

increasing the tree-width.
Assume first that H + ax TW4. Then J := (H + ax) by. cz. dx TW4, by

Lemma 1. But since G y, z J, by Lemma 2, G TW4.
Assume next that H + yz TW4. In this case, since H + yz has an

structure at x, (H + yz) x TW4, by Lemma 3. But clearly, (H + yz) x H x
=G.

4. Ladder reductions are TW4-safe. This section shows some safe reductions
of a special nature. A graph is taken to a smaller graph with a similar structure,
although the reduction itself cannot be realized through minors or eliminations. These
iangle Ladder reductions are then used to show four other Y-A reductions, the
Ladder reductions, are safe. Let the reductions DL, XL1, XL2, SL be defined by
Fig. 4.

LEMMA 10. Let G be a graph with tree-decomposition (T, B). If A is a set
vertices of a clique of G, then there is a t V(T) with A Bt.

Lemma 10 is well known in the study of tree-width. This lemma will be used in
the proofs of Lemmas 11, 13, and 15. Some definitions will also be useful. Given a
tree T and distinct r, s, t V(T), let the centroid of r,s, t be the unique vertex of T
that is on the path from r to s, on the path from r to t, and on the path from s to

ON LINEAR RECOGNITION OF TREE-WIDTH AT MOST FOUR 107

S DL S XL1

T DL T XL1

v6

v5

../&l "xv2 xNIox v5
S XL2 S SL

T XL2 T SL

FIG. 4. The Triangle Ladder reductions.

t. Given a tree decomposition (T, B) of a graph G, let G(T, B) be the graph with
vertices V(G) and edges {xy" t e V(T) such that {x, y} C Bt}.

LEMMA 11. The reduction Double Ladder (DL) is TW4-safe.
Proof. Let G, H be given satisfying G DL H. Without loss of generality, assume

G is obtained from H by performing DL.
Assume G E TW4. Let a tree-decomposition (T, B) of G of width four be given.
If there is a bag Bt with IBt{vl,...,v6}l >_ 4, then J G,v3,v4 m G(T,B).

This gives J TW4 by Lemma 1. Also, H,v3,x,v4 J, so J <, H, and
H TW4, by Lemma 2. Thus assume there is no such bag. By Lemma 10, for
i 1,...,4, there are vertices s of T such that {v,v+,v+2} C Bs. Let t := s,
but for 2,3,4 let t be the closest vertex to tl with {v,v+l,V+2} C Bt. From
the assumption, tl, t2, t3, t4 are distinct. Let c2 be the centroid of t, t2,t3. Notice
that {v2, v3} c (Btl fq Bt) and that c2 is on the path from t to t2. Also note that
v4 (Bt. fq Bt3) and c2 is on the path from t2 to t3. By the third condition of the
definition of tree-decomposition, {v2, v3, v4} c Bc.. Since t2 is the closest vertex to tl
with this property, c2 t2. Similarly, t3 is the centroid of t2, t3, t4. This gives that
there is a path P in T from tl first through t2, then through t3, and ending at t4.

Let t be the neighbor of t3 in T such that t and t3 are in different components of
T- tt3. Let t,o be a vertex not in V(T). Let S := T- tt3 -- tnew --ttn + tnewt3. Let
P1 be the component of P- tg containing t. Let P2 be the component of (P \ P1) t3
containing tg.. Let P4 be the component of P- t3 containing t4. For every vertex
s e V(T \ P), let As "= Bs \ {v3, v4}. For every vertex s e V(P1), let As Bs. For
every vertex s e V(P2), let A8 (Bs \ {va}) U {x}. Let Ate (Bt3 \ {v5})tJ {x}.
Let At "= (Bt \ {v3})t_J {x}. For every vertex s e V(P), let As "= B \ {v3}. Notice

108 DANIEL P. SANDERS

that for each edge of H incident to one of v3, x, v4, both of its ends are contained in
one of the bags At1, Ate., At,o, At3, At4. It is not hard to check, then, that (S, A) is a
tree-decomposition of H of width at most four and that H E TW4.

Assume H TW4. Let M := H- (V(H) \ {vl,v2, v3, x, vn, v5}). Let J be
obtained from H by replacing TDL by SDL, using (M, (vl, v2, v4, v5)) as the copy of
TDL. Thus H <_DL J, and from the three paragraphs above J TW4. Notice then
that G _<, J, and G TW4, by Lemma 1. [:]

Now that the first Triangle Ladder reduction has been shown to be TW4-safe;
this can be used to prove that its corresponding Ladder reduction is also TW4-safe.
Let the Ladder reductions L1, L2, L3, L4 be defined by Fig. 5.

vl v3 y v5.J
SL1

vl v5NN
TL1

4 v5.. .,/4’1 "2 v4 v5
S L2 S L3 S L4

../(1 v5__, ../(1NNov2,"_
T L2 T L3 T IA

FIG. 5. The Ladder reductions.

LEMMA 12. The reduction Ladder 1 (L1) is a TW4-safe 4-star reduction.

Proof. Clearly L1 is a 4-star reduction. Let G,H be given satisfying G _<L H.
Without loss of generality, assume G is obtained from H by performing L1.

Assume G TW4. Since G H x, y, by Lemma 2, H TW4.
Assume H TW4. By Lemma 4, a chord of xv3yv4 may be added to H without

increasing the tree-width. If H + v3v4 TW4, then (H + v3v4) v2x v5y G TW4
by Lemma 1. If H + xy TW4, then J := (H + xy) VlV3 v4v6 TW4, and there is
a K such that J <_DL K (performing DL twice) and G _<, K; this shows G TW4
in this case, by Lemmas 1 and 11. [:]

LEMMA 13. The reductions X Ladder 1 and 2 (XL1, XL2) are TW4-safe.
Proof. Let G, H be given satisfying G <_XL H or G <_XL2 H. Without loss of

generality, assume G is obtained from H by performing XL1 or XL2. Let k {1,2}
be such that G is obtained from H by performing XLk.

Assume G TW4. Let a tree-decomposition (T, B) of G of width four be given.
If there is a bag Bt with IBt fq {v0,..., v6}l _> 4, then J := G v2 v3 v4 _<,

G(T, B). This gives J TW4, by Lemma 1. Also, H, v2, v3, x, v4 J, so J _<, H,

ON LINEAR RECOGNITION OF TREE-WIDTH AT MOST FOUR 109

and H E TW4, by Lemma 2. Thus assume there is no such bag. By Lemma 10, there
is a vertex so of T such that {v0, v2, v3} c Bso. By the same lemma, for i "= 1,..., 4,
there are vertices s of T such that {v,v+l,V+2} c Bs. Let to := so and tl :=
but for i 2,3,4 let t be the closest vertex to tl with {v,v+,v+2} C Bt. From
the assumption, to, t, t2, t3, t4 are distinct. Let c2 be the centroid of t, t2, t3. Notice
that {v2, V3) C (Btl N Bt2) and that c2 is on the path from tl to t2. Also note that
v4 6 (Bt2 N Bt3) and c2 is on the path from t2 to t3. By the third condition of the
definition of tree-decomposition, {v2, v3, v4 } C Bc. Since t2 is the closest vertex to tl
with this property, c2 t2. Similarly, t3 is the centroid of t2, t3, t4. This gives that
there is a path P in T from t first through t2, then through t3, and ending at t4. Let
Q be the path in T from to to t.

Let T be the neighbor of t3 in T such that t and t3 are in different components of
T- tt3. Let tne be a vertex not in V(T). Let S := T- tt3 -5 tnew -5 ttnew -5 tnewt3. Let
Po := Q\P. Let P1 be the component of P-t2 containing tl. Let P2 be the component
of (P \ P1) t3 containing t2. Let P4 be the component of P t3 containing t4. For
every vertex s e V(T\(P[3Q)), let As "= Bs\{V3, v4}. For every vertex s e V(Po[3P1),
let As := Bs \ {va}. For every vertex s e V(P2), let As := (Bs \ {v}) t3 {x}. Let
At (Bt. \ {v5}) t3 {x}. Let dt := (Bt \ {v3}) [.J{x}. For every vertex s e V(P4),
let As := Bs \ {v3}. Notice that for each edge of H incident to one of v3, x, va, both of
its ends are contained in one of the bags Ato, Atl, Ate, At, Ate, Ate. It is not hard
to check, then, that (S, A) is a tree-decomposition of H of width at most four and
that H 6 TW4.

Assume g e TW4. Let M G (V(G) \ {vo, vl, v2, v3, x, v, v5}). Let g be
obtained from H by replacing TXLk by SXLk, using (M, (vo, v, v4, v5)) as the copy
of TXLk. Thus H <zn J, and from the three paragraphs above, J 6 TW4. Notice
then that G _<, J, and G 6 TW4, by Lemma 1.

LEMMA 14. The reductions Ladder 2 and 3 (L2, L3) are TW4-safe 4-star reduc-
tions.

Proof. Clearly L2 and L3 are 4-star reductions. Let G, H be given satisfying
G _<L2 H or G _<L3 H. Without loss of generality, assume G is obtained from H by
performing L2 or L3.

Assume G TW4. Since G H x, by Lemma 2, H TW4.
Assume H TW4. By Lemma 4, or trivally, a chord of vovvv3 may be added

to H without increasing the tree-width. If H + vov TW4, since (H + VOVl v3x

v2v4 xv6 vav5 G v2 v3 v4, it follows that G TW4 from Lemmas 1 and 2.
Thus without loss of generality, H + V2V3 TW4. By Lemma 4, a chord of V3V2V4X
may be added to H without increasing the tree-width. If H + v3v4 TW4, then let
J := (H + v3va) .vx. If H + v2x 6 TW4, then let J := (H + vx) .v4v5. In either
case, there is a K such that J <XL1 K and G <, K. Thus G 6 TW4, by Lemmas 1
and 13.

LEMMA 15. The reduction Star Ladder (SL) is TW4-safe.
Proof. Let G, H be given satisfying G <SL H. Without loss of generality, assume

G is obtained from H by performing SL.
Assume G TW4. Let a tree-decomposition (T, B) of G of width four be given.
If there is a bag Bt with Bt {v0,..., v6}l -> 4, then J := G v2 * v3 * v4

G(T, B). This gives J TW4, by Lemma 1. Also, H. v2. v3 * x. va J, so J <. H,
and H TW4, by Lemma 2. Thus assume there is no such bag. By Lemma 10, there
is a vertex so of T such that {v0, v2, v4} c Bso. By the same lemma, for i := 1,..., 4,
there are vertices s of T such that {v,v+l, v+} C Bs. Let to so and t sl,
but for i 2, 3, 4 let t be the closest vertex to tl with {v, V+l, v+} c Bt. From

110 DANIEL P. SANDERS

the assumption, to, tl, t2, t3, t4 are distinct. Let C2 be the centroid of tl, t2, t3. Notice
that {V2,V3} C (Btl N Bt2) and c2 is on the path from tl to t2. Also note that
v4 E (Bt. Bt3) and c2 is on the path from t2 to t3. By the third condition of the
definition of tree-decomposition, {v2, v3, v4} C Be2. Since t2 is the closest vertex to
t with this property, c t2. Similarly, t3 is the centroid of t2, t3, t4. This gives that
there is a path P in T from t first through t2, then through t3, and ending at t4. Let
Q be the path in T from to to t4.

Let t be the neighbor of t3 in T such that t and t3 are in different components
of T- tt3. Let tnew be a vertex not in V(T). Let S := T- tt3 / tnew / ttnew / tnewt3.
Let Po "= Q \ P. Let P be the component of P- t2 containing tl. Let P2 be the
component of (P\P)-t3 containing t2. Let P4 be the component of P-t3 containing
ta. For every vertex s e V(T \ (P U Q)), let As := Bs \ {v3, v4}. For every vertex
s e Y(Po), let As Bs \ {v3}. For every vertex s e V(P), let As Bs. For every
vertex s e V(P2), let As "= (Bs \ {v}) t2 {x}. Let dtn "= (B3 \ {v5 }) t2 {x}. Let
At (Bt \ {v3})t2 {x}. For every vertex s e V(P4), let As := Bs \ {v3}. Notice
that for each edge of H incident to one of v3, x, va, both of its ends are contained in
one of the bags Ato,Atl,At.,At,At,At4. It is not hard to check, then, that (S,A)
is a tree-decomposition of H of width at most four and that H TW4.

Assume H e TW4. Let M G (V(G) \ {vo, v, v2, v3,x, v4, v5}). Let J be
obtained from H by replacing TSL by SSL, using (M, (vo,vl,v, v5)) as the copy of
TSL. Thus H <_SL J, and from the three paragraphs above, J TW4. Notice then
that G m J, and G

LEMMA 16. The reduction Ladder 4 (L4) is a TW4-safe 4-star reduction.

Proof. Clearly L4 is a 4-star reduction. Let G, H be given satisfying G _<L4 H.
Without loss of generality, assume G is obtained from H by performing L4.

Assume G TW4. Since G H x, by Lemma 2, H TW4.
Assume H TW4. By Lemma 4, a chord of vav3v5x may be added to H without

increasing the tree-width. If H + vav5 TW4, then, since G (H + vav5) vx, this
gives G TW4, by Lemma 1. If H + v3x TW4, then let J :- (H / v3x).vx; thus,
J TW4, by Lemma 1. In this case, there is a K such that J <_SL K and G _<, K.
Thus G TW4, by Lemmas 1 and 15. [:l

5. Superstructures. This section describes the more complicated reductions
that are used in the linear algorithm. The reductions are described in terms of leaf
structures, or the possible structures at the leaves of a tree-decomposition that are
not reducible. The leaf structures are 60 simple structures, LSo,..., LS59, and four
infinite families of structures, L,, L2,n, L3,n, L4,n. Of the 60 simple structures, only
20 are central to the description of all 60. Of these 20, 13 are substructures of the Y-A
reductions described in 3 and 4. Thus, in some sense, the algorithm must search for
only 11 new structures besides the eight structures for the Y-A reductions. Let K2 be
the complete graph on x, y. Let LSo := (K, (x, y)). Let LS1,..., LS13, LS16, LS25,
LS37, LS46, LS5o, LS55 be defined by Fig. 6.

For a structure S with vertex of attachment uj of degree 2, define S/j as follows-
Let x, y be the neighbors of uy. Let qj be a vertex not in V(S). Let Gs be the graph
associated with S, and let Ps be the ordered list of vertices of attachment. Then
S / j ((Gz + qj) ujx ujy / qjuj / qjx / qjy, Ps). Then the remaining LS
are defined as follows" LSI4 L’13 / 1, Lql5 :-- LS4 + 3. LS7 := LS6 + 1,
LSI8 LS16 / 2, LS19 :-- LS17 / 3, LS20 LSI8 / 4, LS21 LSI8 / 1, Lq22 :--
LSI9 / 2, LS23 LS20 / I, LS24 :- LS22 / 4. LS26 :-- LS25 / i, LS27 :-- LS25 /
LS28 LS25 / 4, LS29 :-- LS26 / 3, LS30 LS27 / 1, LS31 :-- LS26 / 4, LS32 :--

ON LINEAR RECOGNITION OF TREE-WIDTH AT MOST FOUR 111

u3 u3

u ul u

4 5

u3

u4 u4

10 11 12

13 16 25 37

ul 2 ul ul

u3 u3 u3

46 50 55

FIG. 6. The central leaf structures.

LS27 + 4, LS33 := LS29 + 2, LS34 :- LS29 + 4, LS35 := LS30 + 4, LS36 := LS33 + 4.
LS38 :-- Lq37 q- I, L39 :-- LS37 d- 2, LS40 :-- LS38 -+- 3, LSa := LS38 -+- 2, LS42 :--
LS39 + 4, LS43 := LS4o + 2, LSaa := LS41 + 4, LSa5 := LS43 + 4. LS47 := LSa6 + 2,
Lq48 :- LS47 h- 3, LS49 := LSas + 4. LS51 :- LS50 + 2, LS52 := LS50 + 3, LS53 :--
LS51 + 3, LS5a := LS53 + 4. LS56 := LS55 + 2, LS57 := LS55 + 3, LS5s := LS56 + 3,
LS59 :-- LS58 + 4.

The four infinite families are indicated in Fig. 7. The n tells how many vertices
are in the structure: IV(L/,)I n + 5, IV(Le,)I n / 5, IW(La,n)l n / 6,
IV(L4,)[n + 6. Notice that each leaf structure has no edge between any two of its
vertices of attachment. This is important for the linear algorithm.

Let a superstructure be a structure S satisfying the following. The set A of vertices

112 DANIEL P. SANDERS

u3

L 1,n

u3

L 2,n

u3

L 3,n

u3

L 4,n

Each ending in either

or

FIG. 7. The infinite classes of leaf structures.

of attachment of S is of size at most four. There is a center vertex x of G(S) that is
not in A. The graph of S is the union of the graphs of a finite set L of substructures
of S, which are leaf structures, such that for each M E L, the set B of vertices of
attachment of M satisfies {x} C B C A t2 {x}.

Let CM (Clique Minor) be the set of all reductions R that satisfy the following.
For each R CM, the structure SR is a superstructure, TR is a complete graph
with each of its vertices a vertex of attachment, and either G(TR) <_, G(SR) or
there is some J such that G(TR) <_so J <, G(SR). Notice that Cube CM.
Let Triple be the set of all reductions satisfying the following. For each R Triple,
TR (K4, a, b, c, d)). The graph G(SR) is the union of the graphs of three leaf
structures, each having vertices of attachment a subset of {a, b, c, d}, none of which
is LSo and no two of which are LS1 with the same three vertices of attachment. Let
BCM (bounded CM) be the set of all reductions satisfying the following. For each
R BCM, then R CM, and SR does not contain a Buddy or a reduction in Triple.
Note that the center of each R BCM has degree at most 20. This is important for
the linear algorithm.

LEMMA 17. Each reduction in CM t2 Triple is a TW4-safe 4-star reduction.

Proof. Let R CM [2 Triple be given. Let graphs G,H be given such that
G <R H. All the leaf structures are such that it is easy to see G <, H. Thus R
is a 4-star reduction. If R CM, then the conclusion follows from the definition of

ON LINEAR RECOGNITION OF TREE-WIDTH AT MOST FOUR 113

CM and Lemmas 3 and 5. If R E Triple, then notice first that G <_m H; then the
conclusion follows from Lemma 3. [:]

This concludes the list of reductions needed for the linear algorithm. Each re-
duction is a TW4-safe 4-star reduction; thus, given a graph G, if there is a sequence
of reductions that takes G to the empty graph, then G has tree-width at most four.
What remains is to show the converse, that is, that for every graph G of tree-width
at most four, there is a sequence of these reductions that takes G to the empty graph.
Each of these statements is contained in the following theorem, which is proved in [23]
by a long case analysis that shows every superstructure is either a leaf structure or
contains a reduction in CS4 (Complete and Safe 4) := EZ J CM U {Buddy}, where
EZ := {Zero, One, Series, Triangle, YO, H7, TO, YI, L1, L2, L3, L4}.

THEOREM 1. The set CS4 of reductions is a TW4-complete set of TW4-safe
4-star reductions.

Proof. That each of the reductions is a TW4-safe 4-star reduction follows from
Lemmas 3, 6, 7, 8, 9, 12, 14, 16, and 17. To see that the set is TW4-complete, see

[23]. [1

The set CS4 is used to show a practical linear algorithm in 6. The list CS4
is infinite, and certainly one would hope to have a finite list of reductions to use. If
4-star reductions are abandoned, a finite TW4-complete set of TW4-safe reductions
can be found (see [23]) simply by adding the reduction DL to the list. This eliminates
the need for the infinite families of leaf structures, as all sufficiently large structures
in these families contain a DL. The reduction DL, on the other hand, does not apply
well to algorithms. The following theorem shows that in this case, the best of both
worlds is not possible. In the statement of the theorem, TWk and k-star reductions
are the natural generalizations of TW4 and 4-star reductions.

THEOREM 2 (Lagergren [15]). For each integer k > 4, there is no TWk-complete
finite set of TWk-safe k-star reductions.

6. A linear algorithm to find 4-elimination sequences. This section pre-
sents an algorithm that, given a graph G with n vertices, either finds a 4-elimination
sequence for G or proves that the tree-width of G is greater than four. The algorithm
proceeds by finding one of the reductions in CS4. Note that if G has a reduction in
CM, then it either has a reduction in BCM or Triple or a Buddy. The algorithm will
find one of the latter and obtain a smaller graph by performing that reduction and
then find a reduction in that graph, and so forth. Since the reductions in CS4 require
adding edges to the graph, for the algorithm to be linear, it must address multigraphs.
The problems associated with this are addressed in the following lemma.

LEMMA 18. Given a multigraph G and a vertex x of G, there is an algorithm
that determines whether x has degree at most k in the underlying simple graph of G,
deletes some number m of multiple edges incident with x, and takes time O(k2 + kin).

Proof. Clear an array A of k elements. Scan the adjacency list of x. For the next
edge c in the adjacency list, do the following: Let y be the vertex incident with a
such that x :/- y. If y is already in A, then xy is a multiple edge; delete a. Else, if
A is full, then x has degree greater than k in the underlying simple graph of G; halt.
If neither of the previous cases occur, add y to A. If there are no more edges in the
adjacency list, then x has degree at most k in G; halt. I-I

The reason that the lemma is useful is the following. First, at most n reductions
are performed on G. Next, note that each reduction adds at most six edges to G.
Thus the sum of the ms mentioned in the lemma over the whole algorithm is at most
6n. Finally, the lemma will only be applied when k is at most six. The edges that

114 DANIEL P. SANDERS

will be sought in G will have at least one end of degree at most six and, thus, using
multigraphs will not be a problem for this algorithm.

The algorithm will need a subroutine that determines whether a vertex is the
center of a reduction in CM. This subroutine will either determine that the vertex
cannot be the center of a reduction in CM or find a Buddy or a reduction in BCM or
Triple. Before the statement of the subroutine, some variables need to be defined. Let
VS be the Vertex Stack, used to keep track of vertices that need to be examined. For
each vertex x in G, let L(x) be the list of all leaf structures found that contain x as
an internal vertex (not a vertex of attachment), where only the L,n for the largest n
is stored. It can be shown that for every vertex x in G, IL(x)l _< 4. For a structure S,
let N(S) be the set of vertices of attachment of S. The parameters of the algorithm
are as follows: a is the possible center, A is a set of possible vertices of attachment,
and S is a set of possible substructures. The statement return sends the algorithm
out of the most recent call; the statement master-return breaks the algorithm out
of every recursive call.

ALGORITHM 1 CENTER_CHECK(a, A, S).
begin
if IAI > 4
then return

if every edge in a’s adjacency list has been scanned
then if [.J S is not a leaf structure

then perform the reduction in BCM
push its vertices of attachment onto VS
master-return

else mark every edge in a’s adjacency list as not scanned
return

repeat
let a be the next unscanned edge in a’s adjacency list, incident with b a
if an edge from a to b has been scanned before
then delete the multiple edge

until c is not a multiple edge
mark c scanned
let K be the graph with vertices a, b and edge a
CENTER_CHECK(a, A U {b}, S U { (K, (a, b)) })
mark a unscanned
for each n e n(b) with a e N(n) do
if n is isomorphic to LS1 and there is an M E S with N(M) N(L)
then perform the Buddy

push N(L) onto VS
master-return

for each pair P, Q of nontrivial leaf structures (not L0) in S do
if IN(L) t2 g(P) N(Q)I 4
then perform the reduction in Triple

push its vertices of attachment onto VS
master-return

mark the edges of G(L) incident with a as scanned
CENTER_CHECK(a, A t2 (N(L){a}),S t9 {L})
mark the edges of G(L) incident with a as not scanned

return
end

ON LINEAR RECOGNITION OF TREE-WIDTH AT MOST FOUR 115

The main algorithm must perform a number of functions. It must search for
the reductions in EZ. For each vertex x, it must keep track of what leaf structures
contain x as an internal vertex. Whenever a reduction R is performed, these lists,
the L(x)’s, must be updated ibr the vertices of attachment of R. It is not hard to
see that this may be done in constant time amortized, including possibly replacing an
old L,n with the currently known maximal such leaf structures. Finding the maximal
L, may require looking at a large number j of vertices initially, but just note that
the algorithm is at the same time determining the set of maximal leaf structures for
those j vertices as well. The main algorithm is Algorithm 2. An easy proposition that
follows from the definition of tree-width is that if the tree-width of G is at most k,
then

ALGOPITHM 2 TREE-WIDTH-FOUR?(G).
begin
if IE(G)l > 41V(G)l
then output "The tree-width of G is greater than four"

halt
H:=G.
initialize VS to the empty stack
for each vertex v of H do
push v onto VS
L(v) :=

for each edge a of H do
mark c as not scanned

repeat
pop a vertex x from VS.
if deg(x) < 6
then if x is an interior vertex of some reduction in EZ

then perform the reduction to H
push its vertices of attachment onto VS.

else determine the leaf structures LS,..., LS59 and the maximal
structures L, with x an interior vertex by examining the
neighbors of any L,= in L(x), and then of x if necessary

for each new leaf structure L found which is not in L(x) do
L(x) := L(x) {n}
for each vertex of attachment z of L do
mark the edges from z into L as scanned
CENTER_CHECK(z,N(L) \ {z}, {n})
mark the edges from z into L as not scanned

CENTER_CHECK(x,
until VS
if H K0 (the empty graph)
then G TW4; output the order that vertices were eliminated
else G TW4; output "The tree-width of G is greater than 4"

end

THEOREM 3. The algorithm TREE-WIDTH-FOUR? determines a 4-elimination
sequence or correctly says the graph has tree-width greater than four in linear time.

Proof. The proof of the correctness of the algorithm is basically Theorem 1, which
gives that every graph in TW4 has a reduction in CS4. It must be shown that the
algorithm is able to find such a reduction at each stage of the algorithm. If the

116 DANIEL P. SANDERS

reduction existed in G itself, it will be found, as every vertex is pushed onto VS at
the beginning of the algorithm. Thus the reduction was created after the performance
of some other reduction. Each time a reduction is performed, however, the affected
vertices are pushed onto VS. Thus the algorithm can always find a reduction if one
is present. The proof of linearity remains.

First, each main call (not recursive call) to CENTER_CHECK will be shown to
take constant time. This is seen by noticing that at most 20 edges are scanned. This
is clear from the definitions of Buddy, Triple, and BCM and from Theorem 1. If the
vertex a examined has had 20 edges scanned, no Buddy or reduction in Triple has
been found, and edges still remain to be examined, then a cannot be the center of a
reduction in CM. Also, for each edge scanned, the edge is in a bounded number of
appropriate leaf structures.

Updating L(x) is constant time amortized. For all but the leaf structures Li,j,
Lemma 18 shows that it takes constant time to look for them. The initial instance
where the Li,j is found requires O(j) time. This cost can be split among the O(j)
vertices in the structure, for the algorithm is simultaneously finding L(y) for each of
the j vertices y in this L,. Reductions that do not use the entire L, affect only a
bounded number of its vertices. Thus subsequent updates require only analysis at the
vertices of attachment of the structure. Again, this is a constant-time operation.

Searching for a reduction in EZ takes constant time per vertex by Lemma 18.
Performing a reduction takes only a constant amount of work on the vertices of at-
tachment of that reduction. The rest of the work is deleting the interior vertices in
an elimination sequence, which clearly only requires a total linear time for the whole
algorithm, as each vertex is only eliminated once. As mentioned in the discussion after
Lemma 18, the total amount of work required to delete multiple edges is linear.

All that remains is to put a linear bound on the number of iterations of the
main algorithm, i.e., or the number of vertices that are pushed onto VS. Vertices are
only pushed onto VS in two instances: At initialization each vertex is pushed onto
VS once. After each reduction, at most four vertices are pushed onto VS. Clearly,
at most n reductions are performed; thus at most 5n vertices are pushed onto VS.
The total cost of the algorithm is then linear, noting that the test to determine if
IE(G)] > 4]V(G)I is linear as well. D

7. Conclusion. This paper presented a linear algorithm to find a 4-elimination
sequence or to prove that no such sequence exists. This algorithm has no large hidden
constants and, thus, should be practical. This was made possible through the reduc-
tions found that were safe and complete for all graphs of tree-width at most four.
This algorithm then, combined with the algorithms of Arnborg and Proskurowski,
show that the NP-hard problems of Hamilton circuit, maximum independent set, as
well as others, can be solved practically in linear time for graphs of tree-width at most
four.

Arnborg, Corneil, and Proskurowski [4] (independently [24]) used the reductions
found by Arnborg and Proskurowski to determine the four minimal forbidden minors
for tree-width at most three. Clearly there is a relationship between the reductions
presented in this paper and the minimal forbidden minors for tree-width at most
four. In [23], over 75 minimal forbidden minors for tree-width at most four of widely
varying structures are presented. This gives some evidence that using a large number
of reductions is necessary for this type of algorithm. Conversely, the complete list
of minimal forbidden minors could be determined from the list of reductions in this
paper.

ON LINEAR RECOGNITION OF TREE-WIDTH AT MOST FOUR 117

REFERENCES

[1] S. AINBOIG, Reduced state enumeration: Another algorithm for reliability evaluation, IEEE
Trans. Reliability, 27 (1978), pp. 101-105.

[2] , Ejcient algorithms for combinatorial problems on graphs with bounded decomposabil-
ity --a survey, BIT, 25 (1985), pp. 2-23.

[3] S. ARNBORG, D. G. CORNEIL, AND A. PROSKUROWSKI, Complexity of finding embeddings in a

k-tree, SIAM J. Alg. Discrete Methods, 8 (1987), pp. 277-284.
[4] , Forbidden minors characterization of partial 3-trees, Discrete Math., 80 (1990), pp. 1-

19.

[5] S. ARNBORG, J. LAGERGREN, AND D. SEESE, Problems easy for tree-decomposable graphs, J.
Algorithms, 12 (1991), pp. 308-340.

[6] S. ARNBORG AND A. PROSKUROWSKI, Characterization and recognition of partial 3-trees, SIAM
J. Alg. Discrete Methods, 7 (1986), pp. 305-314.

[7] Linear time algorithms for NP-hard problems restricted to partial k-trees, Discrete
Appl. Math., 23 (1989), pp. 11-24.

[8] H. L. BODLAENDER, Polynomial algorithms for graph isomorphism and chromatic index on

partial k-trees, J. Algorithms, 11 (1990), pp. 631-643.
[9] A linear time algorithm for finding tree-decompositions of small treewidth, submitted,

September 1992.
[10] H.L. BODLAENDER AND T. KLOKS, Better algorithms for the pathwidth and treewidth of graphs,

18th International Colloquium on Automata, Languages, and Programming, 1991, pp. 544-
555; for a more complete version (40 pages): Efficient and constructive algorithms for the
pathwidth and treewidth of graphs, submitted.

[11] B. COURCELLE, The monadic second-order logic of graphs III: Tree-decompositions, minors

and complexity issues, Inform. Thorique et Appl., 26 (1992), pp. 257-286.
[12] N. DEAN, private communication.

[13] S. T. HEDETNIEMI, Bibliography of algorithms on partial k-trees, Ann. Discrete Math., to
appear.

[14] A. ISHIZUKA, Y. KAJITANI, AND S. UENO, Characterization of partial 3-trees in terms of three
structures, Graphs Combin., 2 (1986), pp. 233-246.

[15] J. LAGERGREN, The nonexistence of reduction rules giving an embedding into a k-tree, Discrete
Appl. Math., 54 (1994), pp. 219-223.

[16] E. MATA-MONTERO, Resilience ofpartial k-tree networks with edge and node failures, Networks,
21 (1991), pp. 321-344.

[17] J. MATOUEK AND R. THOMAS, Algorithms finding tree-decompositions of graphs, J. Algo-
rithms, 12 (1991), pp. 1-22.

[18] On the complexity of finding iso- and other morphisms for partial k-trees, Discrete
Math., 108 (1992), pp. 343-364.

[19] S. PARTER, The use of linear graphs in Gauss elimination, SIAM Rev., 3 (1961.), pp. 119-130.
[20] B.A. REED, Finding approximate separators and computing tree-width quickly, Proc. Sympos.

Theory Computing, 24 (1992), pp. 221-228.
[21] N. ROBERTSON AND P. D. SEYMOUR, Graph Minors. II. Algorithmic aspects of tree-width, J.

Algorithms, 7 (1986), pp. 309-322.
[22] , An outline of a disjoint paths algorithm, in Paths, Flows, and VLSI-Layout, B. Korte,

L. Lovasz, H. J. Promel, and A. Schrijver, eds., Algorithms and Combinatorics 9, Springer-
Verlag, New York, 1990, pp. 267-292.

[23] D. P. SANDERS, Linear Algorithms for Graphs of Tree-width at Most Four, Ph.D. thesis,
Program of Algorithms, Combinatorics, and Optimization, Georgia Institute of Technology,
Atlanta, Georgia, June 1993.

[24] A. SATYANARAYANA AND L. TUNG, A characterization of partial 3-trees, Networks, 20 (1990),
pp. 299-322.

SIAM J. DISCRETE MATH.
Vol. 9, No. 1, pp. 118-128, February 1996

() 1996 Society for Industrial and Applied Mathematics
011

CHIP-FIRING GAMES ON MUTATING GRAPHS*

KIMMO ERIKSSON

Abstract. We investigate a generalization of a chip-firing game on a graph of BjSrner, Lovsz,
and Shor [European J. Combin., 1 (1992), pp. 305-328]. In our version, the graph mutates during
play. We show that some known results about the game length and period length of the earlier game
hold for the mutating version as well, and some completely new bounds are also obtained. In a small
detour, we treat an orientability concept for eulerian graphs.

Key words, chip firing, eulerian graph, period length, game length

AMS subject classifications. 90D43, 90D46, 05C20

1. Introduction. This paper considers a generalization of the chip-firing game
treated by BjSrner and Lovsz [2]. For an account of the earlier history of this game we
refer to [1], [2]. The game is played on a directed graph with some initial distribution
of chips on its nodes. Whenever a node has at least as many chips as it has outgoing
edges it may send one chip along each of these edges. This process is called firing the
node.

Here we will consider a game where the graph is not fixed, but mutating, by
which is meant that the outgoing edges of a node may be erased and new ones may
be added after every firing of the node. These mutations happen in a predetermined
order. This is a common generalization of the chip firing of BjSrner and Lovsz and
another game of Diaconis and Fulton [4], and we show that our new game also has
the special convergence property shared by the earlier two.

A fruitful restriction is to demand that the predetermined order of mutations at
every node has a finite period. We can extend several of the results in [2] to these
periodically mutating games (PMG).

Section 3 covers finite termination. BjSrner and Lovsz gave a lower bound on
the number of chips needed for a game to be infinite, in terms of the maximal number
of edge-disjoint cycles in the graph. We characterize the graphs for which this bound
is sharp as eulerian graphs that are orientable in a sense we define.

In 4 we discuss period length and game length of the nonmutating game. A new
bound on the maximal length of a terminating game in terms of the period length is
proved. Here is also discussed parallel firings of the nodes, a topic initiated by Bitar
and Goles [1] for the undirected chip-firing game.

Finally, 5 contains the generalizations to the PMG, the periodically mutating
games.

1.1. Preliminaries. In this paper, vectors are written boldfaced, while their
entries are in italics, e.g., v (Vl, v2,...). We adopt the following terminology from
BjSrner and Lovsz [2]. Graphs are assumed to be finite and directed with loops
and multiple edges allowed. Undirected graphs are regarded as directed by replacing

every undirected edge (i, j) by the two directed edges (i,-) and (j,--). For a digraph
G (V, E) we let n IVI and rn IEI. Let dij denote the number of directed edges
from to j. For a node i, denote the outdegree by d+ (i) jeu dij and the indegree
by d-(i) jev dji. Let D be the maximum outdegree in G.

Received by the editors November 16, 1992; accepted for publication (in revised form) March
8, 1995.

Department of Mathematics, Royal Institute of Technology, S-100 44 Stockholm, Sweden.

118

CHIP-FIRING GAMES ON MUTATING GRAPHS 119

G is eulerian if d+(i) d-(i) for every i. G is strongly connected if there is a
directed path from to j for every ordered pair of nodes and j. A strongly connected
component H that is not connected to the outside by any edge leaving H is a sink
component.

2. Chip firing on mutating graphs. Let us first give an exact definition of
the mutating game.

DEFINITION 2.1. The mutating game is a solitary game played with chips dis-
tributed on V, the nodes of a mutating graph. A position in the game consists of

a directed graph on V,
on each node E V a nonnegative number c of chips,
for every node V an infinite sequence M of multisets of nodes in V--the
mutation sequence of i.

A node i may be fired if the number of chips on is at least d+(i), the number of
outgoing edges from i in the current directed graph, in which case one chip is sent

from along each outgoing edge. This may be written as

c := c d+ (i)

and then

cj :-- cj 4- dij for all j V.

Suppose that the mutation sequence is Mi ($1,$2,$3,...). After the chips have
moved, the mutation of the graph takes place. This means that the outgoing edges

from i are erased and a new edge (i, j) is drawn for each j in $1, the first multiset

of Mi. Finally, this multiset is removed from the sequence, i.e., Mi := ($2, $3,...).
In computer science, this is often referred to as "popping" Mi, so we denote this
operation by

M := Pop(M)

The steps above constitute one firing of i. The game continues from the new position
that is obtained.

Obviously, if every mutation adds the same edges that it erases, so that the
graph does not change, then this is equivalent to the chip-firing game of Bjhrner and
Lovgsz. Another chip-firing game, motivated by algebraic considerations, was defined
by Diaconis and Fulton [4] as follows: to every node i is assigned a threshold l(i)
(positive integer) and an unlimited deck of cards, such that whenever a node has at
least l(i) chips it may send one chip to the node indicated by the top card of its deck,
and then this card is thrown away. Also this game can be interpreted as a mutating
game, where every node has a fixed number l(i) 1 of loops and one additional
outgoing edge mutating according to the deck.

Known for both these earlier games is a special convergence property, for which
we now give a simple combinatorial proof for the mutating game in general. A position
is terminal if no node can be fired.

THEOREM 2.2. Given an initial distribution of chips in a mutating game, either
every firing sequence can be continued indefinitely or else every firing sequence must
terminate after the same number of moves with the same terminal position. The
number of times a given node has been fired in a terminating game is independent of
the particular firing sequence.

120 KIMMO ERIKSSON

We shall prove this via a basic lemma. First observe that since the mutation
sequence at any node is predetermined, the flow of chips from any node is determined
solely by how many times it is fired. Thus, the resulting position of a firing sequence
is dependent only on the number of times that each particular node is fired. For
firing sequence a, define the score vector [c] E NV where each entry [a]i is the number
of times that node is fired in a.

LEMMA 2.3. If a and are firing sequences, then a can be extended by some
subword of to some sequence a’ such that [a’]i max([a], [/]) for every i.

Proof. Let c’ := a. If [c’] >_ [/] for all i, we are done. Otherwise, let i be the
first node when playing/ that is played for the ([a’] + 1)th time. Since i is firable at
this point in , it must also be firable after a since the flow of chips from i has been
the same while the flow of chips to has been at least as great in cd. Extend a by i,
i.e., cd := cdi, and repeat the argument.

Proof of Theorem 2.2. Suppose there is some firing sequence
terminal position. Then a cannot be extended, so it follows from Lemma 2.3 that
every legal firing sequence must have [] <_ [c] for every node and that ev-
ery such can be extended to some ’ such that [’] [a]. This completes the
proof.

Remark 2.4. A similar result with a similar proof was found independently by
Thorup [7].

In the rest of this paper we will be interested in questions connected with periodic-
ity of the game. Since a position in the mutating game is defined by the current graph,
the chips distribution, and the mutation sequence of every node, the game can have
finite period length only if every node’s mutation sequence has a finite period. If this
is the case, then we say that the game is periodically mutating (a PMG). Denote by p
the mutation period length at node i, so p is the smallest positive integer such that
after is fired p times the remaining mutation sequence at is the same as it was from
the beginning. In other words, p is the smallest positive integer such that Mi satisfies
M PopP (M). Concretely, M looks like (S, $2,..., Sp, S1, $2,. Sp,...).

To any PMG we can associate a great graph GG with the same node set as the

PMG and where the number of edges (i,--) is the total number of such edges occurring
during one complete mutation period at i, i.e., the number of occurrences of j in the
multiset union $1 $2 t2... Sp. The motivation for this is of course that the flow
of chips from i during p firings of in the PMG is equal to the flow of chips from
i when firing i once in the ordinary chip-firing game (CFG) played on GG. So the
CFG on the great graph GG will be a tool in the analysis of the PMG.

Note that a CFG played on a directed graph G, when viewed as a PMG, has all
p 1 and great graph G. A way to look at a PMG is by marking each outgoing
edge from every node i in GG by an element of Z mod p and letting i have a counter
n E Z mod p, such that firing node means sending one chip along each edge marked
n and then setting n := n + 1 mod p.

3. Finite termination. BjSrner and Lovsz [2] studied the amount of chips
possible for terminating games. The following lemma of theirs can be lifted directly
to PMG.

LEMMA 3.1. In every infinite game on a PMG, every node in some sink compo-
nent of GG is fired infinitely often.

Proof. In an infinite game, some node must be fired infinitely often. Hence
an infinite number of mutation periods are played at i, so every j such that there is

CHIP-FIRING GAMES ON MUTATING GRAPHS 121

an edge (i, j) in GG must also be fired infinitely many times, because otherwise an
infinite number of chips would pile up on j. Hence, all nodes reachable from i, which
must include some sink component, are fired infinitely often.

From [2] we can also borrow the following bound: if GG has n nodes and m edges
and we have N > m- n chips, then the game is infinite, since by the pigeon-hole
principle some node can always be fired. One might thus be tempted to believe that
just about anything carries over trivially from CFG to PMG. This is false, though.
For example, Bjhrner and Lovsz argue that any CFG with fewer than h chips is
finite, where h is maximal such that every sink component of G has h edge-disjoint
directed cycles. However, one can construct a PMG with arbitrary great graph GG
such that the game is infinite with one single chip! Just choose the mutations so that
every node has only one outgoing edge at any time.

Remark 3.2. One can make a nice observation in this context. Suppose we have
a PMG where exactly one edge is active at every firing and whose great graph is
eulerian, so p d+ (i) d-(i) for every i. Place one chip on some node j and play
the game. Then the first node i to be fired for the (p / 1)th time must be j, because
any other node must first receive the chip for the (p / 1)th time, which implies that

some of its in-edges (i/, i) have been active twice, and hence must have been fired
p, + 1 times already.

This property will be generalized to any great graph in 5.
We now discuss in more detail the result in [2] that says that a strongly connected

graph G with h edge-disjoint directed cycles cannot have an infinite CFG with less
than h chips. The proof is based on the idea that every cycle may "capture" any chip
that travels along any of its edges so that in the future the captured chip only travels
along the cycle that has captured it. This is in accordance with the rules, since the
cycles are edge-disjoint. Every node is fired infinitely often in an infinite CFG on a
strongly connected graph G, so every edge is used infinitely often and hence every
cycle must capture at least one chip.

If G is not eulerian, then there must be some edges that are not contained in
any of the h cycles, and hence it takes more than h chips to get an infinite game on
such a G, since these excess edges cannot use the captured chips (except possibly
finite number of times before the chips have been captured). We shall investigate the
possibility of an infinite game with h chips when G really is eulerian.

DEFINITION 3.3. For a connected eulerian graph G, let h h(G) be the maximal
number of edge-disjoint directed cycles in G. If C {C1, C2,..., Ch} is such a max-
imal family of edge-disjoint directed cycles, then G is orientable relative C if there is
an ordering xl,x2,... ,xn of the nodes of Groan orientation of G--such that every
C E C is a cycle (xlx2... xk with il < i2 < < ik.

Observe that every edge of G must be contained in some C E C since G is eulerian
and C is maximal and that every C C visits any node at most one time. Thus, for
every node x G the outdegree d+(x) is equal to the number of cycles C C that
contain x.

LEMMA 3.4. Let G be a connected eulerian graph and C {C1, C2,..., Ch} some
maximal family of edge-disjoint directed cycles. Then G has an infinite CFG with h
chips if and only if G is orientable relative C.

Proof. (): Suppose that Xl, x2,..., xn make up an orientation relative C. For
every i 1, 2,..., n, let B be the subset of C consisting of all cycles for which x is the
vertex of least index and let A be the set of all other cycles in C containing x. Thus,
every cycle in C containing x is either in A or in B, so d+(x) IA]+IBI. Define an

122 KIMMO ERIKSSON

initial position on G where every node xi has IBI chips. Since IBII+IBI+" "+IBI
1t21 h, this is a position with h chips. We shall see that it is possible to fire the
nodes in the order x, x,..., x. Since such a firing sequence would give back the
initial position, we will then have proved that the game is infinite.

First, x is firable because d+(xl) IBll since A1 0. Now suppose that
x,x2,... ,xi-1 has been fired. Then xi has received IAil chips, one for each C Ai
due to the edge (xj,x) C,j < i. Hence, on the node xi are now IAiI+IBiI d+(xi)
chips, so xi is firable.

(=): Suppose that there is an infinite firing sequence a on G with h chips. Let
xl, x2,..., x be the order in which the nodes occur for the first time in this sequence.
Following [2], let every cycle C C capture any chip that uses any of its edges so that
in the rest of the game the captured chip must travel along the edges of C. Since
there are h chips and the game is infinite, every cycle must capture exactly one chip.
Let xi, xi,..., xi, where il < i2 < < ik, be the nodes of some C C. We claim
that C in fact is the cycle (xi xi..., xi). If not, there would be some smallest j > 1
such that (X_ xi is not an edge of C. But then xi would not be firable the first
time it should be fired during a because the chip captured by C would be someplace
else, and a node x can be fired only if the chip of every cycle containing x currently
is on x. Consequently, every C e C is of the form (xixi...xi), i < i < < i,
so by definition G is orientable relative C. rl

PROPOSITION 3.5. If C1 and C2 are two maximal families of edge-disjoint directed
cycles in a connected eulerian graph G, then G is orientable relative C if and only if
G is orientable relative C2.

Proof. The proposition follows immediately from Lemma 3.4.
DEFINITION 3.6. By Proposition 3.5, we can speak of a connected eulerian graph

G as orientable if it is orientable relative any, and hence every, maximal family of
edge-disjoint directed cycles.

THEOREM 3.7. A connected eulerian graph G has an infinite CFG with h(G)
chips if and only if G is orientable.

Proof. The theorem follows from Lemma 3.4 and Proposition 3.5.
So, which connected eulerian graphs are orientable? One might conjecture that

all of them are, but unfortunately this is false. The smallest counterexample has seven
nodes and h 4; see Fig. 1.

FIG. 1. A nonorientable eulerian graph.

4. Period length and game length of CFG. Let G (V, E) be a digraph.
Following [2], a nonzero vector v E NV is called a period vector for G if, in a CFG
played on G, a firing sequence where every node is fired vi times leads back to the
beginning position. A period vector is primitive if its entries have no common divisor
greater than one.

CHIP-FIRING GAMES ON MUTATING GRAPHS 123

PROPOSITION 4.1 (BjSrner and Lovsz [2]). (i) A CFG whose graph G is strongly
connected has a unique primitive period vector v. It is strictly positive, and all period
vectors are of the form t.v, t 1, 2,

(ii) If G is connected eulerian, then v has all entries vi 1.
(iii) In general, the period vectors of a CFG are exactly the vectors of the form

)lVl -- ,2V2 --"’"--)kVk, where hi E N and vl, v2,..., vk are the primitive vectors
of the sink components of G.

The period length of a CFG on G is denoted per(G) and is defined as the sum of
all the entries of the primitive vectors of the sink components of G.

A vector a E Ny is reduced if for every period vector v of the CFG there exists a
node i with ai < vi. BjSrner and Lovsz proved the following.

PROPOSITION 4.2 (BjSrner and Lovsz [2]). Every score vector of a terminating
firing sequence is reduced.

The main theorem on period length and game length of CFG in [2] says that
game(G) _< 2nNDper(G), where game(G) is the maximal length of a terminal game
on G and N is the total number of chips. We will prove another bound on game(G),
in Theorem 4.6.

PROPOSITION 4.3. Let Vo be a node set containing at least one node of every sink
component of a digraph G. In a CFG on G where no node in Vo is ever fired, the
total number of firings is no more than N(Dn-2 + Dn-3 +... + D + 1).

Proof. Define a distance function on nodes, such that l(i) is the length of the
shortest directed path from to Vo. By the assumption on Vo, every node in G has
a directed path to some node in Vo, and of course l(i) < n for all i. We can thus

partition the node set V in subsets Vo, V1,..., Vn- where Vk de {i V’l(i) k}.
Then there is no directed edge (i, j) where i Vk,j V-x for x > 1. Suppose that
in the start position there are c chips on any node i. The total number of chips is
N c, i V. Let m [a] be the score vector of a firing sequence a that does

not fire any node in Vo. Then the amount of chips that Wk de_ Vo t2 V t2... t2 V has
received from the outside during a can be at most the original amount on V\W plus
the amount that has been sent out from Wk. Since chips can only enter W through
edges from V+I to V, we get

E < E E
jVk+l iVk jV\W iw jv\w

Now, we have -]jev\w cj <_ N. Further, for j Yk+l we have ffyk dji

_
1,

since every node in Vk+l has at least one edge to V. For the same reason we have
-jey\w dj _< D- 1 for any i W, except possibly if V0, but in that case

m 0. Hence (1) implies

(2) E mj <_ N + E mi(D-1).
jv+ iwk

Let s de._.f EieWk mi. Adding s to both sides of (2) yields

(3) 8k+1 <_ N + skD

and so -ieVo mi 0. Solving this recurrence inequality yields sk <_ N(1 + D +
+ D-), and the number of firings in

124 KIMMO ERIKSSON

Remark 4.4. The bound given by Proposition 4.3 is essentially sharp, because
the following game is suggested by the proof:

Construct a digraph G by first taking a directed path in-l,in-2, ,i0 (so we

have only one edge (ik,ik-) for each k 1,2,... ,n- 1) and then adding D- 1

edges (i, i,_) for every k 1, 2,..., n- 2. Put N chips on in-1 and play the game
without ever firing i0. Then the game terminates when there are fewer than D chips
on each node ik, k 1, 2,..., n- 2 and no chips on i,-1, so the bulk of the chips, at

least N’ de__f N- (n- 2)(D- 1), is on i0. Then il must have fired N’ times, so it must
have received ND chips from i2, so i2 must have fired ND times. Continuing this
type of argument, we get that every ik must have fired ND-I times, so the total
number of firings must have been at least N(1 + D +... + Dn-2), so the error in
the estimate of Proposition 4.3 is for this game bounded by (n- 2)D"-1, which is
independent of N.

LEMMA 4.5. If a is a firing sequence in a CFG on a directed graph G and [a] is

reduced, then the number of firings in a is less than per(G) + N(Dn-2 +... + D + 1).
Proof. Suppose a is a firing sequence from position P1 to P2 such that its score

vector, say a, is reduced. Let V0 contain every node of every sink component H of
G such that ai < vi, where v is the ith entry of the primitive period vector VH of H.
There must be at least one such node in every sink component H, by the definition
of reducedness and Proposition 4.1(iii), with AH 1 and all other Aj 0. Hence V0
intersects every sink component. Now illegally fire (i.e., we allow negative numbers of
chips on the nodes) every E V0 exactly v- a times. We get some position P3. P3
has a nonnegative number of chips at each node because every node in V0 must have
no less chips than in P1, v being a period vector, while V\Vo must have no less chips
than in P2 since these nodes have not been fired since P2.

Examining the proof of Proposition 4.3 one easily verifies that it is applicable
also on illegal firing sequences as long as they result in a nonnegative ending position.
Since firing every node V0 exactly a- vi times from P1 while not firing nodes
in V0 also results in position P3, this firing sequence must by Proposition 4.3 use at
most N(1 + D +... + D"-2) firings. Thus the original firing sequence between P1 and
P3 uses less than N(1 + D +... + D-2) + E v N(1 + D +... + D-2) + per(G)
firings, and was shorter than this sequence.

We can now obtain a new bound on the game length in terms of the period length.
THEOREM 4.6. For the CFG on any directed graph G,

game(G) < per(G) + nD-1.

Proof. For any terminating game we know (see 3) that N <_ m- n where m
is the number of edges. We must always have m <_ riD. Hence N <_ n(D- 1),
and by Proposition 4.2 the score vector of a terminating game is reduced, so by
Lemma 4.5 the game length is less than per(G) + N(1 + D +... + Dn-2) < per(G) +
nD-1. D

To obtain a general bound on game(G) we need a general bound on per(G).
Bjhrner and Lovsz proved that per(G) <_ n(v/D)-1 by applying Hadamard’s in-
equality to the minors of the Laplacian of G. A better bound can be proved by pure
combinatorics.

THEOREM 4.7. For every digraph G,

per(G) < nD-1.

CHIP-FIRING GAMES ON MUTATING GRAPHS 125

Proof. It is enough to prove the inequality for strongly connected G. Let u be
the number of i-rooted spanning trees of G, i.e., spanning trees where every node has
a directed path in the tree to i. We shall see that the vector u with entries u is an
adequate period vector. It is clearly nonzero and integral, but in order to be a period
vector it must satisfy

d+(i)ui E djiuj
jEv

for every node i. The left side counts pairs consisting of one edge (i, k), k E V, and

one/-rooted spanning tree. The right side counts pairs consisting of one edge (j,--)
and one j-rooted spanning tree, j E V. It is easily verified that a bijection between

these sets of pairs is obtained by, in the left pair, adding the edge (i, k) to the/-rooted

tree, thereby forming one directed cycle, and then removing the unique edge (j,-)
from this cycle, thus obtaining a j-rooted spanning tree. This bijection proves that u
satisfies the period vector criterion.

Since u is an integral, nonzero period vector, but possibly not primitive, we have
per(G) _< Ev u. Any/-rooted spanning tree has exactly one outgoing edge from
each node except from i, so

Hence,

Ui

_
H d+ (j - Dn-1

per(G) <_ E u, <_ E Dn-l-nDn-1
iV iV

COROLLARY 4.8. The CFG on a digraph G satisfies game(G) < 2riDn-1

Finally, let us discuss parallel firings. One move in a parallel chip-firing game
consists of parallel firings of every node that is firable at the beginning of the move.
Bitar and Goles [1] showed that the period length of a parallel CFG on an undirected
tree is either 1 or 2 and noted that for general undirected graphs the period length
could grow linearly with n, the number of nodes. For general directed graphs, since
at most n firings can be done in one move, we of course have

game(G)/n <_ parallelgame(G) _< game(G)

and also

per(G)/n <_ parallelper(G),

but it is not clear whether parallelper(G) _< per(G) must hold. Since it is known (see
[2], [5]) that the game length and period length may be exponential in n, then so is
obviously the case also for parallel firing. Tardos [6] showed that the game length on
an undirected graph can be proportional to n4, so for parallel firing in that case the
number of moves grows at least as na.

5. Period length and game length of PMG. In this section we will try to
generalize as much as possible of the theory of CFG.

For a PMG on V, we analogously define v Nv to be a period vector if a firing
sequence in the PMG where every node i is fired vi times leads back to the beginning

126 KIMMO ERIKSSON

position. Of course the two notions coincide for a CFG viewed as a PMG. If v is
a period vector for the PMG, then v must be a multiple of p, since the beginning
and ending positions are regarded as equal only if the positions in every mutation
sequence are equal. If, in addition, the chips distribution of the two positions shall be
equal, the vector v defined by v v/p must be a period vector for the CFG on the
great graph GG of the PMG. Call v PMG-primitive if v is primitive on GG. Then
Proposition 4.1 of BjSrner and Lovsz can be reformulated for PMG.

PROPOSITION 5.1. (i) A PMG whose great graph GG is strongly connected has
a unique PMG-primitive period vector v. It is strictly positive, and all period vectors
are of the form t.v, t 1, 2,

(ii) If GG is connected eulerian, then v has entries v p.
(iii) In general, the period vectors of a PMG are exactly the ectors of the form

1vl + 2v2 + + kvk, where E 5I and vl,v2,...,vk are the PMG-primitie
vectors of the sink components of GG.

Proof. To have a period in the PMG it is necessary that every node has been
fired a multiple of p, times, since p is the period of the mutation sequence at node
i. By the definition of great graph at the end of 2, p firings of node in the PMG
is equivalent to one firing of node i in the CFG on the great graph GG. Thus, v is
a period vector of the PMG if and only if the vector v defined by v v/p is a
period vector for the CFG on GG. The result then follows directly from Proposition
4.1.

The period length of a PMG is denoted per(PMG) and is defined as the sum of
all the entries of the PMG-primitive vectors of the sink components of GG. This
is consistent with the CFG definition of per(G) as the sum of all the entries of the
primitive vectors of the sink components of G.

Before we continue following the line of events in the previous section, let us make
the promised generalization of the remark in 3.

PROPOSITION 5.2. Given a PMG and any period vector v, let V C_ V be the set
of nodes that are firable in the initial position. The first node j to be fired more than
Vj times, if any such node exists, must be in V.

Proof. Suppose j V has been fired vj times. The number of chips on j is a
monotonic increasing function of the number of times each node i : j has been fired.
If every node i has been fired exactly vi times, then the current position is the initial
one, so j is not firable. Hence, before j can be fired for the (vj + 1)th time, some node

j must have been fired more than v times.
The aim now is to relate the period length of a PMG to the maximal length of

a terminating game playable on the PMG. We had the following proposition stated
for CFG in [2]. Our new proof for PMG is somewhat shorter and simpler. Given a
PMG, say that a vector a E NV is reduced if for every period vector v of the PMG
there exists a node i with a < v.

PROPOSITION 5.3. Every score vector of a terminating firing sequence is reduced.

Proof. Let a be a firing sequence with nonreduced score vector a [a]. We want
to show that a is not a terminating firing sequence, so we want to find some node
that is firable after a. Since a is not reduced, some period vector v has all entries

v _< a. Thus we can split c as alice2, such that [ia2]i vi and [ic2]j _> vj for all
j i. Let P be the position after a. Then is firable in position P, and by the
definition of period vector, the net flow of chips when playing ia2 is equal to the flow
of chips when playing every node j exactly [ia2]y vy _> 0 times, while never playing
i, so i has at least as many chips after playing ia: from P as in P itself. Thus is

CHIP-FIRING GAMES ON MUTATING GRAPHS 127

firable after playing a from the original position. []

From Proposition 5.1(ii) we deduce that if a PMG with eulerian great graph has
a terminating game, then some node i is fired less than p times.

def
Proposition 4.3 can be generalized to PMG. Let Pmx max{p E V}, the

length of the longest mutation period. Let D denote the maximum outdegree of the
great graph GG.

PROPOSITION 5.4. Let Vo C V be a node set containing at least one node of every
sink component of the great graph GG of a PMG. Playing the PMG without firing any
node in Vo can go on for no more than ((N + n)(1 + D +... + D’-2) + nDn-1)pmx
firings.

Proof. Partition GG in V0, Vi,..., Vn-1 as in the proof of Proposition 4.3. Let
m be the number of complete mutation periods at node in a game a that never
fires the nodes of V0, so m is the integer part of [a]/p. Following the notation and
argument of the other proof, we get

(4) E mj <_ N + E (mi + I)(D-1)"
jEVk+ iEWk

defLet tk ew(m + 1). Adding tk + n to both sides of (4) yields

tk+l

_
N + n + tD

and to IV01 _< n, so the recurrence inequality yields t _< (N + n)(1 + D +... +
Dk-i) +nD. The number of firings in a is less than -ey(m / 1)p _< tn-lPmx (_
((N + n)(1 + D +... + Dn-2) + nDn-1)pm. 0

LEMMA 5.5. If O is a firing sequence in a PMG with great graph GG and [c] is
reduced, then the number of firings in is less than per(PMG) + ((N + n)(Dn-2 +
+ D + 1) + nDn-1)Pmx.
Proof. We can follow the proof of Lemma 4.5 word for word (well, exchange

GG for G and PMG-primitive for primitive), only we must use the bound given by
Proposition 5.4 instead of its CFG counterpart. [I

THEOREM 5.6. For a PMG,

-nDn-igame(PMG) < per(PMG)+ Pmx.

Proof. We follow the line of proof as in Theorem 4.6. First, we know from
3 that in a terminating game we have N + n <_ m <_ nD. Second, we know that a

terminating game has reduced score vector, so by Lemma 5.5 and the inequality above
we have game(PMG) < per(PMG) + nO(1 + D /... + Dn-2)pmx / nD-ipmx
per(PMG) + n(D +... + Dn-2)pmax / 2nDn-ZPmx If D 1, then the gazne can
only terminate if there are no chips at all, in which case game(PMG) 0. Otherwise,
we have

Dn-1
n(D +... + Dn-2)pmax n

D- 1 Pmax _(nDn-lpmax,

and the theorem follows. []

From the discussion of period vectors of PMG and CFG in the very beginning
of this section, it is evident that per(PMG) _< Pmax per(GG). This yields a general
bound on the game length of PMG.

128 KIMMO ERIKSSON

COROLLARY 5.7. For a PMG, the game length of terminating games is bounded
by

game(PMG)

_
4nDn-lpmax.

Remark 5.8. Observe that if firings of nodes without any outgoing edges at all
are not counted (since they do not do anything), then we have Pmax <_ D and hence
game(PMG) _< 4nD, where D is the maximal outdegree of the great graph.

Remark 5.9. BjSrner and L. Lovsz [2] also prove that the reachability problem
is decidable for CFG, by describing an algorithm that takes a CFG and two positions,
p and q, and which in finite time answers whether q can be reached by playing from
p. It is not hard (though not entirely trivial) to generalize their algorithm (and the
complexity analysis) to PMG, so the reachability problem is decidable also for PMG.
We omit the details.

REFERENCES

[1] J. BITAR AND E. GOLES, Parallel chip firing games on graphs, Theoret. Comput. Sci., 92
(1992), pp. 291-300.

[2] A. BJRNER AND L. Lovsz, Chip firing games on directed graphs, J. Algebraic Combin.,
1 (1992), pp. 305-328.

[3] A. BJSRNER, L. LOV/SZ, AND P. SHOR, Chip-firing games on graphs, European J. Combin.,
12 (1991), pp. 283-291.

[4] P. DIACONIS AND W. FULTON, A growth model, a game, an algebra, Lagrange inversion, and
characteristic classes, Rend. Sem. Mat. Univ. Politec. Torino, 49 (1991), pp. 95-119.

[5] K. ERIKSSON, No polynomial bound for the chip firing game on directed graphs, Proc. Amer.
Math. Soc., 112 (1989), pp. 1203-1205.

[6] G. TARDOS, Polynomial bound for a chip firing game on graphs, SIAM J. Discrete Math.,
1 (1988), pp. 397-398.

[7] M. THORUP, Firing games, Tech. report. DIKU-94-15, Dept. of Computer Science, Univ. of
Copenhagen, 1994.

SIAM J. DISCRETE MATH.
Vol. 9, No. 1, pp. 129-150, February 1996

1996 Society for Industrial and Applied Mathematics
012

LINEAR ALGORITHMS FOR PARTITIONING EMBEDDED
GRAPHS OF BOUNDED GENUS*

L. ALEKSANDROV AND H. DJIDJEV$

Abstract. This paper develops new techniques for constructing separators for graphs embedded
on surfaces of bounded genus. For any arbitrarily small positive we show that any n-vertex graph G
of genus g can be divided in O(n+ g) time into components whose sizes do not exceed n by removing

set C of O(/(g + 1/)n) vertices. Our result improves the best previous ones with respect to the
size of C and the time complexity of the algorithm. Moreover, we show that one can cut off from G
a piece of no more than (1 e)n vertices by removing a set of O(v/n(g + 1)) vertices. Both results
are optimal up to a constant factor.

Key words, graph separator, graph genus, algorithm, divide-and-conquer, topological graph
theory

AMS subject classifications. 05C10, 05C85, 68R10

1. Introduction. Let S be a class of graphs closed under the subgraph relation
and f(n) be a nonnegative function. An f(n)-separator theorem for S is defined in [18]
as a theorem of the following form: there exist constants a < 1 and/ > 0 such that if
G is any n-vertex graph in S, then the vertices of G can be divided into three sets A,
B, and C such that no edge joins a vertex in A with a vertex in B, max(IAI, IBI) <_ an
and ICI <_ f(n). The set of vertices C is called an a-separator. Separator theorems
are known for many classes of graphs, i.e., for forests, grids [17], planar graphs [18],
graphs of bounded genus [6], [11], graphs with an excluded minor [2], geometric graphs
[20], and others. The v/-separator theorem for the class of planar graphs [18] is now
a classic result in computational graph theory.

If an o(n)-separator theorem exists for S, then one can efficiently apply a divide-
and-conquer method for solving graph problems on graphs from S. The sets of vertices
A and B define subproblems which are independent and essentially smaller than the
original problem. To find solutions to the subproblems defined by A and B one applies
the same method until the sizes of the subproblems become so small that they can be
easily solved directly. Separators have been successfully applied for solving different
computational problems. Such applications include finding a suitable ordering of the
equations of very large sparse systems of linear equations in order to minimize the
fill-in during a Gaussian elimination [17], [12], finding approximate solutions to Ne-
complete problems [19], VLSI layout [3], [4], [16], designing efficient sequential and
parallel algorithms [8], [15], [9], [13], and many others.

One inefficiency that results when the above method is straightforwardly applied
is that the time required to find the decomposition of the original problem can be too
large or even dominate the total time needed to solve the problem of interest. For
instance, if an algorithm for finding a 2/3-separator of an n-vertex graph belonging to

Received by the editors August 11, 1994; accepted for publication (in revised form) March 9,
1995.

Bulgarian Academy of Science, Center for Informatics and Computer Technology, G. Bonchev
25-A, 1113 Sofia, Bulgaria.

Bulgarian Academy of Science, Center for Informatics and Computer Technology, G. Bonchev
25-A, 1113 Sofia, Bulgaria and Department of Computer Science, Rice University, P.O. Box 1892,
Houston, TX 77251 (hr+/-sto(C)cs.r+/-ce.edu). The research of this author was partially supported by
National Science Foundation grant CCR-9409191.

129

130 L. ALEKSANDROV AND H. DJIDJEV

a certain class of graphs requires O(n) time, then it will take O(n log n) time to find
a decomposition of the graph into subgraphs of O(1) size by using that algorithm.

In our paper we give a solution to the problem of dividing an n-vertex graph into
many pieces of small size in optimal linear time. More specifically, we prove that
if G is an n-vertex graph with nonnegative vertex weights embedded on a surface
of orientable genus g, then for any E (0, 1) there exists a set C of no more than
4v/(g / 1/s)n vertices of G whose removal leaves no component of total weight ex-
ceeding times the total weight of G. Such separators for o(n) are referred to in
the literature as s-separators. They have been used for the solutions of various prob-
lems, e.g., in constructing approximation algorithms for the maximum independent
set and other NP-complete problems [19], pebbling [19], the embedding of data or
communication structures [19], [4], shortest path problems [8], and the design of par-
allel algorithms [13]. We present an algorithm that finds such a separator in O(n / g)
time, given the embedding of G. A preliminary version of this result was published in
[5]. Similar results for the class of planar graphs (i.e., for the case where g=0) were
proved in [19], [8], where the complexity of the algorithms is O(n log n) and for the
class of planar unweighted graphs in [13], where the size of the separator is not explic-
itly estimated. In [11] the existence of an -separator of size O(v/ng[s) for graphs of
genus g is derived as a consequence of the iterative 2/3-separation. The complexity
of the algorithm that follows from this approach is O(n log n). Thus, our algorithms
improve the previous results with respect to the size of the separator and the time
complexity of the algorithm. Moreover, we show that the size of the separators found
by our algorithm is optimal within a constant factor.

Essential to our approach will be a data structure we call a separation graph
and a technique we develop for manipulating with separation graphs. The separation
graphs, which are sparse graphs of degree 3, contain all the relevant information we
need in order to construct the separator. Separation graphs are more convenient to
use for purposes of graph separation than the original graphs because of their simple
structure and sparsity.

We also demonstrate the use of our new technique also by proving an optimal
separator theorem for the class of graphs of bounded genus with a constant a
1- o(1). We prove that if G is an n-vertex graph with nonnegative vertex weights
embedded on a surface of orientable gnus g, then for any E (0, 1/15) there exists an

(1-)-separator C1 of G of O(v/ns(gs / 1)) vertices. The size of C1 is optimal within
a constant factor and C1 can be found in O(n + g) time given the embedding of G. A
similar result was proved by Gilbert in [10] and by Djidjev and Gilbert in [7]; however,
the constants in [10], [7] are much larger and the complexities of the algorithms are

O((n / g)log n). Another application of separation graphs was described in [1].
We view the contribution of our work as follows: (i) we prove separator theorems

for graphs embedded on orientable surfaces, where similar previous results concerned
separators for planar graphs only; (ii) the complexity of our algorithms is linear; and
(iii) our separators are smaller in size than the best previous separators for the planar
case and are asymptotically optimal for arbitrary genus.

The paper is organized as follows. In 2 we give a definition of a separation graph
and prove some of its properties. Next we give an algorithm for the construction of
separation graphs and prove that any edge separator of the separation graph induces
a set of cycles separating the original graph. In 3 we present the basic results of
the paper. In 3.2 we construct a linear algorithm for the s-separation of graphs
embedded onto a surface of genus g in the case when s is close to zero and in 3.3 we

PARTITIONING GRAPHS OF BOUNDED GENUS 131

construct a linear algorithm for the case when e is close to one. In the final subsection
we establish the optimality of our results.

2. Separation graphs. We begin with a brief description of some basic notions
from topological graph theory. A more detailed and formal treatment can be found
in [14].

A graph G is an ordered pair (V(G), E(G)) of sets, where V(G) is a set of vertices
and E(G) is a set of edges. Each edge is an unordered pair of different vertices. We will
consider graphs embedded on orientable surfaces. A surface is a connected, compact
2-manifold. An embedding I(G) of the graph G onto a surface Z is a mapping of
the vertices onto different points of Z and of the edges onto arcs along Z, so that
the incidences are preserved, and no two arcs intersect at an inner point. We call
the vertices and edges of G vertices and edges of I(G) and we call faces of I(G) the
connected components of Z \ I(G). We consider simplicial embeddings, i.e., each face
is surrounded by at least three edges. An embedding is a 2-cell embedding if each
of its faces is homeomorphic to an open disk. If no ambiguity arises, we will refer
to the 2-cell embeddings as embeddings and to I(G) as G. The orientable genus (or
the genus) of a graph G is the minimum genus of an orientable surface, called the
genus surface of G, onto which G can be embedded. A region R of I(G) we call any
connected open subset of I(G). The boundary of R is OR =/ \ R, where/ is the
closure of R.

The sets of vertices, edges, and faces of I(G) (or G) will be denoted, respectively,
by V(G), E(G), and F(G) hereafter. An important relation among the numbers of
vertices, edges, faces, and the genus of a 2-cell embedding I(G) is given by Euler’s
formula

(1) IY()l IE()l + IF(G)]- 2c- 2g,

where c is the number of connected components of G and IXI denotes the cardinality
of a set X.

DEFINITION 2.1. Let G be an embedded graph and T be a spanning tree of G. A
separation graph of G with respect to the spanning tree T is a graph S S(G,T),
where

v(s)
E(S) { (fl, f2) fl, f2 e F(G), fl and f2 share a nontree edge}.

Algorithm 2.1, described below, will assign proper weights to the edges of S which
are essential for the use of a separation graph.

According to the above definition, the separation graph of a given embedded graph
G is a subgraph of the dual graph of G and can be constructed in O
time. For an example, see Fig. 1.

As the next lemma shows, if the genus g of G is small compared to IV(G)I, then
S is much simpler (sparser) than G.

LEMMA 2.1. Let G be a connected graph that has a 2-cell embedding on a surface
of genus g with a spanning tree T. Then the separation graph S(G,T) is connected
and

IE(S)I- IV(S)I- 2g- 1.

132 L. ALEKSANDROV AND H. DJIDJEV

T

O tree edges of K7 (edges of T)

-O non-tree edges of K7 [-], [S] edges of S(K7)

S(KT, T)

FIG. 1. An embedding of K7 on the torus and its separation graph.

Proof. Assume that S is disconnected and let K be a component of S. Denote
by R the region consisting of all faces that correspond to vertices of K together with
their boundaries. The boundary OR of R is nonempty and it contains a simple closed
curve that is an embedding of a cycle of G. On the other hand, by the definition of
S, the boundary OR is a subset of the embedding I(T) of T. This means that I(T)
contains a closed curve and therefore T contains a cycle, which is a contradiction.
Thus S is connected.

By the definition of S, we have

IE(S)I- IE(a)l- IV(a)l / 1 and IV(S)I IF(a)l.

Applying Euler’s formula (1), we obtain

IE(S)I- IV(S)I--IE(G)I- IV(G)I / 1 -IF(G)I-- 2g- 1,

which proves (2). []

For instance, if g 0 (i.e., if G is planar), then by Lemma 2.1 S is a tree. In
general, S can be represented as a tree plus 2g additional edges. An example for g 1
is presented in Fig. 1.

PARTITIONING GRAPHS OF BOUNDED GENUS 133

We call a T-cycle of G any simple cycle that contains exactly one edge that is
not in T. Any edge of S(G, T) determines a unique T-cycle, the one containing the
corresponding nontree edge of G. In what follows we will show that, if weights are
assigned to the edges of S in a proper way, we can construct separators of G consisting
of T-cycles by considering S instead of G.

Hereafter, we consider the case when the embedding of G is a triangulation, i.e.,
each of its faces is incident to three edges. For our purposes, this is not a restric-
tion since any embedding could be extended to a triangulation by adding new edges.
Subsequently, any vertex set that separates the resulting triangulation separates the
original graph as well. Note that in the case when the embedding of G is a triangula-
tion the vertices of S have maximal degree three, which can be used to simplify the
algorithms on S.

We assume that the vertices of G have nonnegative weights wt(.). The algorithn
below assigns weights on the edges of S that depend on the structure of G and on
the weight function wt(.). We will use the following notations. For v E V(G) denote
by E(v, 0) the set of all nontree edges of G incident to v and by E(v, 1) the set of
all nontree edges of G whose both endpoints are adjacent to v. As the vertices at
distance 1 from v define (at least one) simple cycle and there are no simple cycles in
any spanning tree of G, then E(v, 1) 0. The algorithm described below first defines
for each nontree edge of G (or equivalently for each edge of S) a set vert(e) of vertices
of G such that the sets vert(e) for e e E(G) \ E(T) form a partition of V(G) (see
Fig. 2). Then the algorithm assigns to each edge e of S a weight equal to the total
weight of the set vert(e).

ALGORITHM 2.1 (ASSIGNMENT OF WEIGHTS ON THE EDGES OF S).
Input: An embedded graph G with a spanning tree T and the corresponding sepa-
ration graph S(G,T); a weight function wt(.) defined on V(G);
Output: A weight function wt(.) on the edges of S;

Set vert(e):= 0 for e e E(G) \ E(T)
For each v V(G) do

if E(v, O) O
then

else

enddo
endif

el :-- any edge in E(v, O)
vert(ei) :-- vert(el) U {v}
{since always E(v, 1) - 0}
e2 := any edge in E(v, 1)

:=

Set wt(e’):= -vevert(e)wt(v), for e’ e E(S),
where e is the corresponding to e’ edge from E(G) \ E(T).

Algorithm 2.1 can be implemented in linear time in a straightforward manner.
Note that from the definition of wt(e) it follows directly:

(3) E wt(e)= E wt(v).
eE(S) vV(C)

Remark. We will need weights on the edges of S as assigned by Algorithm 2.1
even in the case when the original graph is nonweighted. In this case we assume that
all vertices of G have weight

134 L. ALEKSANDROV AND H. DJIDJEV

O- -O non-tree edges of G

1"2. El edges of S

vert(e)

any
(1,17) (2,4) (2,17) (4,5) (5,8) (6,8) (6,9) (6,10) (6,11) (7,12) (13,18)(14,16)(15,18)(17,19)other

{11 {41 {2,171 {31 {5] {6,8] {9] {10] {111 {7,12] {131 {14,16]{15,18] {19 {}

FIG. 2. Illustrations to Algorithm 2.1 and Theorem 2.1. The subgraph Gi of G embedded inside
a T-cycle of G, the corresponding region Zi, and component Si.

The next theorem shows that to find a separator consisting of T-cycles one can
use S(G) instead of G (see Fig. 2). Observe that inequalities (4) and (5) below can
be used to estimate the weights of the parts into which G is divided.

THEOREM 2.1. Let G be a graph with weights on the vertices embedded on a

surface Z such that each face is a triangle and let T be a spanning tree of G. Let M
be a set of edges of S whose removal divides S into components $1,..., Sk. Then the
set of curves (M) that are embeddings of the T-cycles corresponding to the edges of
M divides Z into connected open regions Z1,..., Zk such that

(i) if wt(Z’), for Z’ C Z, denotes the total weight of the vertices of G embedded
in Z then

(4) < i=

(ii) if T is a breadth-first spanning tree of G, then

(5) wt(Z OZ) > wt(S OS) wt(t), i 1,..., k,

where OZi is the boundary of Zi, OS is the set of edges ofM adjacent to S, and t is
the root of T.

Proof. Let the set of curves ((M) divide Z into connected open regions Z1,..., Zk,.
For 1,... ,k’, denote by S the subgraph of (V(S),E(S)\ M) that is embed-

PARTITIONING GRAPHS OF BOUNDED GENUS 135

ded inside Zi. Then the graphs S, 1,...,kt, define a partition of the graph
(V(S), E(S) \ M), i.e., we have

U V(S{) V(S) and V(S{) O V(Sj) O for
i--1

k

U E(S) E(S) \ M and E(S) E(Sj) O for
i=1

We will show that each graph S, 1,..., k’, is connected. Assume that S is
disconnected for some E {1,..., k} and let K be one of its components. Denote by
R the region of Z consisting of all faces dual to the vertices of K. The boundary OR
of R contains a simple closed curve that is an embedding of a cycle of G. According to
the assumption it follows that OR c I(M* [2 T) and OR A Zi O, where M* denotes
the set of edges dual to the edges of M and I(M* [2 T) is the embedding of M* t2 T.
Consequently, there exists a simple closed curve 7 c OR such that -y A Z : 0. In
other words, we have found an embedding of a cycle 7 c I(M* [2 T) with /: (M).
This is a contradiction, since the embedding of each cycle in T2M* belongs to (M).

We proved that S, for 1,...,M, are connected components of the graph
(V(S),E(S) \ M). Therefore, k k’ and {SI,...,Sk} =- {S,...,Sk}. To simplify
the notations we assume S S for 1,..., k.

Next, we prove that (i) and (ii) hold for Z for 1,...,k. Let v E Z and
e be the edge of S such that v vert(e). Then, by Algorithm 2.1, the edge from
E(G) \ E(T) dual to e is either incident or has both endpoints adjacent to v. By the
definition of Zi, e Si [2 M. On the other hand it is not possible that e M, because
it implies E(v, 0) : 0 and therefore v C(M), which contradicts v E Z. Thus e
and (i) follows.

In order to prove (ii), we consider any edge e S N 0S. We will show that
vert(e) C {t} [2 Zi [20Z. If e S, the relation follows immediately. Let e
and (vl, v2) be the edge of G dual to e. If w vert(e) and w v, 1, 2, then by
Algorithm 2.1, E(w, 0) 0. (The assumption E(w, 0) 0 leads to w vert(h) for
some h E(w, 0).) Therefore, any edge incident to w is from E(T). The only vertex
with this property in a breadth-first spanning tree of a triangulation is its root. Thus
vert(e) c {Vl, v2, t} and inequality (ii) holds. [:]

We use the result of Theorem 2.1 as a basic tool for constructing separators in the
next section. More precisely, if G, T, S, M, and S,..., Sk are as in Theorem 2.1, then
the removal of the vertices of G that belong to the T-cycles corresponding to the edges
in M divides G into components G1,..., Gk such that wt(G) <_ wt(S), 1,..., k.
Therefore, we can construct separators for G by constructing edge-separators for the
separation graph S. This approach relies on the fact that, as we will show in the next
section, we are able to construct edge-separators for sparse graphs in optimal linear
time. Note that the length of a T-cycle can be Ft(IV(G)I), and thus a good bound on
the size of the resulting separator of G does not directly follow from the existence of
a small separator of S. So, in order to achieve both an optimal running time of our
algorithm and an optimal size of the constructed separators, we will combine the use
of separation graphs with n appropriate radius-reducing technique.

136 L. ALEKSANDROV AND H. DJIDJEV

3. e-separation of graphs of bounded genus. In this section we derive two
results on the separation of graphs of bounded genus. The first one is related to the
problem of dividing a graph into (possibly many) components of small weights, known
as the e-separation problem, and the second one concerns the problem of separating
a single piece of small weight from a graph.

DEFINITION 3.1. For any weighted graph G and s E (0, 1), the vertex (respectively,
edge) set C is called an s-separator (respectively, s-edge separator) ofG if the subgraph
of G induced by V(G) \ C (respectively, the subgraph induced by E(G) \ C) has no
component of weight greater than swt(G).

First we will develop fast algorithms for the e-separation of graphs of degree three.

3.1. Separating trees and sparse graphs. In the next lemma we present a
linear algorithm that finds a small e-edge separator for any graph of degree three.

LEMMA 3.1. Let S be a graph of degree three with n vertices, m edges, and q
connected components and nonnegative weights wt(.) on its edges. For any s (0, 1)
there exists a set Me of no more than m- n + q + 2/sJ edges, whose removal divides
S into connected components $1,..., Sk with the properties

(i) for any i= 1,...,k

(6) <_

(ii) the inequality

holds for at least k-q of the components Si, 1,..., k, where OSi is the set of
edges from Me adjacent to Si. The set Me can be found in O(rn) time.

Proof. First we consider the case where S is a binary tree, i.e., rn n- 1
and q 1. Let the set of edges of S be divided into levels E0,..., Er according to
their distance to some fixed vertex of S. For e E(S) \ Eo we denote by pr(e) the
unique edge at the lower level that shares a common vertex with e, and we create
an additional edge to be a predecessor of the edges from E0. Consider the following
procedure.

Procedure: TREE SEPARATION

Input: A binary tree S, the set of levels E0,...,Er with respect to a root t, a
parameter s (0, 1), and the weights wt(.) on the edges of S.
Output: A set Me, which is an s-edge separator of S.

For i r,r- 1,...,0, do
For each e Ei do

If wt(e) > (s/2)wt(S) then insert e in Me
else wt(pr(e)) := wt(pr(e)) + wt(e).

This procedure runs in time linear on rn, since every edge of S is considered only
once. During the ith iteration of the loop, the current weight of any edge x in E_i+l
is equal to its original weight plus the total weight of the component of S which would
be cut if x and all edges already in Me are deleted. We include an edge e in/I/Is if and
only if its current weight wt(e) is greater than (s/2)wt(S). Therefore, proposition (ii)
follows for all components of S \ M, except possibly for the one containing the root.
Proposition (i) follows by the fact that the total weight of the component that will

PARTITIONING GRAPHS OF BOUNDED GENUS 137

be cut if e is deleted is equal to the sum of the current weights of its ancestors (no
more than two), which were not included in Me during the previous iteration.

The estimation IMel _< [2/sJ follows by the observation that with each edge
inserted in Me the total weight of the edges of S decreases by at least (s/2)wt(S).

In the general case when S is a graph of degree three we apply the following
algorithm.

ALGORITHM 3.1 (EDGE SEPARATION OF GRAPHS OF DEGREE THREE).
Input: A graph of S degree three, an s E (0, 1), and weights wt(.) on edges of S.
Output: A set M, which is an s-edge separator of S.
Step 1: Find the set of the connected components of S.
Step 2: For each connected component Q with wt(Q) > swt(S) do:

Step 2.1: Find a breadth-first spanning tree T of Q and divide the set of
edges of T into levels with respect to the root of T.

Step 2.2: Insert the set of nontree edges of Q in M.

Step 2.3: If wt(T) > swt(S), then apply the tree separation procedure on
T with parameter Sl swt(S)/wt(T) to find an sl-edge separator
M of T. Add MI to the set M.

The proof that the set M constructed by Algorithm 3.1 satisfies requirements of the
lemma follows from the correctness of the tree separation procedure. D

3.2. Finding e-separators for e close to zero. Let G be an n-vertex graph
with nonnegative vertex weights and I(G) be a 2-cell embedding of G on a surface Z
of orientable genus g. We are going to describe an algorithm that for a given I(G)
and s E (0, 1) finds an s-separator C of G of no more than 4v/n(g + l/s) vertices in
O(n + g) time. Let us recall that, without loss of generality, we assume that I(G) is
a triangulation, since we can make each face a triangle by adding new edges. Any
vertex set that separates the resulting graph will separate the original graph as well.

Let T be a breadth-first spanning tree rooted at a vertex t and let S be the
corresponding separation graph as defined in Definition 2.1 and Algorithm 2.1. Denote
the radius of T by R. For r 0, 1,..., R we define level L(r) to be the set of vertices
lying at distance r from t.

We denote by Z(r), 0 < r <_ R, the closed region of Z consisting of all trian-
gles that have at least one vertex lying on a level lower than r. The boundary of
Z(r) consists of simple closed curves that are embeddings of the vertices in L(r) and
certain nontree edges between them. They form a set of edge disjoint cycles in G,
which we denote by (r) {cl(r),...,c(r)(r)} (see Fig. 3). The set (r) can be
constructed by traversing each connected component of the boundary of Z(r) in one
direction so that Z(r) remains on the right and then choosing the first nontraversed
edge in a counterclockwise order to be traversed next. This procedure requires time
proportional to the size of the subgraph of G induced by the vertex set L(r).

Let Z+(r) be the complement of Z(r) to Z. We denote by G(r), T(r), and S(r)
the subgraphs of G, T, and S that are embedded on Z(r). Correspondingly, the
subgraphs embedded on Z+ (r) are denoted by G+ (r), T+ (r), and S+ (r). Clearly, the
level L(r) separates G(r) and G+(r), and the set of edges of S that are dual to the
edges of the cycles in L(r) separates S(r) and S+(r).

Our algorithm for finding an s-separator constructs the required s-separator it-
eratively. At each iteration step a fixed level L(r) along which the graph will be

138 L. ALEKSANDROV AND H. DJIDJEV

(a) (b)

FIG. 3. The region Z(r) and its boundary.

cut is considered. The algorithm constructs the set of embedded cycles (r) and
the graph S+ (r) defined above and by using the separation graph finds a set of ver-
tices that divides the graph G+(r) into components of weights not exceeding ewt(G).
The constructed vertex set is added to the current separator. Finally, the algorithm
transforms the remaining (not still separated) subgraph G(r) and the corresponding
subgraph of the separation graph S(r) in a form suitable for the next iteration step.
Next we describe in more detail how this transformation is done and then we will give
an outline of the whole algorithm.

The region Z(r) can be considered as a surface with holes determined by the
embeddings of the cycles in (r). Let (r) be the surface obtained from Z(r) by
pasting open discs (faces) f(cl(r)),..., f(c(r)) on its holes. In our transformation
we supplement the graphs G(r) and S(r), obtaining graphs G(r) and S(r) that possess
the following properties: (a) the graph G(r) triangulates the surface Z(r); (b) the tree
T(r) is a breadth-first spanning tree of G(r); and (c) the graph (r) is a weighted
separation graph for G(r) with respect to the tree T(r). The following procedure
describes how such graphs ((r) and (r) can be constructed.

Procedure: SUBGRAPH SUPPLEMENTATION

Input: Subgraphs C(r), S(r) embedded on Z(r); a set of embedded cycles ,(r) and
the weights of the edges in S dual to the edges in
Output" Graphs ((r) and (r) embedded on 2(r) satisfying properties (a), (b), and
(c).
Step 1" For each cycle c e ,(r) add a face f(c) to the embedding of G(r) with a

boundary the embedding of c. Triangulate each face f(c) by adding new

PARTITIONING GRAPHS OF BOUNDED GENUS 139

0 0 edges of c

new edges of the triangulation

edges of tr(c)

FIG. 4. A triangulated face f(c) and the corresponding tr(c).

edges to G(r) embedded onto f(c). Define (r) to be the resulting graph.
Step 2: For each face f(c) c E L(r) construct the tree tr(c) dual to the triangulation

of f(c) obtained in Step 1. Assign zero weights to the edges of tr(c) (see
Fig. 4). Add the trees tr(c) for c e (r) to the graph S(r). Add to S(r)
the edges dual to the edges of the cycles in L(r) preserving their original
weights in S. Define (r) to be the resulting graph.

The proof that graphs 0(r), T(r), and (r) have properties (a), (b), and (c) fol-
lows directly from their definitions. The running time of the procedure is proportional
to the size of the set L(r).

Next, we present our main algorithm that constructs an e-separator for a given
graph G embedded onto a surface of genus g. We assume that g < n/16; otherwise
4v/(g + 1/)n > n and the set V(G) is a trivial -separator. Additionally, we assume
without loss of generality that I(G) is a triangulation, for otherwise we can define
additional edges to make each face a triangle.

ALGORITHM 3.2 (CONSTRUCTION OF AN E-SEPARATOR).
Input" A 2-cell embedding of a graph G on a surface of orientable genus g; a non-

140 L. ALEKSANDROV AND H. DJIDJEV

negative weight function defined on vertices of G; a number s E (0, 1).
Output" An s-separator C of G.
Step 1" Choose any vertex t of G and construct a breadth-first spanning tree T of

G rooted at t. Let R be the radius of T. For j 0, 1,..., R, find the levels
L(j) consisting of all vertices at distance j from t.

Step 2: Construct the separation graph S S(G, T) of G with respect to T. Assign
weights to the edges of S using Algorithm 2.1.

Step 3: Set h V1/2v/n/(g + l/s)]. Find an integer k between 0 and h- 1 that

minimizes the number of vertices in the set L [.Jj=0 L(k + jh), where
l= [--J. (Thus ILl <_ n/h.) Set initially C L.

Step 4: For j + 1,1,..., 0, do Steps 4.1 through 4.7 below.
Step 4.1" Setr=k+(j-1)hifj_>l, orr=0ifj-0.
Step 4.2: Find the set of cycles L(r).
Step 4.3: Determine the subgraph S+(r), i.e., the subgraph of S embed-

ded onto Z+ (r).
Step 4.4: If wt(S+(r)) > swt(S), then find an sj-edge separator Mj for

S+(r) by applying Algorithm 3.1 on S+(r) with parameter sj
swt(S)/wt(S+(r)). Otherwise set Mj 0.

Step 4.5: Add to the current separator C the set Cj of vertices of G on
levels above L(r) that belong to T-cycles corresponding to edges
in MN.

Step 4.6: Find subgraphs G(r), S(r), and T(r).
Step 4.7: Apply the subgraph supplementation procedure on G(r) and

S(r) and obtain graphs ((r) and (r). Set G- (r), S (r),
and T T(r).

In the next theorem we prove the correctness of Algorithm 3.2 and estimate the
size of the constructed e-separator.

THEOREM 3.1. Let G be an n-vertex graph with nonnegative vertex weights and
I(G) be a 2-cell embedding ofG on an orientable surface of genus g. For any s (0, 1)
there exists an s-separator C of G of no more than 4v/(g + 1/s)n vertices. The
separator C can be found in O(n + g) time, given I(G).

Proof. Let C be the set constructed by Algorithm 3.2 for the graph G. The proof
will consist of three parts.

A. Proof that C is an s-separator of G. It will be appropriate to define the
following set of curves that contain all vertices of C:

j----0 j--0

where L(k + jh) is the embedding of the cycles in n(k + jh); y denotes the set of
curves which are embeddings of the parts of the T-cycles corresponding to the edges
in Mj with endpoints on levels between k / (j 1)h and k + jh.

To simplify our presentation we will introduce more convenient notations. For
j 1,..., + 1 we denote X(k+ (j 1)h) by Xy, where X can be any of the symbols Z,
Z+, 2, S, S+, and . Additionally, let us denote Z0 So , Z0+ 2, 2t+2 Z,
and t+2 S.

LEMMA 3.2. The set of curves divides Z into regions of weights not exceeding
swt(G), where the weight of a region is defined as the total weight of the vertices of
G embedded onto it.

PARTITIONING GRAPHS OF BOUNDED GENUS 141

Proof of Lemma 3.2. We will show that the set of curves 0l+1 divides ZI
Z \ Zl+l into regions of weights not exceeding awt(G). Consider the set M of edges
of S containing the edges dual to the edges of the cycles of (k + lh) plus the edges
included in Mt+l. According to Theorem 2.1, there is a one-to-one correspondence
between the components of S\M and the regions of Z \ {(k + lh)U0+I } associated
with I(G). In addition, the weight of each region does not exceed the weight of the
corresponding component of S \ M (see Theorem 2.1(i)). The set of curves ,(k + lh)
separates Zt+l from the regions on ZI. The set of edges Mt+l separates S1
into components of weight not exceeding awt(G) (note that wt(S) wt(G)), and
therefore the set of curves (l+1 divides ZI into regions of weights not exceeding
awt(G). Applying the same argument we prove that for j 1,..., 0 the set of curves
C(Mj) divides Z- into regions of weights not exceeding awt(G). According to our

definitions, the set (Mj) is a superset of 0y, since Z- is equal to Zy+l \ Zy plus the
set of open discs (faces) pasted onto the holes determined by the curves in (embedded
cycles) (k /jh). But j is a restriction of (Mj) on Z+I \ Zj, and thus Cj divides
Zj+I \ Zy into regions of weights not exceeding awt(G). The lemma follows by this fact

,(k + jh) divides Z into the regionsand the observation that the set of curves y=0
Zj+I\Zj, j =/+1,...,0. []

The vertex set C constructed by Algorithm 3.2 induces a subgraph of G whose
embedding contains the set of curves C. By Lemma 3.2 and the definitions it follows
that C is an a-separator for G.

B. Time complexity. Steps 1,2, and 3 run in O(II(G)I time. Each of the sub-
steps included in the loop of Step 4 runs in linear time on its input. During Step 4
the algorithm traverses the graph and therefore this step and the algorithm run in
O(II(G)I O(n + g) time.

C. Estimation of the size of C. The set C was constructed as the union

where L Uj=o L(k / jh) is the set of levels determined in Step 3 and sets Cj were
constructed in Step 4.5. By the choice of k in Step 3, it follows that ILl <_ n/h and
thus

/+1
n

j=0

where C} denotes the set Cj without the vertices in L. The sets C} consist of parts of
T-cycles that lie on levels between k +jh and k + (j 1)h for j > 0, and on levels less
than k for j 0. Therefore, each of these parts could contain no more than 2(h- 1)
vertices and hence from the previous inequality we obtain

(10)
/+1

n
IC[_< + 2(h- 1)E [Mj[.

j=0

X-/+l IMjl. For j 0 l+ 1 we denote by q(S) theLet us now estimate the sum z_,y=0

number of the connected components of the graph S-. According to the construction

142 L. ALEKSANDROV AND H. DJIDJEV

of the sets My in Step 4.4, we have

2wt(Sf)JIMj[< [E(Sf)[]V(Sf)[+ q(Sf + swt(G)

which follows by Lemma 3.1 if wt(S) > wt(G), or by the fact that the right side
is nonnegative otherwise (in this case IMjl 0). Summing these inequalities over
j 0,...,1 + 1, we obtain

IMI _< o IE(S])I- IV(Sf)I + q(Sf) + ki-0

2 /+1 /+1

_< + q(S]) + (IE(Sff)I- IV(S?)I),
j=o j=o

since z-d:0X-/+l wt(?) _< wt(G). By the construction of graphs j in the subgraph
supplementation procedure it follows, for j 0, 1,..., + 1, that

cEL(k+(j-1)h) E(tr(c))}
V(j+l)-- {V(?)U V(j)} \ { U

EL(+(j-)) v(t())},
and

(12)

where IL(k + (j 1)h) L denotes the number of the cycles in ,(k + (j 1)h). Summing
(12) over j and since So and S+2 S we obtain that

(13)
/+1 /+1

(IE(S]*)I- IV(S;)I) IE(s)I- IV(S)l- IL(k + (j
j=o j=o

We substitute (13) in (11) and apply (2)"

(14)

/+1
2 /+1

IMI < ; + IE(S)I- IV(S)I + -(q(S[)- IL(k + (j 1)h)l)
j=o j=o

2 /+1

+ 2g- 1 + E(q(S?) -IL(k + (j)h)l)
/:o

PARTITIONING GRAPHS OF BOUNDED GENUS 143

(see Lemma 2.1). For each j 0,...,l + 1, the number I,(k + (j 1)h)l is the
number of cycles on the boundary of Zj. Using Theorem 2.1 it is easy to see that the
number of components of the graph S- is equal to the number of connected regions

of Zj+I \ Zj. Each of the connected regions of Zj+I \ Zj has at least one of the cycles
from L(k+(j- 1)h) on its boundary, and no two of these regions have a common cycle
on their boundaries. Hence, the number of cycles in L(k + (j 1)h) is greater than
or equal to the number of connected regions of Zj+I \ Zj, which gives the inequality

(5) q(S) <_ IL(k + (j 1)h)l for j 0, 1,... ,l + 1.

I+1 2
(16) E IMJl <- 2g +

j=O

We obtain the desired estimation substituting (16) and the value of h in (10), i.e.,

n (e2_) (9+1)ICI <_ +2(h- 1) 2g+ <_4 n.

As we will show in the last subsection, the size of C is optimal within a constant
factor for any e _< 2/3. On the other hand, when e is close to one, it is evident that
the size of C cannot be optimal. We investigate such type of separators in the next
subsection.

Intuitively, when e is close to one, we need to cut off a small piece of the given
graph in order to divide it into parts of sizes not greater than e, and therefore the
separator (the "boundary" of this small piece) should be small too. An algorithm
that finds good separators in this case could be useful for designing incremental type
algorithms on graphs.

3.3. Finding s-separators for close to one. It will be more convenient to
talk about (1-)-separators for small values of e instead of talking about e-separators
for big values of . Below we show how Algorithm 3.2 can be extended to cope with
(1 e)-separators when e is small. More precisely, we present an algorithm based on
Algorithm 3.2 that, for e (0, 1/15), finds a (1 e)-separator C1 of no more than
2 + 30x/v/ne(2g + 1) vertices.

The idea of the algorithm for constructing C1 is the following. We first run
Algorithm 3.2 on the input graph G with parameter 2e, storing information for the
obtained division. Let the constructed separator be C2. As discussed above, the
set C2 is defined as the set of vertices belonging to the set of curves C2; see (8).
The set of curves C2 divides the surface Z into connected open regions, which we
denote by Z1,..., Zp,,. Let GI,..., (p,, be the subgraphs of G embedded inside these
regions and OGI,..., OGp,, be the subgraphs that form region boundaries. Clearly, the
vertex set V(OGi) separates the graph Gi from G. From the previous subsection we
know that the weight of any Zi does not exceed 2ewt(G). For our purposes, however,
we will need some lower bound on the weight of the parts of G. For this end we
"group" the sets Zi as follows. Using the division Z1,..., Zp,, we derive a collection
VI,..., Vp(p <_ p") of nonintersecting sets of vertices of G. Each of these sets contains
the vertices of an appropriately chosen set of graphs Gi so that its weight plus the
weight of its boundary exceeds swt(G). The boundary of a given vertex set is defined

By (14) and (15)it follows that

144 L. ALEKSANDROV AND H. DJIDJEV

as the set of vertices that are not in the set but are adjacent to a vertex in the set.
So, the boundary 0V of a set l/i, for each 1,..., p, is the union of the vertices of
the boundaries of those of the graphs G1,..., Gp,,, whose vertex sets are in V. We
find the required (1)-separator C1 as the smallest among the sets OV1,..., OVp.

Next we give more details about how to find the sets V for i 1,..., p. Initially,
we define a collection of p’ sets U(r) (p <_ p’ <_ p"), where i 1,..., p’(r) and
r E Rk,h {k + lh, k / (l 1)h,..., k, 0}, during the implementation of Algorithm 3.2
as follows. Consider any specific iteration of Step 4, i.e., let r Rk,h be fixed. In Step
4.4 we found an edge separator M for the graph S+ (r). Let the connected components
of S+(r) \ M be S+(r),...,Sp+,(r)(r). According to Theorem 2.1, these components

correspond to regions Z+(r), ,Z+p,(r)(r) that satisfy inequalities (4) and (5). The

relation between the regions Zl+(r), Z+ ,..., Zp,,p,()(r) and the regions Z1 is that

each connected region of the interior of the intersection Z(r) N Z+ (r) is equal to one
of the regions Z1,..., Zp,,. (Note that the region Z+(r) could contain parts of faces
added by the subgraph supplementation procedure that pastes open disks onto the
holes of Z(r).) Then, for 1,... ,p’(r), we define U(r) as the set of vertices of G
embedded inside Z Yl Z+ (r). The boundary OU(r) consists of the vertices of G lying
on the boundary of the region Z Cl Zi+ (r). Since the separation graphs are associated
with the embedding of G, i.e., the vertices of a component S+ (r) correspond to the
triangles inside the region Z+(r) for 1,..., p’(r), then we easily construct sets
U(r) and their boundaries, for i 1,... ,p’(r), from the components of S+(r) \ M
during the corresponding iteration of Step 4 in Algorithm 3.2. According to Lemma
3.1 and Theorem 2.1,

(17) wt(U(r)) <_ 2wt(G), i= 1,...,p’(r).

Additionally, since the number of the connected components of S+(r) is q(r), then
for at least p’(r) q(r) (w.l.o.g. for the first p’(r) q(r)) of the sets U(r) we have

(18) wt(G) <_ wt(U{(r) U OUr(r)), i= 1,... ,p’(r) q(r).

By reordering the sequence of the sets U(r) so that the sets satisfying inequality (18)
,.. p’(r) Letprecede the others, we obtain a sequence U1 ., Up, with p/ Y]eRk.h

the sets satisfying (18) be U1,..., Up1 for some pl _< p’. For i 1,...,pl we define
y u.

In the second stage we define sets Vpl +1,... ,Vp as unions of groups of the "light"
sets Up+l,..., Up,, i.e., we find numbers i0 0 < il < < ip_p p Pl, so that

p+i
swt(G) <_ E wt(u u ou) <_ 2swt(G), j 1,... ,p-pl

i--p+i_ +

p!

impl -ip_pl +1
wt(U tO OU) <_ 2ewt(G).

Such numbers ij, for j 1,...,p- Pl, exist since the sets U, for Pl,...,P, do
not satisfy (18). So the sets Vp+1,..., Vp, Vp+l are defined by

Yp+j
p+i

i=p+i +1

Ui for j=l,...,p-pl

PARTITIONING GRAPHS OF BOUNDED GENUS 145

and

u,.
i--p1 --ip-pl +1

We define the boundary 0V of a set V to be the union of the boundaries of the sets
that are included in V.

As described above, we obtain vertex sets V1, Vp+ with boundaries OV1,..., OVp+
satisfying

(19) wt(V) <_ 2wt(G) for i= 1,... ,p + 1

and

(20) wt(Vi U OVi) >_ wt() for i-- 1,...,p.

Each of the boundaries 0V1,..., OVp is a (1 s)-separator and we just chose the min-
imal among these separators. Formally, our algorithm is presented below.

ALGORITHM 3.3 (CONSTRUCTION OF A (i-)-SEPARATOR).
Input: A 2-cell embedding of a graph G on a surface of orientable genus g; weight
function defined on vertices of G; a number s E (0, 1/15).
Output: A set C1 of vertices that is a (1 s)-separator of G.
Step 1: Run Algorithm 3.2 on G with parameter 2s. Find a (2s)-separator C2e, ver-

tex sets U,..., Up,, and their boundaries OU,..., OUp,, as defined above.
Step 2: If wt(C2e)

_
(1/15)wt(G), then define

vertices of C2 and output
Step 3: As described before the algorithm construct sets V1,..., Vp+l and bound-

aries OV1,..., OVp+l, so that inequalities (19) and (20) hold.
Step 4: Among the sets of vertices OV1,..., OVp find the set containing the minimum

number of vertices. Output that set to be the required separator C1.
The correctness and complexity of this algorithm will be formally proved in the

next theorem.
THEOREM 3.2. Let G be an n-vertex graph with nonnegative vertex weights

and I(G) be a 2-cell embedding of G on an orientable surface Z of genus g. For
any (0,1/15) there exists a (1- s)-separator C1 of G of no more than 2 +
30v/v/n(2gs + 1) vertices. The separator C1 can be found in O(n + g) time given

Proof." Let C1 be the separator constructed by Algorithm 3.3. We divide our
proof into three parts.

A. Proof that C1 is a (1 s)-separator. Consider the case where the 2s-separator
C2 found in Step 1 has weight greater than (1/15)wt(G). In this case, according to
the construction of C1 in Step 2, we have

wt(C1) >_ [15slC2sl] wt(C2s) >_ swt(Cl).

This means that C1 is a (1- e)-separator of G and the theorem follows, since by
Theorem 3.1

[15e1C21] _< [30v/v/ne(2eg + 1)].

146 L. ALEKSANDROV AND H. DJIDJEV

Hereafter, we assume that

(21) wt(C) < (5) wt(G).

In this case the set C1 is found in Step 4 as the smallest of the boundaries OV1,..., OVp.
Therefore C1 is a (1 e)-separator for G, since inequality (19) holds for each of the
sets V1,..., VB.

B. Time complexity. The first step of Algorithm 3.3 consists of running Algorithm
3.2 and constructing the sets Ui,..., Up, and their boundaries. Algorithm 3.2 runs
in O(n / g) as shown in Theorem 3.1. The additional time for the construction of
the sets U,..., Up, and OU,..., OUp, during the implementation of Algorithm 3.2
is clearly linear too. Step 2 can be implemented in O(n) time by using a linear
algorithm for ordered statistics. Steps 3 and 4 obviously run in O(n) time. Therefore,
the complexity of Algorithm 3.3 constructs a (1- e)-separator for G in O(n + g) time.

C. Estimation of the size of C. For the size of C1, we have by Step 4

1
p

<22) ICl IOVl,
i--1

First we estimate the sum iP__ 10VI and then we give an estimation of p.
Recall that the union IIP+l 0 coincides with the separator C2e. On the other

hand, Algorithm 3.2 constructs C2e as the set of vertices lying onto a set of curves
C2e, see (8). The set of curves C2e could be considered as an embedding of a graph
with a vertex set Y((2e) iP’__’ V(OZi), an edge set E((2) consisting of the edges
embedded on (2e, and faces Z,..., Zp,,. Note that this embedding may not be a
2-cell embedding. In this case Euler’s formula (1) gives the inequality

(23) [E(u)[- IV()l 29 + p"- 2,

Each edge of E((2e) belongs to the boundary of two of the regions ZI,..., Zp,,.
The boundaries OZI,..., OZp,, consist of simple closed curves (cycles). Then

E IV(OZi)I-- 2E((2e).
i--1

By the definition of the sets V and (23) we obtain

(24)
p+l p"

E IOVI <- E IV(OZi)I 2E(C2e) _< 2 (IC2el + 2g -{- p" 2).
i:1 i=l

Next, we find a lower bound for p. By (19),

p+l

(p + 1)2ewt(G) >_ E wt(V) wt(G \ C2).
i--1

By (21) and since < 1/15

(25) p> t(a) t(c)
2wt(a)

2
-I>.

PARTITIONING GRAPHS OF BOUNDED GENUS 147

Combining (22), (24), and (25) we obtain

(26) Ic l _< 2 + 5e (162 1 + 2g + p"-p- 2).

To complete the estimation of ICll we use the inequality

(27) p" p <_ 6 n 9 + " +6(9-1),

which will be proved below. We substitute (27) in (26), and by using n > 169 and
Theorem a.1 we obtain

]C12+5e IC2el+6 n g+ +S(g-1)

n(1)
Let us now prove (27 RecM1 that p is the number of the connected open

regions Z,..., Zp,, of Z C2 and p is the number of the vertex sets V,..., Vp. We
will use the parameter p, which is the number of the vertex sets U,..., Up,. Since by
definition U,..., Up, form a subpartition of V,..., Vp and for i 1,..., p’ the set U
comprises the vertices embedded into one or more of the regions Zj for j 1,..., p,
then p p p". According to our constructions, vertices embedded in two regions

Z and Z are in one U(r) for some i 1,... ,p’(r) and r e Rk,h, if and only if the
regions Z and Z are componems ofZZ+(r). Therefore, both Z ndZ neighbor
a hole of Z(r); see Fig. 3. Therefore, they have t let one edge of the graph L(r)
on its boundary, where n(r) was defined as the graph of cycles {cl(r),..., c()(r)}
forming the boundary of Z(r). Moreover, no two regions corresponding to a fixed r
can be adjacem to the same edge of L(r). Hence,

(28) p" p’ (IE(L(r))I-
rERk,h

Further, the difference p-p does not exceed the number p-pl of sets Ui, for
1,... ,p, for which (18) is not valid. As pointed out, for any r E Rk,h, at most

q(r) of the sets Ui(r) do not satisfy (18), where q(r) denotes the number of connected
components of S+(r). Thus,

pl_ <_
rE Rlc,h

and by (15), where the numbers q(r) are compared to the numbers u(r) denoting the
number of cycles in L(r), we obtain

(29) P’ P <_ P’ Pl <_ E q(r) <_ E u(r).
r.Rk,h rRk,h

Adding (28) to (29) gives

(30) p" p <_ IE(L(r))I.

148 L. ALEKSANDROV AND H. DJIDJEV

So, to estimate ptl_p we need an estimation for the number of edges of the graph
2 [-JreRk,h ,(r). The graph , is simplicial (has no parallel edges or loops) and has
an embedding (not necessarily a 2-cell) onto a surface of genus g. Therefore, using
Euler’s formula (1) as an inequality and the inequality 2[E()I >_ 31F()I between
the number of edges and the number of faces in any embedding of a simplicial graph,
we obtain

(31)]E(2)] _(3[V(,)] + 6(g- 1).

The set V(L) is the union of the vertices lying on the levels L(r) for r R,h.
According to the choice of h and k (see Step 3 of Algorithm 3.2), we have

Iv(L)l= L(),2 + n,

that, together with (31) and (30), implies (27).
3.4. Tightness of results. In this subsection we show that the results of The-

orems 3.1 and 3.2 re optimM up to a constant factor. More precisely, we re going
to prove the following theorem.

THEOREM 3.3. There exists a constant d 0 such that for any
and n g + 1/

(i) there exists an n-vertex graph G of genus g that has no -separator q size
ta(+ /); a

(ii) there exists an n-vertex raa q enus tat as no (1-)-separator
of size less than dn(g + 1).

Proof. We will be our proof on two special cases of our theorem that are proved
in previous works. The cse g 0 follows immediately from the result of Theorem 6
i [S]. / is poe in [], [1].

We consider graphs with equal weights on the vertices. For graph G and
(0, 1) we denote by c(G,s) the minimum number of vertices in n s-separator

of G. et K(n, g) be the cls of graphs with no more thn n vertices and genus not
exceeding g. We define the following function:

(, ,) max (,).
aK(,)

om the definition it is clear that the function is increasing on n and g and de-
creasing on s. The vMidity of the theorem in the cses g 0 and s 2/3 means
that

(32)

(33)
(34)

It(n, 0, 1) Ft (x/),
(,,/) (/).

By using the monotonicity of It, (32), and (34) we obtain

PARTITIONING GRAPHS OF BOUNDED GENUS 149

which proves (i).
We shall prove (ii) by considering two cases.
1) sg _< 1. In this case by the monotonicity of # and (33) we have

(> 0, a a +

which gives (ii).
2) eg > 1. To show that (ii) holds in this case, we shall prove first that

(35) ep,(n,g,) _< #(n,g, 1 e).

Let G be any graph from K(n, g). We will construct a 2/3-separator of G as a union
of (1 e)-separators. We set Go G and define a sequence of graphs G1,..., Gk in
the following way. Let C-1, for i 1,..., k, be the minimal (1 e)-separator of the
graph G-I and G be the greatest component of G_I \ C_. The weights wt(G)
decrease with and satisfy the inequalities wt(G) <_ (1)wt(G), for i 1,... ,k.
The integer k is chosen to be the smallest such that wt(Gk) <_ (2/3)wt(G) and thereby
k _< 1/. Since C_, for 1,... ,k, is an (1 -e)-separator of G-I, then the only
component of G_ \ C_, for i 1,...,k that is heavier than (2/3)wt(G) is G.

k C-1 is a 2/3-separator of G. Therefore, we haveThus the union C

C G, <_ ICl ICi_ll c(Gi, 1) <_ k].t(Tt, g, 1),
i-1 i_-1

which together with the inequality k _< 1/s gives (35).
combining (35), (34), and g > 1"

Finally, we prove (ii) by

REFERENCES

[1] L. ALEKSANDROV AND H. N. DJIDJEV, Improved upper and lower bounds on separation of
toroidal graphs, in Proc. Optimal Algorithms ’89, Lecture Notes in Computer Science 401,
Springer-Verlag, Berlin, New York, 1989, pp. 126-138.

[2] N. ALON, P. SEYMOUR, AND R. THOMAS, A separator theorem for graphs with an excluded
minor and its applications, in Proceedings of the 22rid Ann. ACM Simp. on Theory of
Computing, Baltimore, MD, 1990, pp. 293-299.

[3] S. N. BHATT AND F. T. LEIGHTON, A framework for solving VLSI graph layout problems, J.
Comput. System Sci., 28 (1984), pp. 300-343.

[4] H. N. DJIDJEV, K. DIKS, O. SYKORA, AND I. VRTO, Edge separators for planar graphs and
their applications, J. Algorithms, 14 (1993), pp. 258-279.

[5] H. N. DJIDJEV, Linear algorithms for graph separation problems, in Proceedings of SWAT
’88, Lecture Notes in Computer Science 318, Springer-Verlag, Berlin, New York, 1988,
pp. 216-221.

[6] ., A separator theorem, Compt. Rend. Acad. Bulg. Sci., 34 (1981), pp. 643-645.
[7] H. N. DJIDJEV AND J. R. GILBERT, Separators in graphs with negative or multiple vertex

weights, SIAM Conf. on Discrete Mathematics, Atlanta, GA, 1990.
[8] G. N. FREDERICKSON, Fast algorithms for shortest paths in planar graphs with applications,

SIAM J. Comput., 16 (1987), pp. 1004-1021.
[9] G. N. FREDERICKSON AND R. JANARDAN, Efficient message rooting in planar networks, SIAM

J. Comput., 18 (1989), pp. 843-857.
[10] J. R. GILBERT, Graph Separator Theorem and Sparse Gaussian Elimination, Ph.D. thesis,

Stanford University, Stanford, CA, 1980.

150 L. ALEKSANDROV AND H. DJIDJEV

[11] J. R. GILBERT, J. P. HUTCHINSON, AND R. E. TARJAN, A separator theorem for graphs of
bounded genus, J. Algorithms, 5 (1984), pp. 391-407.

[12] J. R. GILBERT AND P. E. TARJAN, The analysis of a nested disection algorithm, Numer. Math.,
50 (9s7), pp. 377-404.

[13] M. T. GOODRICH, Planar separators and parallel polygon triangulation, in Proceedings of the
24th Symp. on Theory of Computing, Victoria, BC, 1992, pp. 507-516.

[14] J. L. GRoss AND T. W. TUCKER, Topologycal Graph Theory, John Wiley and Sons, New York,
1987.

[15] X. HE AND Y. YESHA, A nearly optimal parallel algorithm for constructing depth-first spanning
trees in planar graphs, SIAM J. Comput., 17 (1988), pp. 486-491.

[16] C. E. LEISERSON, Area eJ:ficient VLSI computation, in Foundations of Computing, MIT Press,
Cambridge, MA, 1983.

[17] R. J. LIPTON, D. J. ROSE, AND R. E. TARJAN, Generalized nested dissection, SIAM J. Numer.
Anal., 16 (1979), pp. 346-358.

[18] R. J. LIPTON AND R. E. TARJAN, A separator theorem for planar graphs, SIAM J. Appl. Math.,
36 (1979), pp. 177-189.

[19] ., Applications of a planar separator theorem, SIAM J. Comput., 9 (1980), pp. 615-627.
[20] G. L. MILLER, S.-H. TENG, AND S. A. VAVASIS, A unified geometric approach to graph separa-

tors, in Proceedings of the 23rd Ann. ACM Simp. on Theory of Computing, New Orleans,
LA, 1991, pp. 538-547.

SIAM J. DISCRETE MATH.
Vol. 9, No. 1, pp. 151-154, February 1996

1996 Society for Industrial and Applied Mathematics
013

NOWHERE-ZERO 4-FLOWS AND CAYLEY GRAPHS ON
SOLVABLE GROUPS*

BRIAN ALSPACHt, YI-PING LIU$, AND CUN-QUAN ZHANG

Abstract. We prove that every Cayley graph on a finite solvable group admits a nowhere-zero
4-flow. In particular, every cubic Cayley graph on a solvable group is 3-edge-colorable.

Key words, integer flow, edge-coloring, Cayley graph

AMS subject classifications. 05C25, 05C15

1. Introduction. Throughout this paper graphs have neither loops nor multiple
edges. We use the term multigraph when multiple edges are allowed. If X is a graph,
V(X) and E(X) denote the vertex set and edge set, respectively, of X.

DEFINITION 1.1. Let X be a graph and D(X) be an orientation of X. A k-flow
on X is an integer-valued function f E(X) (-k, k) such that for every vertex
u E V(X) the sum of the flow values on the outgoing arcs from u in D(X) equals the
sum of the flow values on the incoming arcs at u in D(X). If f(e) 0 for every edge
e E E(X), the flow is called a nowhere-zero k-flow.

There are several well-known unsolved problems related to flow problems. Prob-
ably the best known unsolved problem dealing with flows is the following problem of
Tutte [13].

CONJECTURE 1.2. Every 2-connected graph containing no subdivision of the
Petersen graph admits a nowhere-zero 4-flow. F. Jaeger [6] proved the first of the
following two results. The second of the two is a consequence of the four-color theorem.

THEOREM 1.3. Every 4-edge-connected graph admits a nowhere-zero 4-flow.
THEOREM 1.4. Every 2-edge-connected planar graph admits a nowhere-zero 4-

DEFINITION 1.5. Let G be a finite group and S c G satisfy 1 S and s S if
and only if s-1 S. The Cayley graph X(G; S) is the graph with vertex set G and
ab E(G) if and only if b as for some s S.

The first of the following two conjectures was originally posed by L. Lovsz i9] as a
research problem and has come to be known as Lovsz’s conjecture. The consideration
of Lovsz’s conjecture quickly led a number of people to consider the second of the
two. It has been attributed to various people in the literature, but it is not at all clear
who initially posed it.

CONJECTURE 1.6. Every connected vertex-transitive graph has a Hamilton
path.

CONJECTURE 1.7. Every connected Cayley graph with three or more vertices
contains a Hamilton cycle.

Received by the editors November 2, 1993; accepted for publication (in revised form) March 9,
1995.

Department of Mathematics and Statistics, Simon Fraser University, Burnaby, BC, V5A 1S6
Canada. The research of this author was partially supported by Natural Sciences and Engineering
Research Council of Canada grant A-4792.

Department of Mathematics, Nanjing Normal University, Nanjing, People’s Republic of China.
Department of Mathematics, West Virginia University, Morgantown, WV 26506-6310

(cqzhang(C)wrnvm. wvnet, edu). The research of this author was partially supported by National Science
Foundation grant DMS-9104824.

151

152 BRIAN ALSPACH, YI-PING LIU, AND CUN-QUAN ZHANG

These two conjectures have attracted considerable attention over the last 24 years,
and there have been many partial results. Some of the partial results are the results of
very nice work; nevertheless, in many ways very little is really known about resolving
the two conjectures. Since a graph with a Hamilton cycle admits a nowhere-zero
4-flow, in order for Conjecture 1.7 to be true it must be the case that appropriate
Cayley graphs admit nowhere-zero 4-flows. This led Alspach and Zhang to make the
following weaker conjecture at the Louisville workshop on Hamilton cycles in 1992.

CONJECTURE 1.8. Every Cayley graph with degree at least two admits a nowhere-
zero 4-flow.

Another motivation for the preceding conjecture is that every graph admitting a
nowhere-zero 4-flow admits a cycle double cover (see [7], [14], and [5]). It has also
been shown that every connected Cayley graph has a cycle double cover [3].

2. Main results. The following lemma is crucial for the proofs of the main
results. It is not hard to prove, and a proof can be found in [6], [11], [13] (see [8]).

LEMMA 2.1. Let X be a cubic graph. The following two statements are equivalent.
1. The graph X admits a nowhere-zero 4-flow.
2. The graph X is 3-edge-colorable.

The remainder of the paper addresses the following two results.
THEOREM 2.2. Every cubic Cayley graph on a solvable group is 3-edge-colorable.
R. Stong [1.2] proved that every Cayley graph X(G; S) on a nilpotent group of

even order has a l-factorization as long as S is a minimal generating set for G. In
particular, Stong’s result impIies that every cubic Cayley graph on a nilpotent group
is 3-edge-colorable. The preceding theorem is an extension to solvable groups of this
special case of Stong’s theorem.

COROLLARY 2.3. Every Cayley graph of degree at least two on a solvable group
admits a nowhere-zero 4-flow.

Proof. Let X be a Cayley graph of degree at least 2 on a solvable group. If X is
of degree 2, then its components are cycles and it admits a nowhere-zero 2-flow. It is
known that the edge connectivity of a connected Cayley graph is equal to its degree
[10]. Thus, if X is of degree 4 or more, each component of X is 4-edge-connected and
by Theorem 1.3 all of X admits a nowhere-zero 4-flow. This leaves only the case that
X is cubic. In this case X is 3-edge-colorable by the preceding theorem. Lemma 2.1
then implies that X admits a nowhere-zero 4-flow and we are done.

Proof of Theorem 2.2. Let X X(G; S) be a cubic Cayley graph on the solvable
group G. The theorem is proved by induction on the order IG of G. We may assume
that X is connected, for if it is not, we may apply the induction assumption to each
component. R. Stong [12] has proved that every connected Cayley graph on a finite
abelian group of even order has a l-factorization (a partition of the edge set into
l-factors, that is, the chromatic index equals the degree). Thus, the result follows if
G is abelian, and consequently, we assume that G is not abelian.

Let us examine S. We know that an element of order 2 in G generates a 1-
factor of X. Since ISI 3, we know that S contains either one element or three
elements of order 2. In the latter case, X is 3-edge-colorable. Hence, we assume that
S {a,a-1,b}, where Ibl 2 and lal r > 2.

If G has a nontrivial normal subgroup N such that S N N 0, then consider the
quotient graph X obtained by first contracting every coset of N to a single vertex. If
some vertex of a coset Ng is adjacent to d vertices of another coset Nh, then every
vertex of Ng is adjacent to d vertices of Nh and vice versa because N is a normal

4-FLOW IN SOLVABLE CAYLEY GRAPH 153

subgroup. Then we put an edge of multiplicity d between the vertices corresponding
to the cosets Ng and Nh in X.

There are three possibilities for X. First, X may be 3K2 (that is, two vertices
joined by an edge of multiplicity 3). In this case, X is a bipartite graph. It is 3-edge-
colorable because regular bipartite graphs have a l-factorization.

Second, every vertex of X may be incident with an edge of multiplicity 1 and
another edge of multiplicity 2. This means the quotient graph looks like an even
length cycle in which every other edge around the cycle has multiplicity 2. Since each
edge of X corresponds to a bipartite subgraph of X that is either regular of degree 1
or degree 2, it is again easy to see that X is 3-edge-colorable.

Third, X may be a cubic graph. Since GIN is also solvable, we know that X is
3-edge-colorable by induction. Each color class lifts to a l-factor of X so that X is
3-edge-colorable too.

Thus we may assume that every nontrivial normal subgroup of G has nonempty
intersection with S.

If the group /a} generated by a contains a nontrivial normal subgroup N, then
b N, as this would imply that b E (a/, that is, that G is abelian (cyclic). By the
above assumption, a E N, so /a} N. This implies that X itself is a generalized
Petersen graph. F. Castagna and G. Prins [1] proved that all generalized Petersen
graphs, other than the Petersen graph, are 3-edge-colorable. The Petersen graph is
not a Cayley graph [4, p. 322]. Thus, we may assume that (a} contains no nontrivial
normal subgroups of G.

We now use the previous assumption to reach two useful conclusions. If ba aj b
for some i, j {1, 2,..., r- 1}, then (a, aj} is a normal subgroup of G contained in
{a}. By assumption we know this is not the case. Thus we conclude that

1. b does not commute with any a for i 1, 2,..., r- 1 and
2. barb (a} for 1,2,...,r- 1.

Since G is solvable, G contains a nontrivial abelian normal subgroup N (see [2,
Prob. 11, p. 107]). We know that S N N 0 and S N (since X is connected). We
consider the case that a N and b N. Then [G" N] 2. Since N is abelian,
lal Ibabl r and by 2 above, N (a} (bab}. Thus, INI r2. Note that

N (a} U bab(a} ba2b(a} U... bar-lb(a}
and

bN b(a} ab(a) a2b(a} U ar-lb(a}.

Denote the cycle of baib(a} by

Ci vi,ovi,1 Vi,r-lVi,o,

where vi,j baibaj for i, j {0, 1,..., r 1}, and denote the cycle of aib(a) by

Di ti,Oti,1 ti,r-l ?.ti,o,

where i,j {0, 1,..., r- 1}. The b-edge incident with vi,j baibaj is also incident
with uj,i aba baibab because N is abelian and both baib and aJ are in N.
Let Pi Ci- vi,ivi,i+l and Qi Di- ui,i_lUi,i for 0, 1,...,r- 1 and with
subscripts reduced modulo r. Then the union of all paths Pi and Q and the b-
edges vi,iui,i, vi,iTlUi+l,i, O, 1,... ,r- 1, is a Hamilton cycle of X. Thus, X is
3-edge-colorable.

154 BRIAN ALSPACH, YI-PING LIU, AND CUN-QUAN ZHANG

We now consider the case that b e N and a N. Observe that (b - N, for
otherwise, aba-1 E N implies that ab ba, which in turn implies that G is abelian.
Now N is abelian and b E N, so by 2 above, ak N for any k 1, 2,..., r- 1 and
aiba- aJba-j for i = j (otherwise, a-j commutes with b).

Consider an auxiliary Cayley graph X’- X(N; S’) on N with S’- {b, aba-}.
Both elements have order 2 and define edges in a Cayley graph on an abelian group.
Thus, X consists of vertex-disjoint 4-cycles. A typical 4-cycle has the form y, yb,
ybaba-, ybaba-lb, y. Back in the original graph X, each vertex z of a 4-cycle cor-
responds to the r-cycle z, za, za2,..., zar-1. Notice that there is an edge joining yba
and ybaba-a ybab and an edge joining ya and ybaba-ba yab. Hence, the typ-
ical 4-cycle mentioned above lifts to a 4r-cycle in X by removing the edges (y, ya),
(yb, yba), (ybaba-, ybaba-la), and (ybaba-lb, ybaba-lba) from the four r-cycles cor-
responding to the vertices of the 4-cycle and by replacing them with the four edges
(y, yb), (ybaba-, ybaba-b), (ya, ybaba-ba), and (yba, ybaba-la). Hence, X has a
2-factor made up of cycles of length 4r, so X is 3-edge-colorable. This completes the
proof of the theorem.

REFERENCES

[1] F. CASTAGNA AND G. PAINS, Every generalized Petersen graph has a Tait coloring, Pacific J.
Math., 40 (1972), pp. 53-58.

[2] D. S. DUMMIT AND R. S. FOOTE, Abstract Algebra, Prentice-Hall, Englewood Cliffs, NJ, 1991.
[3] F. HOFFMAN, S. C. LOCKE, AND A. D. MEYEROWITZ, A note on cycle double covers in Cayley

graphs, Math. Pannon. 2, Issue 1, Univ. Miskolc, Miskolc, 1991, pp. 63-66.
[4] D. A. HOLTON AND J. SHEEHAN, The Petersen graph, Austral. Math. Soc. Lect. Ser. 7, Cam-

bridge University Press, Cambridge, 1993.
[5] B. JACKSON, On Circuit Covers, Circuit Decompositions and Euler Tours of Graphs, British

Combinatorics Conference, 1993, preprint.
[6] F. JAEGER, Flows and generalized coloring theorems in graphs, J. Combin. Theory Ser. B, 26

[7] ., A survey of the cycle double cover conjecture, in Cycles in Graphs, B. Alspach and C.
Godsil, eds., Ann. Discrete Math. 27, North-Holland, Amsterdam, 1985, pp. 1-12.

[8] ., Nowhere-zero flow problems, in Selected Topics in Graph Theory 3, L. Beineke and R.
Wilson, eds., Wiley, New York, 1988, pp. 71-95.

[9] L. Lov.sz, Problem 11 in Combinatorial Structures and Their Applications, in Proc. Calgary
International Conference on Combinatorial Structures and Their Applications, R. Guy, H.
Hanani, N. Sauer, and J. Schonheim, eds., Gordon and Breach, New York, 1970, p. 497.

[10] L. Lov.sz, Combinatorial Problems and Exercises, North-Holland, Amsterdam, 1979, p. 75.
[11] G. J. MINTY, A theorem on three-coloring the edges of a trivalent graph, J. Combin. Theory,

2 (1967), pp. 164-167.
[12] R. STONG, On 1-factorizability of Cayley graphs, J. Combin. Theory Ser. B, 39 (1985), pp. 298-

307.
[13] W. TUTTE, A contribution on the theory of chromatic polynomial, Canad. J. Math., 6 (1955),

pp. 80-91.
[14] C.-Q. ZHANG, Minimum cycle coverings and integer flows, J. Graph Theory, 14 (1990), pp. 537-

546.

SIAM J. DISCRETE MATH.
Vol. 9, No. 1, pp. 155-166, February 1996

() 1996 Society for Industrial and Applied Mathematics
014

TIGHT BOUNDS FOR DYNAMIC STORAGE ALLOCATION

MICHAEL G. LUBYt, JOSEPH (SEFFI) NAOR$, AND ARIEL ORDA

Abstract. This paper is concerned with on-line storage allocation to processes in a dynamic
environment. This problem has been extensively studied in the past. We provide a new, tighter
bound for the competitive ratio of the well-known First Fit algorithm. This bound is obtained by
considering a new parameter, namely the maximum number of concurrent active processes. We
observe that this bound is also a lower bound on the competitive ratio of any deterministic on-line
algorithm. Our second contribution is an on-line allocation algorithm that uses coloring techniques.
We show that the competitive ratio of this algorithm is the same as that of First Fit. Furthermore,
we indicate that this algorithm may be advantageous in certain applications. Our third contribution
is to analyze the performance of randomized algorithms for this problem. We obtain lower bounds
on the competitive ratio that are close to the best deterministic upper bounds.

Key words, on-line algorithms, memory management, dynamic storage allocation, bandwidth
allocation, First Fit, interval graph

AMS subject classifications. 60C05, 60E15, 68Q25, 68R10

1. Introduction. This paper is concerned with a classic problem in computer
science: the allocation of area in a one-dimensional storage device to processes in a
dynamic environment. In a typical setting, at the time of arrival of a process, it is al-
located storage area. This area is required to form a contiguous location in the storage
device. Once allocated, a process cannot be moved to a different location. At some
later point in time (unknown at the time of allocation), the process leaves, thereby
liberating the storage area it occupied and making it available to other processes. As
a result, wasted space or "holes" are generated over time in the storage device. The
objective is to find an allocation algorithm that minimizes the wasted space. This
is a typical on-line setting in which decisions must be based upon the current state
without knowledge of future events.

The processes form an interval graph denoted by G (V, E); a process corre-
sponds to the interval defined (on the time axis) between its arrival and departure
times. Each interval is associated with a weight that is equal to the storage area
required by the corresponding process. The allocation of storage area can be thought
of as a weighted coloring of G: the color of interval i is a range [a, b] (where a and
bi are integers), such that bi -ai + 1 is equal to the weight of interval and there is
no intersection between the ranges of two intervals that overlap. The objective is to
minimize bi, where bi is taken over all intervals.

We denote the maximum weight, taken over all intervals, by Wmax. Let w*(G)

Received by the editors October 1, 1993; accepted for publication (in revised form) March 9,
1995. A preliminary version of this paper appeared in Proceedings of the 5th Annual ACM-SIAM
Symposium on Discrete Algorithms, Arlington, VA, 1994, pp. 724-732.

International Computer Science Institute, University of California at Berkeley, CA 94704
(luby(C)+/-cs+/-.berkeley.edu). The research of this author was supported in part by National Sci-
ence Foundation grant CCR-9016468 and United States-Israel Binational Science Foundation (BSF)
grant 89-00312.

Department of Computer Science, Technion, Haifa 32000, Israel (naor(C)cs.techn+/-on.ac.+/-l).
The research of this author was supported in part by United States-Israel Binational Science Foun-
dation (BSF) 92-00225 grant and the Technion Argentinian Research Fund. Part of this research
was performed while this author was visiting the Center for Discrete Mathematics and Theoretical
Computer Science (DIMACS), Rutgers University.

Department of Electrical Engineering, Technion, Haifa 32000, Israel (ar+/-e(C)ee.
technion, ac. il).

155

156 MICHAEL G. LUBY, JOSEPH (SEFFI) NAOR, AND ARIEL ORDA

denote the weight of the heaviest clique in G, where the weight of a clique is the sum
of the weights of the intervals in the clique. Clearly, w*(G) is a lower bound on the
area used by any allocation algorithm.

We note that the problem of determining an optimal weighted coloring for a
given set of intervals (i.e., the off-line version) is NP-complete in the strong sense [9,
p. 226]. Recently, polynomial-time approximation algorithms for the off-line version
were obtained. Kierstead [10] showed that if the intervals are sorted by their weights,
then the competitive ratio of First Fit is 80. Later, Kierstead [11] gave a different
approximation algorithm that achieves a competitive factor of 6. Both algorithms use
w* (G) as a benchmark for measuring the approximation factor.

The question of evaluating the performance of on-line algorithms was addressed
by Sleator and Tarjan [19], who argued that the traditional approach of measuring the
worst-case behavior does not seem appropriate for many on-line algorithms. There-
fore, they suggested a different measure, the competitive ratio. The performance of
an on-line algorithm is compared with the performance of an optimal off-line algo-
rithm that knows the sequence of events in advance. The maximum ratio between
their respective performances, taken over all sequences, is called the competitive ratio.
Extensive work has been done in recent years for finding the competitive ratio for dif-
ferent problems such as paging [19], [8], servers in a metric space [14], and managing
a linked list [19]. We also adopt the competitive ratio as our performance measure.
Notice that for dynamic storage allocation, it follows from Kierstead’s work [11] that
the competitive ratio (up to a constant factor) is the ratio between the area used by
the on-line algorithm and a*(G).

1.1. Previous work. Dynamic storage allocation has been an important area of
research since the 1950s [12], [18]. Coffman {3] surveyed the results and developments
in this area until the early 1980s. This area of research is also strongly linked with
dynamic bin packing (see [4], [5]).

There are two natural heuristics that were developed early on for dynamic storage
allocation: First Fit and Best Fit. First Fit finds the first free area that can fit the
requirement of the current process; Best Fit finds the free area that best fits the
requirement of the current process, i.e., the one that causes minimal fragmentation.
A different category of methods for dynamic storage allocation constitute segregated
storage methods [18]. These methods have many variations. The idea here is to
partition the memory into blocks, such that in each block, only processes that have
the same (or similar) requirement are allocated.

Denote the maximum weight, taken over all intervals, by Wmx. In the early 1970s,
Robson [15], [16] gave an algorithm that had a competitive ratio of O(log(Wmx)).
He also showed that this is the best possible bound up to constant factors. Indepen-
dently, Woodall [20] showed that the competitive ratio of First Fit is O(log(w,)).
Subsequently, Robson [17] showed that the competitive ratio of First Fit is also
O(log(Wmx)). It is interesting to note that Robson [17] also showed that the compet-
itive ratio of Best Fit can be as bad as Wm. As previously mentioned, algorithms
for the off-line case with constant approximation factors have been recently obtained
[10], [11].

1.2. Our contribution.

1.2.1. First Fit. Our first contribution is to provide tighter bounds for First Fit
by considering a new parameter for analyzing the competitive ratio, i.e., the maximum
number of concurrent active processes in memory.

TIGHT BOUNDS FOR DYNAMIC STORAGE ALLOCATION 157

Let the chromatic number of G be denoted by x(G). Since interval graphs are
perfect, x(G) w(G), where w(G) denotes the clique number of G. Note that
is also the maximum number of concurrent active processes.

We show that First Fit achieves a competitive ratio of min{O(log(Wmax)),
O(log(x(G)))}. This is an improvement over Robson [17], since, in general, Wmax
and x(G) are incomparable. Tightening the analysis of First Fit is important, since
it is a natural heuristic that is widely used.

It follows from the lower bounds proved by [15], [20] that our results are tight.

1.2.2. The Coloring algorithm. We next analyze a second deterministic on-
line algorithm, which we call the Coloring algorithm. It belongs to the category of
segregated storage methods [18] and uses an altogether different strategy than First
Fit.

Consider a portion of storage area that is used by First Fit. Over time, we will
generally see processes of diverse weights being allocated to that same portion. In
fact, it is a fundamental property of First Fit to use "holes" created by processes that
left the system in order to allocate snaller weight processes. As discussed in what
follows, this property (i.e., allocating over time processes of various weights within the
same area) is often a deficiency. Moreover, in an empirical study comparing different
dynamic storage allocation methods, Detlefs et al. [6] show that hybrid algorithms
that allocate differently small and large requirements are very efficient in practice.

We now describe the Coloring algorithm. This algorithm never places processes
of different weights (up to a constant factor of 2) within the same area. It assigns slots
of storage area to each process "type" (according to weights); once a slot is assigned,
the space within it is occupied only by processes of its type.

We show that the Coloring algorithm achieves the same (tight) worst-case com-
petitive ratio as First Fit. To the best of our knowledge, the competitive factor of
algorithms belonging to the category of segregated storage has not been previously
analyzed. In the following we briefly discuss several applications in which this type
of algorithms can be expected to be efficient.

Consider the classical problem of allocating dynamic memory. It is well known
that segregated storage algorithms are much more efficient than First Fit in finding
free space for a new process. (See, e.g., [18], [21]; see also [2] for an efficient imple-
mentation of First Fit). Indeed, by using standard techniques, the Coloring algorithm
can allocate a new process within O(1) operations.

Dynamic storage allocation algorithms also arise in typical problems concerning
storage of commodities. In such environments, one often needs to "prepare" a storage
area that fits a certain type of commodities. Since the weight of a commodity is usually
related to its type, the Coloring algorithm saves the need to "reshape" storage areas
for different types of commodities, whereas First Fit would frequently demand such
actions.

Yet another field to which dynamic storage allocation algorithms are applicable
is that of communication networks. Consider for example a radio network, in which
transmission bandwidth is divided into time, or frequency, slots. Transmitting stations
dynamically request variable numbers of consecutive slots from a network controller.
After completing transmission, a station informs the controller on the release of its
allocated bandwidth. Obviously, the controller should attempt to allocate bandwidth
upon demand so as to minimize the total amount of used bandwidth. The application
of dynamic storage allocation algorithms in such an environment is straightforward.
Typically, there is a strong relation between the size of the requested bandwidth and

158 MICHAEL G. LUBY, JOSEPH (SEFFI) NAOR, AND ARIEL ORDA

the application that the corresponding transmission serves. This means that a receiv-
ing station, which attempts to follow the transmissions of a particular application,
would need to be tuned to all portions of bandwidth in which such an application
may be transmitted. First Fit would demand such a station to readjust its tuning
frequently; the Coloring algorithm, on the other hand, guarantees that the receiving
station would need just a few initial tunings.

1.2.3. Randomization. There has been extensive work devoted to exploiting
and understanding the power of randomization in an on-line environment [1]. The
idea is that randomized on-line algorithms might exhibit a better competitive ratio
than deterministic ones, since they manage to "outsmart" the adversary sometimes.

A randomized on-line algorithm is defined to be a probability distribution over
a space of deterministic on-line algorithms. There are several types of adversaries in
this context, which differ by the information that the adversary is allowed to have.
The most commonly considered adversary (and the one considered in this paper) is
the oblivious one, who must construct the request sequence in advance based on the
description of the algorithm but has no access to the random choices made by the
algorithm.

A randomized on-line algorithm A is said to have competitive ratio a if, for each
request sequence, the ratio between the expected value of the performance of A and
the off-line performance is at most a.

We show that, for the dynamic storage allocation problem, allowing randomized
algorithms is not very helpful. In particular, we prove a lower bound of

min{O(log Wmax/log log Wmax), O(log x(G)/log log x(G))}

on the competitive ratio of any randomized algorithm. Note that these lower bounds
are only min{O(log log Wmax), O(log log x(G))} away from the deterministic lower and
upper bounds. This is in contrast to the exponential gap between the competitive ratio
of deterministic on-line algorithms to the competitive ratio for randomized 0n-line
algorithms for the somewhat related paging problem: If k denotes the number of pages
in the cache, then k is the competitive ratio of the best deterministic algorithm; on
the other hand, it is known [8] that randomized algorithms can achieve a competitive
ratio of log k.

We conjecture that our randomized lower bounds can be further improved to
match those of the deterministic case.

1.2.4. Multiple storage devices. Our results can be extended to the case
where there are several storage devices, and a process can be allocated to any of
the devices. Simple analysis shows that having several devices has no (negative or
positive) effect on the performance of dynamic storage allocation. The details can be
found in [13].

2. Upper bounds. In this section we consider the First Fit and Coloring algo-
rithms.

To clarify the exposition, we adopt the following notation. A process is referred to
as an "item" where the item size is equal to the weight of the corresponding process.
The storage device consists of cells, or locations, that are addressed consecutively
from zero. The space that is used by an algorithm is equal to the value of the highest
address of a location that was used by the algorithm. We denote the chromatic number
of G, x(G), by k.

TIGHT BOUNDS FOR DYNAMIC STORAGE ALLOCATION 159

2.1. First Fit. First Fit is defined as follows. When a process appears, First Fit
searches the memory for the first available area that satisfies the requirement of the
process. In other words, the item is allocated in the area that has the lowest possible
address.

We now bound the competitive ratio of First Fit. The idea is that locations with
a "high" address will not contain "small" items. These notions are defined more
rigorously in the following. Let W [Wmx/kJ.

LEMMA 2.1. Items that have size less than or equal to 4W are always completely
contained in the first 5w* locations.

Proof. Suppose First Fit needs to allocate area to an item I that has size U <_ 4W,
and assume further that this cannot be done within the first 5w* locations. In this
case, the size of the largest hole in the first 5w* locations is at most U- 1. Since the
number of holes is at most k (including the area above the highest item), this means
that the total area occupied by holes within the first 5w* locations cannot exceed
k(U- 1) < 4Wmx _< 4w*. The area that is occupied by currently active items (of
any size) cannot be more than w* -U. Hence, there must be contiguous free space
of size U within the first 5w* locations, contradicting the assumption. [:]

For ease of presentation, we first bound the competitive ratio for the case where
all weights are powers of two. Let t be the smallest integer such that 2 >_ 4W. We
show that in this case the following invariant holds.:

An item of size 2J, where j >_ t, can always be allocated within the
first (6 + j g)w* locations.

It follows from the invariant that the competitive ratio of First Fit is at most 5+log2 k
by substituting j log2 Wmax. (Note that j is an integer.)

The proof of the invariant is by induction on j. We first prove the base case where
j g. It follows from Lemma 2.1 that items that have size smaller than or equal to
4W are completely contained in the first 5w* locations. Since we assumed that all
item sizes are powers of 2, it follows that in locations with address higher than 5w*
the minimum item size is 2. This implies that the minimum size of a hole above
address 5w*, except perhaps for the first hole, is also 2. Suppose that an item of size
2 cannot be allocated in the first 6w* locations. This means that the only hole in
locations with address between 5w* + 1 and 6w* is the first hole, which must have size
less than 2. This implies that the total size of the items that are currently active is
strictly greater than w*, a contradiction. The inductive step is argued similarly, thus
proving the invariant.

The analysis of First Fit in the general case is more subtle. Notice that it is not
the case that one can round up the sizes to the closest power of two and then argue
that at most a factor of two in the competitive ratio is lost.

We first prove a technical lemma regarding harmonic numbers. Let Hn -.in__l "LEMMA 2.2. Assume that p >_ 1.5q and q >_ 6. Then Hp Ha >_ 0.3.
Proof. We use the following known bound on Hn [12, p. 74]:

1 1 1
H =lnn + , + 2n 12n2 + 120n4

This implies thatwhere 7 is Euler’s constant and 0 < a < 252n

Hp-Hq >ln(p) 1 1 1 1 1 1 1- 2p 2q 12q2 12p2 120p4 120q4 252p6"

160 MICHAEL G. LUBY, JOSEPH (SEFFI) NAOR, AND ARIEL ORDA

Since p _> 1.5q, we have that

1 1 1
12q2 12p2

Also, since q _> 6, we have that

which concludes the proof. [:!

1 1
120q4 120p4 252p6"

1 1
2p 2q

LEMMA 2.3. The competitive ratio of First Fit is at most 9 + 4 In k.
Proof. We claim that items of size at most j, where j _> W + 1, are always

allocated by First Fit in locations with address lower than

w* J

=W+I

The claim is proved by induction. From Lemma 2.1, it follows that the claim
holds for the case where j _< 4W. We assume the claim holds for all values smaller
than or equal to j (and at least W + 1) and show that it holds for j + 1. Let

co* 1
?"

=W+l

Assume the claim does not hold for j + 1. This implies that in the first L+ locations,
there are no holes of size bigger than j. The following holds for locations between
(Li-1-}-1) to L for W+I _< _< j+l, assuming that each item is completely contained
in the area between (L-I + 1) and L, for some i:

Any contiguous occupied area is of size at least i, and the holes are
of size at most j. Hence, the total occupied area in locations between
(Li_1 + 1) to L is at least

i
(Li-Li-l).

i+j

Notice that, in the above, each hole is paired with the item below it. Thus, if an
item is not completely contained in the area between (Li_l + 1) and Li, then the
area it occupies within (Li-2 + 1) and Li- would not be not paired with any hole.
This means that such an item can be paired with the first hole within (Li-1 + 1)
and Li, yielding that it is no longer necessary to assume that each item is completely
contained in the area between (Li_ + 1) and Li.

Summing up over all possible values of i, we get that the area that is occupied
within the first Lj+ locations is at least

j+l
03"

j+l 2j+l
1 co* 1E (Li Li-1)"

+j 0.3
i=W+I

+j 0.3
i=W+j+li=W+I

2+1 > 1.5, andW+j+l >6. Hence, byLemmaSince j _> 4W, it follows that w+j+l
2.2,

2j+-- _1 >0.3,
i--W+j+l

TIGHT BOUNDS FOR DYNAMIC STORAGE ALLOCATION 161

implying that the area occupied within the first Lj+I locations is at least w*. This
means that no new item can appear, contradicting the assumption that the above
claim does not hold for j + 1.

Hence, the total area occupied by First Fit is at most

WITIw* 1

i=W+l

Since Inn < Hn < In n + 1, we get that the above is at most

co* ((Wmx’) (2.g+lnk) <..(9+41nkg +. l+ln
W+I]

N*"
0.a

thus proving the lemma.
We thus have the following theorem.
TOaM 2.4. The competitive ratio of First Fit is bounded b min{O(log Wmx),

Pro@ This follows from Lemma 2.g together with Robson’s proof [17].
Robson [lg] and Woodall [20] showed a lower bound of a(log Wmx) on the com-

petitive ratio of any deterministic on-line algorithm. We observe that, in the dy-
namic allocation problem instance, they construct for the proof of the lower bound
k Wmax. Hence, their lower bound extends immediately to a lower bound of
min{(logWmx),logk} on any deterministic algorithm. In fact, this observation
can be generalized to hold in a more general setting, i.e., for k < Wmax, by slightly
modifying the dynamic allocation problem instance in the proof of Woodall [20]. In
this instance, items are inserted in iterations, where in the ith iteration, items of
sie 2i-1 are inserted. (Initially, i 1.) The value of * is fixed in advance by the
adversary, and Wmx *. A careful examination of Woodall’s proof reveals that if
the insertion process starts by inserting items of sie 2, for any j > 1, then a lower
bound of (log(*/2)) on the competitive ratio can be proved. We note that, in this
case, k O(*/2). Thus, a lower bound of (logk) on the competitive ratio of any
deterministic on-line algorithm is proved for arbitrary k < Wmx. We conclude with
the following corollary.

CoaoAaY 2.g. The competitive rtio of First Fit is min{O(log Wmx), O(log k)}... he coloring algorithm. In this section we analye an algorithm for dy-
namic allocation, called the Coloring algorithm. The algorithm splits items into sets
according to their sies. An item of sie is assigned to set r, where 2r-1 <
A any given time, each set r is assigned ero or more slots in memory, each of sie
2. The signment of slots is performed as follows. Suppose a new item belonging
to the rth set appears. The Coloring algorithm tries to allocate it within a free slot
signed to that set. If no such slot is available, the algorithm produces a new slot by
increasing the used area by 2. A slo assigned to set r (that is, he space allocated
to it) is reserved forever for items belonging to that set. Thus, a location is never
allocated with items belonging to different sets.

Let G denote the subgraph of G induced by intervals that have weight w, where
2r-1 < W 2r. Denote by (G) the maximal number of concurren items belonging
to the rth set.

We observe that with respect to each set r, the Coloring algorithm uses at most
twice the optimal amount of space by the following argument. Suppose that the sie
of each item in the rth set is 2. Since the intervals (corresponding to items) are

162 MICHAEL G. LUBY, JOSEPH (SEFFI) NAOR, AND ARIEL ORDA

sorted by their left endpoint, the greedy algorithm produces an optimal coloring. The
factor of 2 is due to the fact that the size of each item in Gr is "rounded" up to the
nearest power of 2. The following lemma seems to be folklore.

LEMMA 2.6. The Coloring algorithm achieves a competitive ratio ofO(log(Wmax)).
Proof. The amount of space assigned to a set r is precisely x(Gr)" 2. For all

values of r we have that x(G)" 2 _< 2. w*, meaning that each set occupies space of
at most 2. w* locations. The number of distinct sets is at most log(2Wma). Thus,
the overall space used by the Coloring algorithm is at most 2. (log(Wmx) + 1). w*.
The lemma follows.

LEMMA 2.7. The total number of locations allocated to all sets r for which 2r
Wmax is at most 2. Wmk

Proof. As was observed in the previous proof, the total area assigned to a set r is
precisely x(G)" 2. Clearly, x(Gr) _< k. This means that the total amount of space
allocated to all sets for which 2 < Wmax is at mostk

Llog()J
Wmax2. k < 2k. 2. Wmax. [-]

k

LEMMA 2.8. The total amount of space allocated to all sets r for which 2 >_
Wmax

k is at most 21og(2k).w
Proof. The number of distinct sets containing items of size larger than Wmx

k]is
at most log(2k). Since each set occupies at most 2w* locations, we get that the total
area used is 2 log(2k), w*.

THEOREM 2.9. The competitive ratio of the Coloring algorithm is min{O(log Wmax),
O(log k)}.

Proof. The proof follows directly from Lemmas 2.6, 2.7, 2.8, and the discussion
preceding Corollary 2.5. [:1

2.3. Comparison. When comparing First Fit with the Coloring algorithm, it
should be emphasized that neither algorithm dominates the other, i.e., for each algo-
rithm there exist examples in which it outperforms the other. In particular, there are
instances in which First Fit is near-optimal, whereas the Coloring algorithm reaches
the worst-case bound.

The Coloring algorithm tends to perform well compared to First Fit in heteroge-
neous systems, i.e., when concurrency of items of various sizes is common. Weinstock
and Wulf [21] describe an implementation of a segregated storage scheme called Quick
Fit. It is interesting to note that they indicate that Quick Fit utilizes storage effec-
tively in practice. The reason tb.ey provide for this phenomenon is that if a particular
storage area has been allocated and then deallocated, there is a high probability that
it will be allocated again.

3. A randomized lower bound. In this section we prove a lower bound of
O(w* log w*/loglogw*) on the space required by any randomized on-line dynamic
storage allocation algorithm. The lower bound will be proved for the case of a ran-
domized oblivious adversary. (See 1.)

Our proof will use a corollary due to Yao [22] of von Neumann’s minimax principle.
Let P be a probability distribution defined on the input. Yao’s result implies in our
case that the expected value (with respect to 7) of the competitive ratio of any
deterministic on-line algorithm is always a lower bound on the competitiveness of
the best randomized on-line algorithm. Hence, our goal is to generate a "hard"

TIGHT BOUNDS FOR DYNAMIC STORAGE ALLOCATION 163

distribution on the input, i.e., a distribution such that the expected value of the space
required by any deterministic on-line algorithm is at least O(w* log w* / log log w*).

Consider the following oblivious adversary Adv. Adv chooses a dynamic storage
allocation instance probabilistically, and thus, Adv (implicitly) defines the probability
distribution P on the input. Adv first decides on the value of w* before the run of
the algorithm. The strategy of Adv is to insert into the system items of growing sizes
and then to delete half of them at random. Adv uses item sizes that are powers of g,
where the value of g will be determined later. Without loss of generality it is assumed
that w* is a power of 2, say w* 2r. More specifically, Adv works in iterations, where
in each it performs the following.

Insertion of items at iteration i. Denote by the random variable w the total area
occupied by items currently residing in the system (initially 0). Adv inserts [*-g.-1
items of size g-I into the system.

inde-Deletion of items at iteration i. Adv deletes each item with probability ,
pendently of the other items.

Starting with the the first iteration, Adv sequentially performs the insertion fol-
lowed by the deletion steps for all iterations up to [(r- 1). logg 2] / 1.

Throughout the analysis, we mark at each iteration, following the insertion step, a
subset of the items that currently reside in the system. Each such item will be termed
as marked. A marked item may become unmarked at some later iteration. We denote
by L the list of marked items, after the insertion step of iteration i, ordered according
to their position in the storage device from bottom to top. The marking process is
performed as follows.

Rule A: At each iteration, all the new items inserted are marked.
Rule B: At each iteration > 1, we select approximately 1/(g + 2) fraction
of the marked items that resided in the system in the previous iteration (and
were not deleted in the last deletion step). All other previously marked items
become unmarked. The precise procedure is as follows. In the list L-I, we
skip the first g items and then search for the next item in the list that was not
deleted in the deletion step of iteration i- 1. This item is marked and inserted
into the list L. The process is repeated until the list L-I is exhausted.

We stress that the notion of a marked item is solely for the purpose of analysis.
LEMMA 3.1. Following the insertion step of the th iteration, the expected number

of marked items is at least

(g / 2)i-1

Proof. The claim clearly holds for 1. Assuming inductively that it holds for
iteration i- 1, we show that it also holds for iteration i. By the above marking rules,
marked items are either newly inserted items or a subset of the items marked in the
previous iteration.

The total area occupied by items, at any time, cannot be more than w*. Since
each item is deleted with probability , the expected value of the occupied area, after

* 2-1 This means that,the deletion step of any iteration, cannot be more than -for all i, the expected value of w is at most 2-. Hence, the expected number of
newly inserted items at iteration is at least

2r--1
1,g{-1

164 MICHAEL G. LUBY, JOSEPH (SEFFI) NAOR, AND ARIEL ORDA

and all these items are marked by Rule A.
We now evaluate the expected number of items marked by Rule B. For the purpose

of the analysis, we assume that L_I is of infinite length; however, ILi_ll still refers
to the original length of the list.

Let dj be a random variable that counts the number of items in Li-1 between
the (j 1)st marked item and the jth marked item. By Rule B and by the deletion
strategy of Adv, (dj -g) is geometrically distributed with parameter 1/2. This means
that Exp[dj] g + 2. Let T be a random variable that denotes the smallest t such
that

j--1

It is clear that the expected number of items marked by Rule B is Exp[T] 1. Notice
that a stopping rule can be associated with Rule B in a natural way: Stop whenever
the list L-I is exhausted. Hence, Wald’s identity [7] can be applied in this case; it
states that

Exp[T]. Exp[d] Exp [j=l dj]
Clearly,

_<]L-xl + g + 2.

Therefore, we get that the expected number of items marked by Rule B is at least

1.
g+2

Let t be a random variable that denotes the cardinality of L. From the above it
follows that

i-1 2r--1
Exp[t Iti_ 1] > 1 + 1.

g+2 gi-1

Since Exp[gi Iti_ 1] is a linear function of t_ 1, it follows that

2r--1
Exp[ti] > ExPired_l]

1 + 1
g+2 gi-1

By the inductive assumption,

Exp[gi_l] _> (i- 1). 2r-1
2.

+ 2)

Thus, the expected number of items marked by Rules A and B is at least

Exp[gi]> ((i-1)’2r-1)1(g_)-)--2-2
g+2

2+
gi-1

TIGHT BOUNDS FOR DYNAMIC STORAGE ALLOCATION 165

We define the distance between two items residing in the storage device as the
distance between their centers.

LEMMA 3.2. Following the insertion step of the ith iteration, the distance between
two consecutive marked items is at least g-1/2.

Proof. We prove the lemma by induction. The claim trivially holds for the first
iteration. Assuming that it holds for iteration i- 1, we prove it for iteration i. Let
X and Y be two consecutive items in Li. If one of them was marked by Rule A, then
its size is gi-1; thus the distance between the two centers is at least gi-1/2. Suppose,
then, that both items were marked by Rule B. This means that both X and Y also
belong to L-I. Recall that Rule B skips at least g items in L-I between X and Y.
Coupling this with the inductive hypothesis, we conclude that the distance between
X and Y in iteration i is at least

gi-2 gi-i
g"

2 2

THEOREM 3.3. The competitive ratio of any randomized dynamic storage alloca-
tion algorithm is at least t(log w* / log log w*).

Proof. Consider the storage device after, the insertion step of iteration i. By
Lemmas 3.1 and 3.2, the occupied storage area is at least

i. 2r-1) gi-1 i. 2r-2 gi-1 > i. 2r-2
2r_

(((g.--1 2
2

2" 1+ 2" 1+
where the last transition follows from i _< [(r- 1). log2J + 1. Hence, after the
insertion step of the last iteration, the occupied storage area is at least

((r- 1). log 2). 2- 2r-1
(2)(r--1)logg22. 1+

We choose g such that g [r/log2 rJ. This means that the occupied storage area is
at least

(r-I) .2r-2. r--1 .2r-2 (w* "logw*)log r--log log r 2r_ log r
2r- [’]

2"(1+ 2) ’* 2"e8 i-(g lggw=

Since w* _> Wmax and w* _> k, it turns out that D(log Wmax/log log Wmx) nd
D(log k/log log k) are also lower bounds on the competitive ratio. Note that in the
strategy of Adv the three values w*, Wmx, and k are equal up to a constant factor.

166 MICHAEL G. LUBY, JOSEPH (SEFFI) NAOR, AND ARIEL ORDA

Acknowledgments. We thank the two anonymous referees for insightful com-
ments. Many thanks to Oran Sharon for bringing this problem to our attention. We
would like to thank Yishay Mansour and Ron Shamir for helpful discussions.

REFERENCES

[1] S. BEN-DAVID, A. BORODIN, R. M. KARP, (. TARDOS, AND A. WIGDERSON, On the power of
randomization in on-line algorithms, Algorithmica, 11 (1994), pp. 2-14.

[2] R. P. BRENT, Ejficient implementation of the first-fit strategy for dynamic storage allocation,
ACM Trans. Programming Languages and Systems, 11 (1989), pp. 388-403.

[3] E. (. COFFMAN, An introduction to combinatorial models of dynamic storage allocation, SIAM
Rev., 25 (1983), pp. 311-325.

[4] E. (. COFFMAN, M. R. (AREY, AND D. S. JOHNSON, Dynamic bin packing, SIAM J. Comput:,
12 (1983), pp. 227-258.

[5] , Approximation algorithms for bin-packing--an updated survey, in Algorithm Design for
Computer System Design, G. Ausiello, M. Lucertini, and P. Serafini, eds., Springer-Verlag,
Wien and New York, 1984, pp. 49-106.

[6] D. DETLEFS, A. DOSSER, AND B. ZORN, Memory Allocation Costs in Large C and C+-t- Pro-
grams, Technical Report CU-CS-665-93, University of Colorado, Boulder, 1993.

[7] W. FELLER, An Introduction to the Theory of Probability and Its Applications, John Wiley
and Sons, New York, 1967.

[8] A. FIAT, R. M. KARP, M. G. LUBY, L. A. MC(EOCH, D. D. SLEATOR, AND N. E. YOUNG,
Competitive paging algorithms, J. Algorithms, 12 (1991), pp. 685-699.

[9] M. R. GAREY AND D. S. JOHNSON, Computers and Intractability--A Guide to the Theory of
NP-Completeness, W. H. Freeman, San Francisco, 1979.

[10] H. A. KIERSTEAD, The linearity of first-fit coloring of interval graphs, SIAM J. Discrete Math,
1 (1988), pp. 526-530.

[11] , A polynomial time approximation algorithm for dynamic storage allocation, Discrete
Math., 88 (1991), pp. 231-237.

[12] D. E. KNUTH, Fundamental Algorithms, Vol. 1, 2nd ed., Section 2.5, Addison-Wesley, Reading,
MA, 1973.

[13] M. G. LUBY, J. NAOR, AND A. ORDA, Tight bounds for dynamic storage allocation, in Proc. 5th
Annual ACM-SIAM Symposium on Discrete Algorithms, Arlington, VA, 1994, pp. 724-732.

[14] M. S. MANASSE, L. A. MCGEOCH, AND D. D. SLEATOR, Competitive algorithms for on-line
problems, in Proc. 20th Annual ACM Symposium on Theory of Computing, Chicago, IL,
1988, pp. 322-333.

[15] J. M. ROBSON, An estimate of the store size necessary for dynamic storage allocation, J. Assoc.
Comput. Mach., 18 (1971), pp. 416-423.

[16] ., Bounds for some functions concerning dynamic storage allocation, J. Assoc. Comput.
Mach., 12 (1974), pp. 491-499.

[17] ., Worst case fragmentation of first fit and best fit storage allocation strategies, Computer
J., 20 (1977), pp. 242-244.

[18] T. A. STANDISH, Data Structures Techniques, Addison-Wesley, Reading, MA, 1980.
[19] D. D. SLEATOR AND R. E. TARJAN, Amortized eJficiency of list update and paging rules, J.

Assoc. Comput. Mach., 28 (1985), pp. 202-208.
[20] D. R. WOODALL, The bay restaurant--a linear storage problem, Amer. Math. Monthly, 81

(1974), pp. 240-246.
[21] C. B. WEINSTOCK AND W. A. WULF, Quickfit: an eflficient algorithm for heap storage alloca-

tion, ACM SIGPLAN Notices, 23 (1988), pp. 141-144.
[22] A. C.-C. YAO, Probabilistic computations: towards a unified measure of complexity, in Proc.

18th Annual IEEE Symposium on Foundations of Computer Science, Providence, RI, 1977,
pp. 222-227.

SIAM J. DISC. MATH.
Vol. 9, No. 2, pp. 167-172, May 1996

() 1996 Society for Industrial and Applied Mathematics

001

FINDING A DOMATIC PARTITION OF AN INTERVAL
GRAPH IN TIME O(n) *

GLENN K. MANACHER AND TERRANCE A. MANKUS

Abstract. We present a simple O(n) time and space algorithm for producing a domatic
partition and the domatic number for members of the class of interval graphs, where n is the number
of intervals in a graph.

Key words, domination, domatic number, domatic partition, interval graph

AMS subject classifications. 68Q25, 68R10

1. Introduction. A graph G (V, E) is an interval graph if its vertices can be
put in one-to-one correspondence with a family I of intervals on the real line such
that two vertices are adjacent in G if and only if their corresponding intervals have
nonempty intersection. I is called the intersection model for G. If the endpoints of I
are presorted, I is called a sorted model.

A set S dominates V if and only if every vertex in V- S is adjacent to at least one
member of S. Let DP {PIP is a partition of V and every set in P dominates V}.
The domatic number is defined as DN(G) max{#PIP E DP}, where # denotes
cardinality. A maximum domatic partition MDP(G) is a partition pt in DP for which
#P’= DN(G).

Finding DN(G) is NP-complete for arbitrary graphs [GJ79] and even for circular-
arc graphs [Bo85]. For interval graphs, Bertossi [Be88] showed that, given the model,
DN(G) and MDP(G) can be found in time O(n2.5); for a proper interval graph, no
two of whose intervals contain one another, this can be reduced to time O(n) [LHC90].

After submission of our original draft, we discovered that our results were equaled
in a contemporaneous proceedings paper by Peng and Chang [PC91]. This work is
referenced accessibly and extended to strongly chordal graphs in [PC92]. Peng and
Chang first found the MDP(G) in time O(n log log n). Their proof of correctness of
this algorithm relied on two elegant, high-level invariants, which also apply to our
algorithm. They then used an insightful resequencing of their set operations, using
queues to represent sets, to reduce the time complexity to O(n). Our approach avoids
these complexities, using a less elegant but simpler linear-time method amenable to
direct proof.

2. Preliminaries. In [CH77], lower and upper bounds on DN(G) were studied
for various classes of graphs G. Let di denote the degree of vertex , and let 5(G)
min{dilt is a vertex in G}. In [CH77] Cockayne and Uedetniemi established the
easy result DN(G) _< 5(G) + 1 for any graph G. G is called domatically full if
DN(G) 5(G) + 1. In [CH77] it was determined that every graph in certain classes
of graphs, e.g., trees and maximal outerplanar graphs, are domatically full.

In an important paper apparently overlooked by most of these references, Farber
[F84] showed nonconstructively that strongly chordal graphs (chordal or triangulated

* Received by the editors February 11, 1991; accepted for publication (in revised form) June 30,
1995.

f Department of Mathematics, Statistics, and Computer Science, University of Illinois at Chi-
cago, Chicago, IL 60607 (manacher@uis.edu).

167

168 GLENN K. MANACHER AND TERRANCE A. MANKUS

graphs in which every even cycle of length _> 6 has an "odd" chord) are also domatically
full. Since interval graphs are a subset of strongly chordal graphs [J85] it follows that
interval graphs are domatically full. This result also is a simple consequence of our
algorithm (Corollary 1). It is known that chordal graphs are not domatically full; an
example was first discovered by Arikati [A90] with n 9 and e 27.

We consider the class of interval graphs (7 with an endpoint-sorted model as
input. A simple scan can compute 5(G), and thereby DN(G), in time O(n), where
n equals the number of intervals. In this paper, we show how MDP(G) can also be
computed in time O(n).

3. Domatic number. Without loss of generality, suppose all endpoints in I
are distinct. Let I1,..., In represent the intervals labelled by the appearance of their
left endpoints in a left-to-right scan. In the sequel we denote Ii simply as i. Let
LE(i), RE(i) denote, respectively, the left endpoint and right endpoint of I. For any
pair of endpoints, a and/3, we write a < fl to indicate that a lies to the left of/3.

It is clear that the vertex degree of interval-/is given by the simple formula

di ai -bi 1,

where ai #{jILL(j) < RE(i)} and bi #{klRE(k < LE(i)}. It is a trivial matter
to scan I, accumulating left and right endpoints in separate counts, and thereby to
compute di for all i. Hence we have immediately Lemma 1.

LEMMA 1. Given a sorted interval model I, di can be computed for all in
time O(n).

COROLLARY 1. Given a sorted model of an interval graph, 5(G), and therefore
DN(G) 5(G) + 1, can be computed in time O(n).

In the sequel, we will denote 5(G) simply by 5.

4. MDP algorithm. Our partitioning process is dependent upon the relative
positions of the right endpoints of the intervals in the given model. To represent these,
we set up an array R[1... n] where R[j] if the right endpoint of interval is the
jth right endpoint encountered during a left-to-right scan of I.

Our algorithm partitions the intervals 1... n into 5 + 1 partition sets, each of
which is a dominating set. Each interval will be assigned a partition designation
number in the range 1... 5 + 1, with the number stored in an array PART[1... n]. If
interval i is a member of the kth partition, we set PART[i] k. If it is determined that
interval can be placed into any of the 5 + 1 partition sets, this fact will be reflected
by assigning PART[i] c.

The partitioning process has the following simple rules. We assume that R[1... n]
has already been determined and is available for use, along with the interval endpoints
listed in a suitable form.

Step 1. We begin by initializing the 5 + 1 partition sets. For the intervals labelled
1 to 5 + 1, we set PART[i] i. The interval last placed into each of the 5 + 1 partition
sets will be referred to as a last. Initially, intervals 1 to 5 + 1 are lasts. Since there are
exactly 5 + 1 partition sets, there are exactly 5 + 1 lasts. An array L[1... n] will be
used to keep track of the 5 + 1 lasts. If interval is a last, then L[i] 1 and interval
is in the partition set numbered PART[i]. If interval is not a last then L[i] O.

The remaining intervals, 5 + 2 to n, will be considered for placement in increas-
ing label order, c will be used to denote the label of the interval currently under
consideration for placement into one of the partition sets.

Step 2. Consider the interval right endpoint array R[1... n] and the last array
L[1... n]. Let j in 1...n be the smallest number such that L[R[j]] 1. Then interval

LINEAR-TIME INTERVAL DOMATIC PARTITION ALGORITHM 169

R[j] is a last and it also has the leftmost right endpoint of all the lasts. We will refer
to this last interval as LREP last; in the sequel, let z represent LREP last.

Since each of the 5 + 1 lasts already are elements in distinct partition sets, we see
that for each interval j for which L[j] 1, j < c since c is as yet unplaced. (Note
that j < c means LE(j) < LE(c).) Since z is LREP last, it follows that if j - z,
then RE(z) < RE(j) for each such last interval j. This simple fact is the guiding idea
behind the partition placement of c.

Step 3. If RE(z) < RE(c), we place interval c into the same partition as interval
z, executing PART[c] := PART[z]. Interval c becomes the new last interval for that
partition; thus we execute L[z] := 0 and L[c] := 1. Interval z is no longer LREP last,
so the new LREP last must be found. We need only examine the right endpoints
to the right of RE(z) to find the new LREP last. This is achieved by scanning
array R[1... n] beginning with RE(z)’s position. This fact makes the cumulative
time required O(n) for determining all LREP lasts.

If RE(c) < RE(z), then (1) for all j such that L[j] 1, j < c, and (2) since z is
LREP last, RE(z) < RE(j). Thus we have, for all last intervals j,

LE(j) < LE(c) < RE(c) < RE(j).

This shows that c is properly contained in all lasts. Thus c can be placed in any
partition set since any intervals it dominates are already dominated by the lasts. This
will be reflected by the assignment PART[c] := oc. In this case, interval z remains
LREP last since c was not placed into the partition PART[z].

Since both parts of Step 3 make a partitioning determination for c, we need to
find the next interval for partition placement. This is a simple matter.

Step 4. Repeat Step 3 until all n intervals are placed into partition sets.
We first present the algorithm in a high-level format and then follow with a more

detailed presentation which provides the framework for both analysis and proof of
correctness.

ALGORITHM D P
INPUT: Model of the Set of Intervals 1... n and integer 5 5(G).
OUTPUT: Dominating Partition Sets PART(I)... PART(5 + 1).

/* Let RRi represent the rightmost right endpoint of
/* any interval in PART(i).

for i := 1 to 5 + 1 do
Place Interval into PART(i) od

for c := 5 + 2 to n do
Find j such that RRj is leftmost of all RRk’s for k in 1... 5 + 1:
If right endpoint of Interval c extends to the right of RRj
Then place Interval c in PART(j)

Else
Interval c is already dominated by all partition sets and
may be placed in any of the partition sets.

od
end D P

The following detailed algorithm can easily be seen to be a refinement of the
above and also to perform the instructions in Steps 1-4.

170 GLENN K. MANACHER AND TERRANCE A. MANKUS

7
5 9 10

4 8

R[1...10] 2 7 5 4 9 6 3108]

FIG. 1.

ALGORITHM DOMATIC PARTITION
INPUT: Array R[1... n] and integer i--(G).
OUTPUT: Array PART[1... hi.

for i :- 1 to n do
L[i] :- 0 od

for :- 1 to i + 1 do
PART[i] :- i;
L[i] :- 1 od

j:=l;
for c :- i + 2 to n do

while (L[R[j]] 1) do
j:=j+lod
z :-- R[j];
if (RE(z) < RE(c)) then
PART[c] :- PART[z];

L[z] 0;
L[c] 1

else
PART[c] := c

fi
od

end DOMATIC PARTITION

/* initialize array L

/* interval into partition set #i
/* interval is now a last
/* initialize scan variable

/* if n + 1, then stop
/* else place remaining intervals

/* find LREP last

/* z is an interval label holder
/* if c extends past z

/* then assign to c the
/* partition number of z.

/* z is no longer LREP last
/* c becomes a last

/* c may be in any partition

Example. For the interval model of Fig. 1, the interested reader will find that
n- 10 and 3. The right endpoints appear in the order R[1... 10] [2 7 5 4
1 9 6 3 10 8]. The operation of DOMATIC__PARTITION on this model re-
sults in the partition arrayPARW[1...10]-[1 2 3 4 2 2 oc 4 1 1].

THEOREM. Algorithm DOMATIC___PARTITION produces a domatic partition
for the interval model in O(n) time.

Proof. We use an alternative definition of a domatic partition in this proof.
According to this definition, we need only show that each interval in 1... n satisfies
the requirement that it intersect at least one member of each of the partition sets
of which it is not a member. The equivalence of the two definitions is elementary and
the proof omitted.

The intervals 1... i + 1 clearly satisfy this requirement. Suppose to the contrary
that for some pair of intervals and j, where < j _< i + 1, interval did not intersect
interval j; then RE(i) < LE(j), and interval could only intersect the intervals 1 to
j 1. Thus deg(i) _< j 2 _< i + 1 2 - 1. This is a contradiction since each
interval has degree ti or greater. Hence each interval E 1... + 1 intersects a member
of each of the + 1 partitions.

LINEAR-TIME INTERVAL DOMATIC PARTITION ALGORITHM 171

For all E 1... n, let N(i) {i} t2 {JlJ Y and interval j intersects interval i}.
N(i) is the reflexive neighbor set of interval i.

Upon completion of the partitioning algorithm, for each interval E 5 + 2... n,
there are two possibilities described as follows.

Case 1. For some j N(i), PART [j] c. By the explanation of Step 3, during
the stage of execution of the loop when c was j, c was properly contained in each last
and therefore was (and remains) properly contained in a member of each partition
set. Thus interval intersects the same partition members in which interval j was
contained and therefore satisfies the domatic partition requirement.

Case 2. For every j e N(i), PART[j] c. Consider two subcases.
Case 2a. For every distinct pair of intervals j, k in N(i), PART[j] PART[k].

Since #(N(i)) _> 5 + 1, it follows that #(N(i)) 5 + 1. Hence interval trivially
intersects a member of each partition set.

Case 25. For some distinct pair of intervals j, k N(i), with j < k, PART[j]
PART [k]. Since PART[j] , PART[j] PART[k], and j < k, it follows that during
some stage of the execution of the main algorithm loop, interval j was LREP last,
and during this stage, say c*, either c* was k or was less than k. During stage c*, for
all intervals s (including j) such that L[s] 1, we have the following two facts:

(fl) RE(j) < RE(s), since interval j is LREP last.
(f2) s < k, since s < c* and c* _< k, implying LE(s) < LE(k).

In addition, we know that
(f3) nE(k) < RE(i) and LE(i) < RE(j), since k and j both intersect i.

Combining (fl), (f2), and (f3), we see that for all lasts s during stage c*,

LE(s) < RE(i) and LE(i) < RE(s).

This implies that interval intersects each of the 5 + 1 lasts existing during this stage.
Hence interval intersects a member of each of the 5 + 1 partition sets.

The algorithm clearly takes O(n) time to complete. During each execution of the
for c loop, the while loop either advances the pointer j or is terminated. Each of the
other steps is clearly O(1) in time complexity. Thus the cumulative time complexity
for our algorithm, given the model, is O(n) time and space. D

5. Open problem. An algorithm for MDP simpler than Algorithm Domatic
Partition or that of [PC91] is presented below. No proof for it of comparable simplicity
is known to us.

PART [0... n] := 0;
for i := 1 to 5 + 1 do
PART[i] := i od

j:=l;
for c :- 5 + 2 to n do
while (j <= n) and (PART[R[j]] 0)do

PART[R[j]] := ;
j:=j+lod

if (PART[c] 0) then
PART[c] := PART[R[j]];
j:=j+lfi

od

We leave as an open problem whether such a proof exists.

172 GLENN K. MANACHER AND TERRANCE A. MANKUS

Acknowledgments. We wish to thank M. S. Chang for keeping us abreast of
his work from 1993 onward and to acknowledge the anonymous referee who sketched
the high-level algorithm and suggested its inclusion.

REFERENCES

[A90] S. R. ARIKATI, private communication, December 1990.
[Be88] A. A. BERTOSSI, On the domatic number of interval graphs, Inform. Process. Lett., 28

(1988), . 7-80.
[Bo85] M.A. BONUCCELLI, Dominating sets and domatic number of circular arc graphs, Discrete

Appl. Math., 12 (1985), pp. 203-213.
[CH77] E. J. COCKAYNE AND S. T. HEDETNIEMI, Toward a theory of domination in graphs,

Networks, 7 (1977), pp. 247-261.
[F84] M. FARBER, Domination, independent domination, and duality in strongly chordal graphs,

Discrete Appl. Math., 7 (1984), pp. 115-130.

[GJ79] M.R. GAREY AND D. S. JOHNSON, Computers and Intractability, a Guide to the Theory
of NP-Completeness, W. H. Freeman, San Francisco, 1979.

[J85] D.S. JOHNSON, The NP-completeness column: An ongoing guide, J. Algorithms, 6 (1985),
pp. 434-451.

[LHC90] T.-L. Lu, P.-H. Ho, AND G. CHANG, The domatic number problem in interval graphs,
SIAM J. Discrete Math., 3 (1990), pp. 531-536.

[PC91] S.L. PENG AND M. S. CHANG, A new approach for domatic number problem on interval
graphs, in Proceedings of the National Computer Symposium, 1991, I.O.C., pp.
236-241.

[PC92] A simple linear time algorithm for the domatic partition problem on strongly
chordal graphs, Inform. Process. Lett., 43 (1992), pp. 297-300.

[RR89] S.R. AIIKAT! AND C. PANDU RANGAN, Linear algorithms for domatic number problems
on interval graphs, Inform. Process. Lett., 33 (1989/90), pp. 29-33.

SIAM J. DISCRETE MATH.
Vol. 9, No. 2, pp. 173-177, May 1996

() 1996 Society for Industrial and Applied Mathematics
OO2

ON A QUESTION OF ERDOS ON SUBSEQUENCE SUMS*

DON COPPERSMITH AND STEVEN PHILLIPS:

Abstract. Paul Erdhs asked how dense a sequence of integers, none of which is the sum of
a consecutive subsequence, can be. In other words, let (Xl,...,xml be an increasing sequence
of integers in [1, n], such that there do not exist i, j, and k, with 0 < < j < k _< m and
x + X+l ... x.i xk. Erdhs asked if m > n/2 1 is possible. A simple argument shows that
m > 2n/3 + O(log n) is impossible. Freud recently constructed a sequence with m 19n/36. This
note constructs a sequence with m 13n/24 O(1) and extends the simple upper bound to show
that m > (2/3 e)n + (log n) is impossible for e 1/512.

Key words, sequence, integers, density, external problem

AMS subject classifications. 05D05, 11B05

1. Preliminaries. When describing subintervals of [1, n], we will use "1" to
designate an element xi of the sequence, "0" to designate an integer that is not
in the sequence, and "-" for an integer which may or may not be in the sequence. So
for example, "[y, y + 4] 01100" means that for some we have Xi-1 < y, xi y + 1,
Xi+l y + 2, xi+2 > y + 4. Property Sk says that the sum of k adjacent elements
is not an element. For a nonnegative integer i, layer is all integers in the interval
(n/2i+l,n/2i] (so the size of layer is [n/2iJ Ln/2i+lJ). A 0 is forced if it is the
sum of an adjacent pair of elements, and unforced otherwise. A string is forced if all
its O’s are forced.

A simple lower bound of n/2 is obtained by the sequence consisting of layer 0.
ErdSs [2] asked if rn > n/2+ 1 is possible. Both the upper and lower bounds described
below have the following simple upper bound as their starting point.

LEMMA 1.1. A sequence of integers in [1, n] satisfying $2 contains at most 2n/3+
3/2(loga n + 1) elements.

Proof. For a nonnegative integer i, each adjacent pair of elements in layer 2i + 1
eliminates (by property $2) a distinct element in layer 2i. So layers 2i and 2i + 1
together contain at most 1 + [n/22J Ln/22+lJ _< 3/2 / n/22+1 elements. Thus the
number of elements in [1 n] is at most v’[lg4 n] (3/2 + n/22i+1) < 2n/3 + 3/2(log4 nA..i--0

+1).
Note that the constant 2/3 in Lemma 1.1 is tight if the sequence must only satisfy

S for even i, as evidenced by the sequence which excludes integers 0 (mod 3).
The rest of this note is organized as follows: 2 presents the construction of

rn 13n/24- O(1), while 3 applies property $3 to improve the upper bound of
Lemma 1.1 to (2/3)n + O(log n).

2. Lower bound. In this section we will construct a lower bound of 13n/24-
O(1). The lower bound has n/2 elements in the first two layers. It adds "extra"
elements between 1/5 and 1/4 in such a way that consecutive sequences of 2, 3, or
4 of the extra elements add up to elements excluded from the first two layers. The

Received by the editors February 8, 1993; accepted for publication (in revised form) April 5,
1995.

IBM T. J. Watson Research Center, Yorktown Heights, NY 10598.
Computer Science Department, Stanford University, Stanford, CA 94305. A portion of this

research was performed while the author was visiting the IBM T. J. Watson Research Center. The
research of this author was partially supported by National Science Foundation grant CCR-9010517
and an Office of Technology Licensing grant.

173

174 DON COPPERSMITH AND STEVEN PHILLIPS

TABLE 1
The sequence proving the lower bound.

om To Keep
1/5[2/9
e/! /a
1/4! 8/27
s/e: /a
/a a/s
3/8 4/9

4/s /e
1/2 16/27

s/e /
/ /4
/4 s/s

8/9 1

0,1,2,5,6,8,10,11,14,15
1
None
1,2,3
1,2
0,2,6,8,9,12,13,

16,19,20,23,24,26,30
0
1
1,2,4,6,7
1,2
All Except 2,8,14,17,21,
25,29,35,39,43,47,50,56,62
0,1,3

Mod Value

16
1

4
3

32
2
1
8
3

64
4

10/16 x 1/45 1/72
1 x 1/36 1/36
0 0
3/a /e /
2/3 1/24 1/36

14/32 5/72 35/1152
1/2 x 1/18 1/36
1 x 5/54 5/54
5/8 2/27 5/108
2/3 x 1/12 1/18

50/64 5/36 125/1152
3/4 1/9 1/12

density of elements achieved is 0.541666 The idea of the lower bound arose from
patterns observed in sequences found experimentally by J. H. Davenport (personal
correspondence).

THEOREM 2.1. For any n there is a sequence of 13n/24-O(1) integers in [1, n],
none of which is the sum of a consecutive subsequence.

Proof. We begin with Freud’s [1] construction of rn _> 19n/36, which will motivate
our construction of m >_ 13n/24 O(1). To achieve m 19n/36, start by putting in
all integers between 2n/9 and n/4. This means we must exclude odd integers between
4n/9 and n/2, integers 0 (mod 3) between 2n/3 and 3n/4, and integers 2 (mod 4)
between 8n/9 and n. Now fortunately the nonexcluded integers between 4n/9 and
n/2 and between 8n/9 and n mesh together perfectly: two adjacent even numbers
add to something 2 (mod 4). So, in keeping with the restriction that there be n/2
elements in the first two layers, we must keep exactly the even integers between 4n/9
and n/2 and those -0, 1, 3 (mod 4) between 8n/9 and n.

To make the integers 0 (mod 3) that have been knocked out between 2n/3 and
3n/4 also be excluded by sums from layer 1, we introduce integers between n/3 and
3n/8, and it turns out that allowing those 1, 2 (mod 3) does the trick. Then the
ranges [3n/4, 8n/9] and [3n/8, 4n/9] can be filled in by any complementary manner.

To extend this construction to m 13n/24, we add some integers between n/5
and 2n/9. This complicates the construction since we have to add integers below n/3
and triples of these integers now have to be considered. Specifically, we add some
integers between 8n/27 and n/3, chosen so that triples knock out already excluded
integers between 8n/9 and n. The integers between n/5 and 2n/9 are chosen so that
triples knock out only integers in [3n/5, 2n/3] that have already been knocked out by
pairs of integers between [3n/10, n/3].

The details are as follows: start with the "keep" integers from Table 1 (for in-
stance, the fourth line says keep all integers between 8n/27 and n/3 that are congruent
to 1, 2, or 3 (mod 4), for a total of n/36 elements). The number of kept elements is

13n/24. Sequences within an interval sum to nonelements, but we might have a prob-
lem at the interval boundaries. A sequence spanning interval boundaries might sum
to an element. If this occurs, then eliminate that sum (the larger element) from the
sequence. This in turn affects sequences spanning the space where that eliminated el-
ement was. Only a constant number of elements get eliminated because you’re always
pushing forward, never back.

ON A QUESTION OF ERD(S ON SUBSEQUENCE SUMS 175

3. Upper bound. The tighter upper bound applies property $3 to elements in
the interval [3n/16, n/4] to show that there must be at least en unforced O’s (O’s that
aren’t accounted for in Lemma 1.1.) The effect of these unforced O’s on the sequence
size is shown by the following lemma.

LEMMA 3.1. A sequence of integers in [1, n] satisfying $2 and having k unforced
O’s in even layers contains at most 2n/3 k + 3/2(log4 n + 1) elements.

Proof. For a nonnegative integer i, each adjacent pair of elements in layer 2i + 1
eliminates (by property $2) a distinct element in layer 2i. Therefore layers 2i and
2i + 1 together contain at most 1 + [n/22ij [n/22i+1j -ki <_ 3/2 + n/22i+1- ki
elements, where k is the number of unforced O’s in layer 2i. Thus, the number of
elements in [1 n] is at most v’[lg4 n] (3/2 + n/22+1 k) < 2n/3 k + 3/2(log4 nZ.i--0

+1). D
The rest of this section is organized as follows. Lemmas 3.2 and 3.3 prove the

existence of a collection of unforced O’s and forced 010’s in the first 4 layers. Lem-
mas 3.4, 3.5, and 3.6 show how the forced 010’s can be traced down through the rest of
the layers, spawning a collection of unforced O’s in even layers. Finally, Theorem 3.7
assembles all the lemmas to produce the upper bound.

LEMMA 3.2. 1. 00 cannot be forced.
2. [2y, 2y + 2] 010 cannot be forced.
3. [2y + 1, 2y + 3] 010 is forced only if [y, y + 2] 111.

Proof. For part 1, two consecutive forced O’s are x + X+l and x+l + x+2, which
differ by x+2 -x, which is at least 2. For part 2, if both zeroes are forced we must
have 2y x + X+l, 2y + 2 X+l + x+2, x+2 x 2, so X+l x + 1 and
2y 2x + 1, which is a contradiction. Part 3 is similar.

LEMMA 3.3. Let y [3n/64 + 2, n/16 3]. Then we have either a 010 centered
in [y 1, y + 2] or [3y, 3y + 3], or an unforced 0 in [y 2, y + 3], [3y 2,3y + 5],
[4y 1, 4y + 5], or [12y + 2, 12y + 10].

Proof. Assume there is no 010 centered in [y- 1, y+ 2] or unforced 0 in [y- 2, y/3].
Then the string [y 2, y + 3] matches one of the following, shown in Table 2 (there is
no 00 by Lemma 3.2).

TABLE 2

-2 -1 0 1 2 3 case
1 1 1 1 A

1 0 1 1 1 B
1 1 0 1 1 C

1 1 1 0 1 D
1 0 1 1 0 1 E

1 1 0 1 1 F

Assume also that there is neither a 010 centered in [3y, 3y + 3] nor an unforced 0
in [3y 2, 3y + 5] or [4y- 1, 4y + 5].

Case A. [y-l, y+2] 1111. We have 0 at 3y, 3y+3, 4y+2. Therefore [3y-1, 3y+4]
101101 and [4y + 1, 4y + 4] 1011 (since 00 is outlawed by Lemma 3.2 part 1 and

[4y + 1, 4y + 4] 1010 is outlawed by Lemma 3.2 part 2). These cause O’s at 12y + 6,
12y / 8, respectively, one of which must be an unforced 0.

Case B. [y 2, y + 2] 10111. We have 0 at 3y 1, 3y + 3, 4y + 1. Therefore
[3y 1, 3y + 4] 011101 and [4y, 4y + 3] 1011 (since by Lemma 3.2 part 3, forced
1010 would imply [2y, 2y + 2] 111, which is ruled out by $2 since [y, y / 1] 11).
These cause O’s at 12y + 7, 12y / 5, respectively, one of which must be an unforced 0.

176 DON COPPERSMITH AND STEVEN PHILLIPS

Case C. [y-2, y+2] 11011. We have 0 at 3y-2, 3y+2, 4y. Therefore
[3y 2, 3y + 3] 011101 and [4y 1, 4y + 2] 1011. These cause O’s at 12y + 3,
12y / 2, respectively, one of which must be an unforced 0.

Case D. [y-l,y+3] 11101. We have 0 at 3y, 3y+4, 4y+3. Therefore
[3y 1, 3y + 4] 101110 and [4y + 1, 4y + 4] 1101. These cause O’s at 12y + 5,
12y / 7, respectively, one of which must be an unforced 0.

Case E. [y 2, y + 3] 101101. We have 0 at 3y 1, 3y + 4, 4y + 2. Therefore
[3y- 1,3y + 4] 011110 and [4y + 1, 4y + 4] 1011. These cause O’s at 12y + 6,
12y / 8, respectively, one of which must be an unforced 0.

Case F. [y 1, y + 3] 11011. We have 0 at 3y + 1, 3y + 5, 4y + 4. Therefore
[3y, 3y + 5] 101110 and [4y + 2, 4y + 5] 1101. These cause O’s at 12y + 9, 12y + 10,
respectively, one of which must be an unforced 0. [:]

LEMMA 3.4. A forced 010 centered at y implies a forced 010 centered at y/4
(implying y is a multiple of 4) or an unforced 0 in the interval [[y/4J 1, [y/4 + 1].

Proof. This is easily checked for y < 8. If y _> 8, let x
Case 1. y 4x. A forced 010 centered at y implies [2x- 1, 2x + 1] 111. By

property $2, Ix- 1, x + 1] is one of 010, -00, or 00-. The string 00 cannot be forced.
Case 2. y 4x + 2. A forced 010 centered at y implies [2x, 2x + 2] 111. By

property $2, Ix 1, x + 2] is one of -00-, 001-, or 100.
Case 3. y is odd. This is impossible since a forced 010 must be centered at an

even integer.
LEMMA 3.5. If there are k forced 010 ’s in layer 2i, hen there is an m such that

there are m forced 010’s and at least max {(k m 6)/4, 0} unforced O’s in layer
2i+2.

Proof. Let the k forced 010’s in layer 2i be centered at Yl,...,Yk. Call an
010 centered at yj descending if there is a forced 010 centered at yj/4. Let m be
the number of descending 010’s. For each nondescending 010 centered at yj, choose
an unforced 0 closest to yj/4: by Lemma 3.4 there is an unforced 0 in the range
[[yj/4J 1, [yj/4 + 1]. How many forced 010’s can choose a given unforced 0 at x?
The unforced 0 at x can be chosen by at most 7 forced 010’s, centered at 4x- 6,
4x- 4, 4x- 2, 4x, 4x + 2, 4x + 4, 4x + 6 (since a forced 010 must be centered at an
even number).

However, the 7 can be reduced to a 4 as follows. Consider the subinterval I
between the nearest l’s on either side of x (restricted to the layer that x is in). Let
x- c be the leftmost unforced 0 in this subinterval and x // the rightmost unforced
0. There are at least [/3/2 + [a/2 + 1 unforced O’s in Ix
layer boundary or a 1 in Ix c 2, x a 1] and likewise in Ix +/3 + 1, x +/3 + 2].

Now, assuming no layer boundary, the forced 010’s associated with these unforced
O’s (in I) are centered between 4(x- c) -6 and 4(x +/3) + 6 inclusive. There are at
most 2/ + 2a + 7 such forced 010’s centered at even integers. But the l’s near x
and x +/3 cause a 0 in [2x a +/3 1, 2x a +/3 + 1], which eliminates three forced
010’s near 4x 2a + 2. So the number of forced 010’s choosing unforced O’s in the
subinterval I is really at most 2/3 / 2a + 4, which is at most 4 times the number of
unforced O’s in I.

Hence, in result, the number of nondescending 010’s is at most 4 times the number
of unforced O’s. However, the above argument breaks down at the ends of the layer,
where at most 3 more nondescending 010’s at each end can be associated with unforced
O’s.

LEMMA 3.6. If there are k forced 010 ’s in layer 2i (k > 0), then there are at least

kin (3/2)log4 n + 3i/2 unforced 0 ’s in even layers in [1, n/22i+2].

ON A QUESTION OF ERD)S ON SUBSEQUENCE SUMS 177

Proof. There are no 010’s in layer 2log4 nJ. Hence the k forced 010’s have been
converted to unforced O’s according to Lemma 3.5. The number of times Lemma 3.5
is invoked is at most log4 n/22J <_ log4 n- i. D

THEOREM 3.7. A sequence of integers in [1, n] satisfying $2, $3, and $4 contains
at most 2n/3 [n/512J + 3 loga n- 1/2 elements.

Proof. Let y be an integer, with 3n/64 + 2 <_ y <_ nil6- 3. By Lemma 3.3 and
an application of Lemma 3.4, there is either a forced 010 centered in [y 1, y + 2]
or at [3y/4] (hence in layer 4), or an unforced 0 in [y- 2, y + 3], [3y 2, 3y + 5],
[4y- 1, 4y + 5], or [12y + 2, 12y + 10]. At most 6 values of y can share any unforced 0,
and at most 2 values of y can share any forced 010 (since a forced 010 must be centered
at an even integer). The number of values for y is [n/64J 5. Thus for some m _> 0,
there are rn forced 010’s in layer 4, and at least ([n/64J 2rn- 5)/6 unforced O’s in
levels 0, 2, and 4. Applying Lemma 3.6 gives a collection of m/4- (3/2)loga n + 3
unforced O’s in levels 6, 8,..., for a total of at least [n/512J (3/2) loga n+ 2 unforced
O’s in even levels (minimized when rn [n/128J 2). Finally, applying Lemma 3.1
gives the desired result. V1

4. Conclusion. Let m(n) denote the length of the longest sequence of integers
in [1, n], none of which is the sum of a consecutive subsequence. This note has shown
that both the trivial lower bound of m(n)/n >_ 1/2 and the trivial upper bound of
m(n)/n <_ 2/3 + o(!) fail to be tight. It is also likely that neither of the bounds
obtained here is tight. We close with the natural open question.

OPEN QUESTION 1. What is the value ofliminfm(n)/n? Alternatively, what is
the largest constant a such that for any n, there is a sequence of an- O(n) integers
in [1, n], none of which is the sum of a consecutive subsequence?

REFERENCES

[1] R. FREUD, Adding numbers, James Cook Mathematical Notes, 6 (1993), pp. 6199-6202.
[2] P. EaDhS, Problem 91:02, in Western Number Theory Problems, R. Guy, ED., presented Decem-

ber 19, 22, 1992.

SIAM J. DISCRETE MATH.
Vol. 9, No. 2 pp. 178-200, May 1996

() 1996 Society for Industrial and Applied Mathematics
OO3

SPANNING TREES--SHORT OR SMALL*

R. RAVIt, R. SUNDARAM:, M. V. MARATHE, D. J. ROSENKRANTZ, AND S. S. RAVIII
Abstract. We study the problem of finding small trees. Classical network design problems are

considered with the additional constraint that only a specified number k of nodes are required to be
connected in the solution. A prototypical example is the kMST problem in which we require a tree
of minimum weight spanning at least k nodes in an edge-weighted graph. We show that the kMST
problem is NP-hard even for points in the Euclidean plane. We provide approximation algorithms
with performance ratio 2v/ for the general edge-weighted case and O(k1/4) for the case of points
in the plane. Polynomial-time exact solutions are also presented for the class of treewidth-bounded
graphs, which includes trees, series-parallel graphs, and bounded bandwidth graphs, and for points
on the boundary of a convex region in the Euclidean plane.

We also investigate the problem of finding short trees and, more generally, that of finding networks
with minimum diameter. A simple technique is used to provide a polynomiM-time solution for finding
k-trees of minimum diameter. We identify easy and hard problems arising in finding short networks
using a framework due to T. C. Hu.

Key words, approximation algorithm, network design, spanning tree

AMS subject classifications. 05C05, 68Q25, 68R10

1. Introduction.

1.1. Motivation: Small trees. The oil reconnaissance boats are back from
their final trip off the coast of Norway and present you with a detailed map of the
seas surrounding the coastline. Marked in this map are locations that are believed to
have a good chance of containing oil under the sea bed. Your company has a limited
number of oil rigs that it is willing to invest in the effort. Your problem is to position
these oil rigs at marked places so that the cost of laying down pipelines between these
rigs is minimized. The problem at hand can be modeled as follows: given a graph with
nonnegative edge weights and a specified number k, find a tree of minimum weight
spanning at least k nodes. Note that a solution to the problem will be a tree spanning
exactly k nodes. We call this problem the k-minimum spanning tree (or the kMST)
problem. Moreover, the kMST problem is at the heart of several other optimization

Received by the editors April 5, 1994; accepted for publication (in revised form) April 5, 1995.
A preliminary version of this paper [31] appeared in Proc. 5th Annual ACM-SIAM Symposium on
Discrete Algorithms, 1994, pp. 546-555.

Center for Discrete Mathematics and Theoretical Computer Science, Department of Computer
Science, Princeton University, 35 Olden Street, Princeton, NJ 08854 (ravics.princeton.edu). The
research of this author was performed at Brown University and supported by an IBM Graduate
Fellowship, National Science Foundation Presidential Young Investigator award CCR-9157620, and
Defense Advanced Research Projects Agency contract N00014-91-J-4052/order 8225.

Department of Computer Science, Massachussetts Institue of Technology, Cambridge MA 02139
(koods@theory.lcs.mit.edu). The research of this author was supported by Defense Advanced Re-
search Projects Agency contract N0014-92-J-1799 and National Science Foundation grant 92-12184
CCR.

Los Alamos National Laboratory, P.O. Box 1663, MS M986, Los Alamos, NM 87545 (mad-
hav@c3.1anl.gov). The research of this author was performed at the Department of Computer Sci-
ence, State University of New York at Albany and supported by National Science Foundation grant
CCR 89-03319.

Department of Computer Science, State University of New York at Albany, Albany, NY 12222
(djr@cs.albany.edu).. The research of this author was supported by National Science Foundation
grant CCR-90-06396.

Department of Computer Science, State University of New York at Albany, Albany, NY 12222
(ravi@cs.albany.edu). The research of this author was supported by National Science Foundation
grant CCR-89-05296.

178

SPANNING TREES--SHORT OR SMALL 179

problems, such as the latency problem [9] and the prize-collecting traveling salesperson
problem [1], and hence is of independent interest. In this paper, we study such classical
network-design problems as the MST problem with the additional constraint that only
a specified number of nodes need to be incorporated into the network. Unlike the MST
problem, which admits a polynomial-time solution [25], [28], the kMST problem is
considerably harder to solve. In Theorem 2.1 we prove that the kMST problem is
NP-complete. This result was independently obtained by Lozovanu and Zelikovsky
[26]. The kMST problem remains NP-complete even when all the edge weights are
drawn from the set {1,2,3} (i.e., the graph is complete and every edge takes one of
three different weights). It is not hard to show a polynomial-time solution for the case
of two distinct weights. The problem remains NP-hard even for the class of planar
graphs as well as for points in the plane.

1.2. Approximation algorithms. A p-approximation algorithm for a mini-
mization problem is one that delivers a solution of value at most p times the minimum.
Consider a generalization of the kMST problem, the k-Steiner tree problem: given
an edge-weighted graph, an integer k, and a subset of at least k vertices specified
as terminals, find a minimum-weight tree spanning at least k terminals. We can
apply approximation results for the kMST problem to this problem by considering
the auxiliary complete graph on the terminals with edges weighted by shortest-path
distances. A p-approximation for the kMST problem on the auxiliary graph yields a
2p-approximation for the k-Steiner tree problem. Therefore we focus on approxima-
tions for the kMST problem. We provide the first approximation algorithm for this
problem. In Theorem 3.1 we present a polynomial-time algorithm 2V-approximation
algorithm for the kMST problem. The algorithm is based on a combination of a greedy
technique that constructs trees using edges of small cost and a shortest-path heuristic
that merges trees when the number of trees to be merged is small. The analysis of
the performance ratio is based on a solution-decomposition technique [4], [14], [24],
[29], [30] that uses the structure of an optimal solution to derive a bound on the cost
of the solution constructed by the approximation algorithm.

Theorem 3.1 provides a 4x/-approximation algorithm for the k-Steiner tree prob-
lem as well. Moreover, we construct an example that demonstrates the performance
guarantee of the approximation algorithm is tight to within a constant factor.

We derive a better approximation algorithm for the case of points in the Euclidean
plane. In Theorem 4.1 we show that there is a polynomial-time algorithm that, given n
points in the Euclidean plane and a positive integer k _< n, constructs a tree spanning
at least k of these points such that the total length of the tree is at most O(k1/4)
times that of a minimum-length tree spanning any k of the points.

As before, we construct an example showing that the performance ratio of the
algorithm in Theorem 4.1 is tight. Our proof of Theorem 4.1 also yields as a corollary
an approximation algorithm for the rectilinear kMST problem.

1.3. Polynomially solvable special cases. Since the kMST problem is NP-
complete even for the class of planar graphs, we focus on special classes of graphs
and provide exact solutions that run in polynomial time. Robertson and Seymour in
their seminal series of papers [32] introduced and developed the notion of treewidth.
Many hard problems have exact solutions when attention is restricted to the class
of treewidth-bounded graphs and much work has been done in this area, especially
by Bodlaender [11]. Independently, Bern, Lawler, and Wong [8] introduced the no-
tion of decomposable graphs. Later, it was shown [5] that the class of decomposable
graphs and the class of treewidth-bounded graphs are one and the same. A class

180 RAVI, SUNDARAM, MARATHE, ROSENKRANTZ, AND RAVI

of decomposable graphs is defined using a finite number of primitive graphs and
a finite collection of binary composition rules. Examples of decomposable graphs
include trees, series-parallel graphs, and bounded-bandwidth graphs. We use a dy-
namic programming technique to show that for any class of decomposable graphs (or
treewidth-bounded graphs), there is an O(nk2)-time algorithm for solving the kMST
problem. A polynomial-time algorithm for trees was also independently obtained by
Lozovanu and Zelikovsky [26].

Though the kMST problem is hard for arbitrary configurations of points in the
plane, we show in 5.2 that there is a polynomial-time algorithm for solving the kMST
problem for the case of points in the Euclidean plane that lie on the boundary of a
convex region. We also provide a faster algorithm to find the optimal kMST when all
the points lie on a circle. The proof of the above facts uses a monotonicity property
of an optimal tree along with a degree constraint on an optimal solution. This allows
us to apply dynamic programming to find the exact solution, Several researchers in
computational geometry have presented exact algorithms for choosing k points that
minimize other objectives such as diameter, perimeter, area, and volume [3], [16]-[18].

1.4. Short trees. Keeping the longest path in a network small is often an impor-
tant consideration in network design. We investigate the problem of finding networks
with small diameter. Recall that the diameter of a tree is the maximum distance (path
length) between any pair of nodes in the tree. The problem of finding a minimum-
diameter spanning tree of an edge-weighted graph was shown to be polynomially
solvable by Camerini, Galbiati, and Maffioli [13] when the edge weights are nonneg-
ative. They also show that the problem becomes NP-hard when negative weights
are allowed. Camerini and Galbiati [12] proposed polynomial-time algorithms for a
bounded-path tree problem on graphs with nonnegative edge weights. Their result
can be used to show that the minimum-dimeter spanning tree problem as well as
its natural generalization to Steiner trees can be solved in polynomial time. We use
a similar technique to show that the following minimum-diameter k-tree problem is
polynomially solvable: given a graph with nonnegative edge weights, find a tree of
minimum diameter spanning at least k nodes.

We investigate easy and hard results in finding short networks. For this, we
use a framework due to T. C. Hu [22]. In this framework, we are given a graph
with nonnegative distance values dj and nonnegative requirement values rj between
every pair of nodes and j in the graph. The communication cost of a spanning tree
is defined to be the sum over all pairs of nodes i, j of the product of the distance
between and j in the tree under d and the requirement rj. The objective is to find
a spanning tree with minimum communication cost. Hu considered the case when all
the d values are one and showed that a Gomory-Hu cut tree [21] using the r values
as capacities is an optimal solution. Hu also considered the case when all the r values
are one and derived sufficient conditions under which the optimal tree is a star. The
general version of the latter problem is NP-hard [2], [13], [23].

We define the diameter cost of a spanning tree to be the maximum cost over
all pairs of nodes i, j of the distance between and j in the tree multiplied by rj.
In Table 1, we present current results in this framework. All rj and dj values are
assumed to be nonnegative. The first two rows of the table examine the cases when
either of the two parameters is uniform-valued. The last two rows illustrate that the
two problems become NP-complete when both parameters are two-valued.

1.5. Short small trees. We consider the k-tree versions of the minimum-com-
munication-cost and minimum-diameter-cost spanning tree problems and show in

SPANNING TREES--SHORT OR SMALL 181

TABLE
Results on minimum-communication-cost spanning trees and minimum-diameter-cost spanning

trees.

Communication cost Diameter cost

Arbitrary {a} Cut-tree [22] Open
{a} Arbitrary NP-complete [23] Poly-time [131
{a, b} {0, c} Cut-tree variant (this paper, [22]) Poly-time (this paper)
(a, 4a} (c, 5c} iP-complete [23] NP-complete (this paper)

Theorem 6.6 that the minimum-communication k-tree problem and the minimum-
diameter k-tree problem are both hard to approximate within any factor even when
all the dij values are one and the rij values are nonnegative.

In the next section, we present the NP-completeness results. Section 3 contains
the 2v/- approximation for the kMST problem. In 4 we present the stronger result
for the case of points in the plane. In 5 we address polynomially solvable cases of
the problem. In 6 we prove our results on short trees. We close with a discussion of
directions for future research.

2. NP-completeness results.
THEOREM 2.1. The (decision version of the) kMST problem is NP-complete.
Proof. It is easy to see that the kMST problem is in NP. In this section we show

that the kMST problem is NP-hard by reducing the Steiner tree problem to it. The
Steiner tree problem is known to be NP-hard [19]. As an instance of the Steiner tree
problem we are given an undirected graph G, a set of terminals R (which is a subset
of the vertex set of G), and a positive integer M, and the question is whether there
exists a tree spanning R and containing at most M edges. We transform this input to
an instance G’, k,M of the kMST problem as follows" We let X IV(G)I- IRI and
connect each terminal of G to a distinct path of X new vertices, the path consisting
of zero-weighted edges. We assign weight one to the already existing edges of G and
set the weight between all other pairs of vertices to c (a very large number). This
is the graph G’ (see Fig. 1). We set k to be IRI. (X + 1). And now we ask if G’ has
a tree spanning k vertices of weight at most M. If there exists a Steiner tree in G
spanning the set R and containing at most M edges, then it is easy to construct a
kMST of weight at most M in GI. Conversely, by our choice of k and X, any kMST
in G must contain at least one node from the path corresponding to each terminal in
R. Hence any kMST can be used to derive a Steiner tree for R in G. This completes
the reduction. Extensions of hardness to the case of planar graphs and points in the
plane follow in a similar way from the hardness of the Steiner tree problem in these
restricted cases. Given a planar embedding of G we can create an embedded version
of G since only paths are added.

The NP-hardness holds even when all the edge costs are from the set {1, 2, 3}.
The reduction for this case is similar to the above. Without loss of generality we
assume that in the given instance of the Steiner tree problem, G is connected and
M _< IVI- 1. We let X -]V(G)I- IR] as before and connect each terminal of G to a
distinct set of X vertices by edges of weight one. We set the original edges of G to have
weight two and all other edges to have weight three. We choose k IRI. X + M + 1
and the bound on the cost of the kMST to be IRI" X + 2M. If there exists a Steiner
tree in G spanning the set R and containing at most M edges, then it is easy to
construct a kMST of weight at most IRI. X + 2M in Gt. This is done by connecting
all the ,newly added vertices to the Steiner tree using the weight-one edges and then

182 RAVI, SUNDARAM, MARATHE, ROSENKRANTZ, AND RAVI

picking up more vertices (note that the graph is connected and M _< IVI- 1) using
the weight-two edges until there are IRI-X + M + 1 vertices. If there exists a kMST
of weight at most IRI. X + 2M in GI, then observe that the kMST cannot contain
an edge of weight three because it has exactly k 1 IRI. X + M edges; and if it
contained an edge of weight three, then it would have to contain at least IRI. X + 1
edges of weight one but there are only IRI. X edges of weight one in Gp. Further, the
kMST must span R, and since it has at most M edges of weight two, there must exist
a Steiner tree in G spanning R and containing at most M edges.

When there are only two distinct edge costs, i.e., the graph is complete and every
edge has one of two possible weights, the kMST problem can be solved in polynomial
time. The basic idea is the following: Let wl and w2 denote the two edge weights,
where wl < w2. Construct an edge subgraph G1 of G containing all the edges of
weight Wl. Choose a minimum number, say r, of the connected components of (1 to
obtain a total of k nodes (dropping some nodes if necessary). Construct a spanning
tree for each chosen component, and connect the trees into a single tree by adding
exactly r- 1 edges of weight w2. It is straightforward to verify that the resulting
solution is optimal.

O-wt edges

k IRI (X + 1)

G G’

FIG. 1. The basic NP-hardness reduction from Steiner tree to kMST.

3. The approximation algorithm for the general case.

THEOREM 3.1. There is a polynomial-time algorithm that, given an undirected
graph G on n nodes with nonnegative weights on its edges and a positive integer
k <_ n, constructs a tree spanning at least k nodes of weight at most 2v/ times that

of a minimum-weight tree spanning any k nodes.
In this section, we present the proof of the above theorem. As input, we are given

an undirected graph G with nonnegative edge weights and an integer k.

3.1. The algorithm and its running time. It is useful to think of the algo-
rithm as running in two distinct phases: a merge phase and a collect phase.

SPANNING TREES--SHORT OR SMALL 183

During the merge phase, the algorithm maintains a set of clusters and a spanning
tree on the vertex set of each cluster. Initially each vertex forms a singleton cluster.
At each step of the merge phase, we choose an edge of minimum cost among all edges
that are between two clusters and merge them by using the edge to connect their
spanning trees.

Define the size of a cluster to be the number of vertices that it contains. During
the course of the merge phase, the clusters grow in size. The collect phase is entered
only when

(i) there exists a set of at most v clusters containing at least k vertices among
themselves, and

(ii) no cluster has size or more.
In the collect phase, we consider each cluster in turn as the root and perform a

shortest-path computation between clusters using the weights on intercluster edges.
We determine for each cluster C, the shortest distance dc such that, within distance

dc from C, there exist at most v clusters whose sizes sum to at least k. Note that
by the first precondition for starting the collect phase, the distance dc is well defined.
We choose the cluster C with the minimum value of dc and connect it using shortest
paths of length at most dc to each of these v/ clusters. We prune edges from some
of these shortest paths to output a tree of clusters whose sizes sum to k. We may do
this since any cluster has less than k nodes at the start of this phase by the second
precondition.

The merge phase of the algorithm continues to run until both the preconditions
of the collect phase are satisfied. Beginning with the step of the merge phase after
which both preconditions of the collect phase are satisfied, at each subsequent step,
the algorithm forks off an execution of the collect phase for the current configuration
of clusters. The merge phase continues to rgn until a cluster of size k or more is
formed. Next, the merge phase prunes the edges of the spanning tree of the cluster
whose size is between k and 2k so as to obtain a spanning tree of size exactly k. At
this point, the merge phase terminates and outputs the spanning tree of the cluster
of size k. Each forked execution of the collect phase outputs a spanning tree of size
between k and 2k as well. The algorithm finally outputs the tree of least weight
among all these trees. The algorithm is given as follows.

ALGORITHM MERGE-COLLECT
1. Initialize each vertex to be in singleton-connected components and the set of

edges chosen by the algorithm to be . Initialize the iteration count 1.
2. Repeat until there exists a cluster whose size is between k and 2k.

(a) Let YSi {C1... Ct} denote the set of connected components at the
start of this iteration. Assume that the components are numbered in
nonincreasing order of their size.

(b) Form an auxiliary graph G(VSi, E’) where the edge (C, Cj) between
two components is the minimum-cost edge in E whose endpoints belong
to C and Cj, respectively.

(c) Choose a minimum-cost edge (C, Cj) in G(VS, E’) and merge the cor-

responding clusters Ci and Cj.
(d) VSi+ VS {Ci) {Cj } U {Ci U Ci }

Remark: This corr.esponds to one iteration of merge phase.
(e) Let j* min{j ’ k}.F=I Icl _>
(f) If j* _< x/, then SOLi Conect(a(YS,’)).
(g) i=i+1.

184 RAVI, SUNDARAM, MARATHE, ROSENKRANTZ, AND RAVI

3. Prune the edges of the cluster whose size is between k and 2k to obtain a tree
with exactly k vertices. Denote the tree obtained by MSOL.

4. The output of the heuristic is the minimum valued tree among MSOL and
all the SOLs.

PROCEDURE COLLECT(G(V, E))

1. For each cluster vertex C do
(a) With the cluster C as the root, form a shortest path tree.
(b) Let dc be the minimum distance such that there is a set of at most xfl

clusters within a distance of dc from C containing at least k vertices.
(c) Choose these clusters and join them to the root cluster by using the

edges in the shortest path tree computed in Step l(a).
(d) Prune the edges of the tree to obtain a tree having exactly k nodes.

2. Output the tree corresponding to the choice of the root cluster C that mini-
mizes dc.

It is easy to see that there are at most O(n) steps in the merge phase and hence
at most this many instances of the collect phase to be run. Using Dijkstra’s algorithm
[15] in each collect phase, the whole algorithm runs in time O(n2(m + n logn)) where
m and n denote the number of edges and nodes in the input graph, respectively. The
running time of the collect phase dominates the running time of the merge phase.

3.2. The performance guarantee. Consider an optimal kMST of weight OPT.
During the merge phase, nodes of this tree may merge with other nodes in clusters.
We focus our attention on the number of edges of the optimal kMST that are exposed,
i.e., remain as intercluster edges. We show that at any step in which a large number
of edges of the kMST are exposed, every edge in the spanning tree of each cluster has
small weight.

LEMMA 3.2. /f at the beginning of a step of the merge phase, an optimal kMST
has at least x exposed edges (intercluster edges), then each edge in the spanning tree
of any cluster at the end of the step has weight at most OPT.

x

Proof. Since the edges are chosen in nondecreasing order of cost, it is clear that
each edge in the spanning tree of any cluster at the end of the step has weight at most
that of any intercluster edge. Since an optimal kMST has at least x exposed edges,
one of these edges has weight at most oP___T_T. Hence each edge in the spanning tree of
any cluster at the end of the step has weight at most OPT. [-]

We now prove the performance guarantee in Theorem 3.1. The above lemma is
useful as long as the number of exposed edges is high. Applying the lemma with
x shows that every edge in the spanning tree of each cluster has weight at most
OPT Consider the scenario when the merge phase runs to completion to produce av"
tree with at least k nodes even before the number of exposed edges falls below /. In
this case, since the resulting tree has at most k nodes, the cost of the tree is at most
OPT. k < 2-- OPT

Otherwise, the number of exposed edges falls below before the merge phase
runs to completion. However, in this case, note that both preconditions for the start
of the collect phase will have been satisfied. Hence the algorithm must have forked
off a run of the collect phase. We show that the tree output by this run has low
weight. Consider a shortest-path computation of the collect phase rooted at a cluster
containing a node of the optimal kMST. Then clearly, within a distance at most OPT,
we find at most - clusters whose sizes sum to at least k. Since the number of exposed

SPANNING TREES--SHORT OR SMALL 185

edges is less than v/, the clusters containing nodes of the optimal tree form such a
collection. Since there are at most clusters to connect to, the weight of these
connections is at most x/-" OPT. To complete the analysis we need to upper-bound
the weight of the spanning trees within each of the clusters retained in the output
solution. This is not hard since all edges in these clusters have weight at most kT by
Lemma 3.2. Since the size of the output tree is at most k (as a result of the pruning),
the total weight of all the edges retained within these clusters is at most v/- OPT.
By summing the weight of these intracluster edges and the intercluster connections we
show that the output tree has cost at most 2v/ OPT. This proves the performance
ratio of 2x/- claimed in Theorem 3.1.

The example in Fig. 2 shows that the performance ratio of the algorithm is t(v/).
OPTThe optimal kMST is the horizontal path, each edge of which has weight zero or v

The horizontal path has edges of weight kT each. All zero-weight edges will be
chosen first in the merge phase. The merge phase running to completion will extend
each of the zero-weight upward-directed paths to include Ft(k) edges each of weight
OPT resulting in a tree of weight Vt(OPT. x/--) The collect phases may output trees4v/-
consisting of all the (v+ 1)-sized clusters at the bottom of the figure, each of weight
f’t(OPT. V).

4. An approximation algorithm for points on the plane.
THEOREM 4.1. There is a polynomial-time algorithm that, given n points in the

Euclidean plane and a positive integer k

_
n, constructs a tree spanning at least k of

these points such that the total length of the tree is at most O(k1/4) times that of a
minimum-length tree spanning any k of the points.

In this section, we present a heuristic for Che kMST problem for points on the
plane and a proof of its performance guarantee. Let S {sl, s2,..., sn} denote the
given set of points. For any pair of points si and sj, let d(i,j) denote the Euclidean
distance between si and sj.

4.1. The heuristic.
I. For each distinct pair of points si, 8j in S do

(1) Construct the circle C with diameter 5 x/-d(i, j) centered at the
midpoint of the line segment (si, 8j I"
(2) Let Sc be the subset of S contained in C. If Sc contains fewer than
k points, skip to the next iteration of the loop (i.e., try the next pair of
points). Otherwise, do the following.
(3) Let Q be the square of side 5 circumscribing C.
(4) Divide Q into k square cells each with side
(5) Sort the cells by the number of points from Sc they contain and
choose the minimum number of cells so that the chosen cells together
contain at least k points. If necessary, arbitrarily discard points from
the last chosen cell so that the total number of points in all the cells is
equal to k.
(6) Construct a minimum spanning tree for the k chosen points. (For
the rectilinear case, construct a rectilinear minimum spanning tree for
the k chosen points.)
(7) The solution value for the pair (s, sj} is the length of this MST.

II. Output the smallest solution value found.
It is easy to see that the above heuristic runs in polynomial time. In the next

section, we show that the heuristic provides a performance guarantee of o(kl/4). We

186 RAVI, SUNDARAM, MARATHE, ROSENKRANTZ, AND RAVI

OPT

OPT

k
OPT

OPT

o
o
o

o
o
o

OPT II

OPT OPT

oo o

(’k +1 nodes
in a zero wt.

cluster c4k.1 nodes’in a zero wt.
luster J

FIG. 2. Example of a graph in which the algorithm in Theorem 3.1 outputs a tree of weight
a(OPT

begin with some lemmas.

4.2. The performance guarantee.
LEMMA 4.2. Let S denote a set of points on the plane, with diameter A. Let a

and b be two points in S such that d(a, b) A. Then the circle with diameter
centered at the midpoint of the line segment (a, b contains S.

Proof. Suppose there exists a point p E S not contained within the circle of
diameter x/rA centered at the midpoint of the line segment (a, b}. If p lies on the
perpendicular bisector of the line segment (a, b}, then it is clear that d(a, p) d(b, p)
A, else p is closer to one of a and b than the other. Say p is closer to a; then it is
easy to see that d(b, p) > A. Thus, if there exists a point outside the circle, then it
contradicts the fact that the diameter of the set S is A. Hence S must be contained
within the circle.

Lower bounds on an optimal kMST. The following lemma is used to establish
a lower bound on OPT.

LEMMA 4.3. Consider a square grid on the plane with the side of each cell being
a. Then the length of an MST for any set of t points, where each point is from a
distinct cell, is (tr).

SPANNING TREES--SHORT OR SMALL 187

Proof. Pick a point from the set and discard all points in the eight cells neighboring
the cell containing the chosen point. Doing this repeatedly we choose a subcollection of
t/9 (t) points such that the distance between any pair of points in the subcollection
is at least a. The lemma then follows from the observation that the minimum length
of a tree spanning (t) points that are pairwise a-distant is t(ta). []

Let P* denote the set of points in an optimal solution to the problem instance.
Let A denote the diameter of P* (i.e., the maximum distance between a pair of points
in P*) and OPT denote the length of an MST for P*. Consider an iteration in which
the circle constructed by the heuristic is defined by two points a and b in P* such that
d(a, b) A. Let g be the number of square cells used by the heuristic in selecting k
points in this iteration. To establish the performance guarantee of the heuristic, we
show that the length of the MST constructed by the heuristic during this iteration is
within a factor O(k1/4) of OPT.

It is easy to see that OPT _> A because A is the diameter of P*.
Since the heuristic uses a minimum number (g) of square cells in selecting k

points, the points in P* must occur in g or more square cells. Note that the side of
each square cell is This gives us the following corollary to Lemma 4.3./"

COROLLARY 4.4.

Upper bound on the cost of the heuristic. We now prove an upper bound
on the cost of the spanning tree returned by the heuristic. For this, we need the
following lemma.

LEMMA 4.5. The length of a minimum spanning tree for any set of q points in a
square with side a is length O(f).

Proof. Paste a square grid over the square where each subcell in the grid has side

q. Connect each point to a closest vertex in the grid. Consider the tree consisting of
one vertical line, all the horizontal lines in the grid connected to the vertical line, and
the vertical lines connecting each point to its nearest horizontal line (see Fig. 3). It is
clear that the grid lines in the tree have total length O(ax/) and the lines connecting
the points to the grid have total length q.O(q) O(axfl). This is a Steiner tree.

But, it is a simple matter to observe that a spanning tree of at most twice the length
can be obtained by shortcutting the Steiner tree. []

LEMMA 4.6. The length of the spanning tree constructed by the heuristic is

Proof. Let Qi denote the set of points in the ith cell chosen by the heuristic,
1 <_ i <_ g. Thus gi=l IQil k. Consider the following two-stage procedure for
constructing a spanning tree for the points in uig=l Qi.

Stage I. Construct a minimum spanning tree for the points in Qi, 1

_
i

_
g. Note

that the points in Qi are within a square of side x/-A/v. Using Lemma 4.5, the
length of an MST for Qi is O(kQ-I). Thus, the total length of all the minimum

Ei=I 1) O(x/ A) by thespanning trees constructed in this stage is O(k
g

Cauchy-Schwartz inequality.
Stage II. Connect the g spanning trees constructed in Stage I into a single spanning

tree as follows. Choose a point arbitrarily from each Qi (1 <_ <_ g), and construct
an MST for the 9 chosen points. Note that these 9 points are within a square of
side x/ A. Thus, by Lemma 4.5, the length of the MST constructed in this stage is

0(A) as well.

188 RAVI, SUNDARAM, MARATHE, ROSENKRANTZ, AND RAVI

Square with points

Spanning tree

Grid

FIG. 3. A spanning tree of length O(ax/r) on any q points in a square of side a.

Thus, the total length of the spanning tree constructed by the two-stage procedure
is O(v/ A). [:]

The final analysis. We are now ready to complete the proof of the performance
bound. As argued above, OPT Ft(A) and from Corollary 4.4, OPT t(-Thus OPT t(max {A,)}. Also from Lemma 4.6, the length of the spanning
tree produced by the heuristic is O(v/ A). Therefore, the performance ratio is

O(min{v/,}) O(k1/4) as claimed.
The example in Fig. 4 shows that the performance ratio of the heuristic is t(kl/4).

The big square has side a. Each cell of the square grid has side . There are x/
points clustered closely together in each cell along the diagonal of the big square. In
each of the cells distributed uniformly throughout the big square there are
uniformly distributed points. The heuristic may pick up the points in the uniformly
distributed cells, forming a tree of length t(a. k/4), while the tree spanning the
points along the diagonal has length O(a).

Observe that both our lower bounds on an optimal solution and the upper bound
on the spanning tree obtained also apply to the case of constructing a rectilinear
kMST. Hence it follows that the above approximation algorithm delivers a perfor-
mance guarantee of O(k1/4) for the rectilinear kMST problem too. This proves the
following corollary.

COROLLARY 4.7. There is a polynomial-time algorithm that, given n points in
the plane and a positive integer k <_ n, constructs a rectilinear tree spanning at least
k of these points such that the total length of the tree is at most O(k1/4) times that of
a minimum-length rectilinear tree spanning any k of the points.

5. Polynomially solvable special cases.

5.1. kMST for treewidth-bounded (or decomposable) graphs. In this
section, we give the details of our polynomial-time algorithm for the class of treewidth-

SPANNING TREES--SHORT OR SMALL 189

Square with points

IN- Dlagonal cells wlth polnts clustered together

Unlformly dlstrlbuted cells wlth polnts scattered

unlformly In each

FIG. 4. Example of a configuration of points on the plane in which the heuristic outputs a tree
oth (0PT. v).

bounded graphs. As mentioned earlier Arnborg et al. [5] showed that the class of
treewidth-bounded graphs is the same as the class of decomposable graphs defined by
Bern, Lawler, and Wong [8]. We use the characterization of Bern, Lawler, and Wong
to explain our algorithm.

THEOREM 5.1. For any class of decomposable graphs, there is an O(nk2)-tirne
algorithm for solving the kMST problem.

In this section, we prove the above theorem. A class of decomposable graphs F is
inductively defined as follows [8].

1. The number of primitive graphs in F is finite.
2. Each graph in F has an ordered set of special nodes called terminals. The

number of terminals in each graph is bounded by a constant.
3. There is a finite collection of binary composition rules that operate only at

terminals, either by identifying two terminals or adding an edge between
terminals. A composition rule also determines the terminals of the resulting
graph, which must be a subset of the terminals of the two graphs being
composed.

Examples of decomposable graphs include trees, series-parallel graphs, and bounded-
bandwidth graphs [8].

Let F be any class of decomposable graphs. The kMST problem for F can be
solved optimally in polynomial time using dynamic programming. Following [8], it
is assumed that a given graph G is accompanied by a parse tree specifying how G is
constructed using the rules and that the size of the parse tree is linear in the number
of nodes of G.

Consider a fixed class of decomposable graphs F. Suppose that G is a graph in
F. Let r be a partition of a nonempty subset of the terminals of G. We define the
following set of costs for G.

190 RAVI, SUNDARAM, MARATHE, ROSENKRANTZ, AND RAVI

Cost(c) Minimum total cost of any forest containing a tree for each block
of , such that the terminal nodes occurring in each tree are
exactly the members of the corresponding block of , no pair
of trees is connected, and the total number of edges in the
forest is (1 _< i < k).

Costk_ G) Minimum cost of a tree within G containing k- 1 edges and
no terminal nodes of G.

For any of the above costs, if there is no forest satisfying the required conditions, the
value of Cost is defined to be

Note that because F is fixed, the number of cost values associated with any graph
in the parse tree for G is O(k). We now show how the cost values can be computed
in a bottom-up manner, given the parse tree for G.

To begin with, since F is fixed, the number of primitive graphs is finite. For a
primitive graph, each cost value can be computed in constant time, since the number
of forests to be examined is fixed. Now consider computing the cost values for a graph
G constructed from subgraphs G1 and G2, where the cost values for G1 and G2 have
already been computed.

Let Ha, Ha, and Ha be the set of partitions of a subset of the terminals of
G1, (2, and G, respectively. Let A be the set of edges added to G1 and (2 by
the composition rule R used in constructing G from G1 and (2. Corresponding to
rule R, there is a partial function fR HG x HG. x 2A IIa, such that a forest
corresponding to partition 71"1 in IIG1, a forest corresponding to partition 7r2 in IIa.,
and a subset B C_ A combine to form a forest corresponding to partition f(Tr, r2, B)
of G. Furthermore, if the forest corresponding to 71"1 contains i edges and the forest
corresponding to r2 contains j edges, then the combined forest in G contains
edges.

Similarly, there is a partial function gR IIG1 X 2A -- IIG, such that a forest
corresponding to partition 7rl in Ha and a subset B C_ A combine to form a forest
corresponding to partition 9R(rl, B) of G. If the forest corresponding to rl contains
edges, then the combined forest in G contains + IBI edges. There is also a similar

partial function hR" IIa. x 2A - Ha. Finally, there is a partial function jR" 2A

IIG.
Using functions fR, gR, hR, and jR, cost values for G can be computed from the

set of cost values for G1 and G2. For instance, suppose that fR(r, re, B) r. Then
a contributor to computing Costa(a) is Cost’[l(G1)+ Cost[__,,(a)+ w(B), for
each t such that 1 _< t _< i-IBI- 1. Here w(B) is the total cost of all edges in B.
The value of Cosff[(G) is the minimum value among its contributors.

When all the cost values for the entire graph G have been computed, the cost of
an optimal kMST is equal to minrea{Cost_l(G)}, where the forest corresponding
to r consists of a single tree.

We now analyze the running time of the algorithm. For each graph occurring in
the parse tree, there are O(k) cost values to be computed. Each of the cost values can
be computed in O(k) time. As in [8], we assume that the size of the given parse tree
for C is O(n). Then the dynamic-programming algorithm takes time O(nk2). This
completes the proof of Theorem 5.1.

It is also easy to see that a straightforward extension of the above algorithm works
for the weighted case, when the edges of noninfinite weight form a decomposable
graph.

SPANNING TREES--SHORT OR SMALL 191

5.2. kMST for points on the boundary of a convex region.
THEOREM 5.2. There is a polynomial-time algorithm for solving the kMST prob-

lem for the case of points in the Euclidean plane that lie on the boundary of a convex
region.

We now restrict our attention to the case where we are given n points that lie
on the boundary of a convex region and show that the kMST on these points can be
computed in polynomial time using dynamic programming. We also provide a faster
algorithm if the points are constrained to lie on the boundary of a circle.

LEMMA 5.3. Any optimal kMST for a set of points in the plane is non-self-
intersecting.

Proof. Suppose an optimal kMST is self-intersecting; then let (a, b and (c, d be
the intersecting line segments. On removing the edges (a, b) and (c, d) from the kMST
we get three connected components; hence some two vertices, one from (a, b) and one
from (c, d}, must be in the same connected component. Say a and d are in the same
connected component; then since in any convex quadrilateral the sum of two opposite
sides is less than the sum of the two diagonals, replacing (a, b) and (c, d) by (a, c
and (b, d) we still get a tree spanning k nodes but with less weight. This contradicts
the fact that the kMST with which we started out was optimal. Hence any optimal
kMST on a set of points in the plane must be non-self-intersecting.

LEMMA 5.4. Given n points on the boundary of a convex polygon, no vertex in
an optimal kMST of these points has degree greater than 4.

Proof. Suppose there is a vertex v in an optimal kMST with degree greater than
4. Let vl, v2,..., Vd, d >_ 5, be its neighbors in the optimal kMST as shown in Fig. 5.
Using the well-known fact that any convex polygon lies entirely on one side of a
supporting line, we have that /vlvvd <_ 180. By the pigeon-hole principle, there is
an i such that /vivvi+l <_ 180/(d- 1) < 60 1 _< _< d- 1, since d is at least 5.
Thus in/vivvi+, /vivvi+l is not the largest angle and vivi+l is not the largest side.
Therefore replacing the larger of vvi and vvi+l in the optimal kMST with vivi+l we
obtain a tree with lesser weight, contradicting the assumption that the kMST was
optimal. This completes the proof.

We now characterize the structure of an optimal solution in the following decom-
position lemma and use it to define the subproblems that we need to solve recursively
using dynamic programming. The next lemma intuitively points out that an optimal
solution for the kMST problem for the whole polygon can be constructed from optimal
solutions for smaller polygons obtained by triangulating the original polygon.

LEMMA 5.5 (decomposition lemma). Let vo, vl, vn-1 be the vertices of a
convex polygon in, say, clockwise order. Let v be a vertex of degree di in an optimal
kMST. Note that 1 <_ d <_ 4.

If di >_ 2 let the removal of vi from the optimal kMST produce connected compo-
nents C, C2,..., Cd (see Fig. 6). Let ICI denote the number of vertices in component
Ci. Then there exists a partition of Vi+l, vi+2,... ,vi_ (indices taken mod n), into

di contiguous subsegments S1,S2,...,Sdi such that j, 1 <_ j <_ di, the optimal kMST
induced on Sj J{vi} is an optimal (ICjI + 1)MST on Sy [.J{vi} among all such trees
in which the degree of vi is one.

If di 1, let vj be vi’s neighbor in the optimal kMST. Let vj be adjacent to djl
vertices in Vi+l,Vi+2, ,vj-1 and dj2 vertices in Vj+l, vj+2,..., vi-1. Let the optimal
kMST contain ICll vertices from the set Vi+l,Vi+2,...,vy-1 and IC21 vertices from
the set vj+, Vj+2, Vi--1. Then the optimal kMST induced on vi+l,vi+2,... ,vj is
an optimal (IC[+ 1)MST on Vi+l, vi+2,..., vj with degree ofvj djl and the optimal

192 RAVI, SUNDARAM, MARATHE, ROSENKRANTZ, AND RAVI_
Line

v

v1 v2

kMST

Convex Polygon

FIG. 5. Points on a convex polygon.

kMST induced on vj, vj+l,..., vi-1 i8 an optimal (IC21 + 1)MST on vj, vj+l,..., v_
among all such trees with degree of vj dj2.

Proof. If di >_ 2, then it is easy to see that a partition of vi+,vi+2,...,vi-
into contiguous subsegments S1,S2,...,Sd exists such that Vj, 1 <_ j <_ di, Cj c
Sj, because the optimal kMST is non-self-intersecting by Lemma 5.3. Further, the
optimal kMST induced on Sj [.J{v} must be an optimal (ICI + 1)MST on Sj [.J{v}
with degree of vi 1, for otherwise we could replace it getting a lighter kMST. The
proof of the case when d 1 is equally straightforward and is omitted. []

Thus the subproblems we consider are specified by the following four parameters:
a size s, a vertex vi, the degree di of vi, and a contiguous subsegment Vkl, vkl+l,..., v2
such that i [kl... k2]. A solution to such a subproblem denoted by SOLN(s; v;
di; Vkl, Vkl+l,..., Vk2) is the weight of an optimal sMST on {vi, vk, Vkl+l,..., Vk2} in
which vi has degree di. Using the decomposition lemma above, we can write a simple
recurrence relation for SOLN(s; vi; di; vk, Vkl+l,..., Vk2) as

SOLN(s; vi; di; vk, vk+l,..., v)

oc ifdi=0ors<di+lor ((k2-kl+l) mod n)+l<s,
min min l<j<dSOLN(sj;vi; 1;vk 1"’" vk)ko=kl<k...<kd--k2 s...+sd--s--d--l,sj_l

if d >_ 2,
min k{W(Vvy) + min0<d+d2<3 min81+82=8

jo=kl <_jl <_j2--

(SOLN(sl; vj ;dl; Vjo,..., Vjl_l / SOLN(s2; vj ;d2; Vjl+l,..., vj.))}) if d 1.

Here w(vvj) is the cost of the edge (v, vj). The optimal kMST is expressed as

min min SOLN(k; vi; d; vi+, vi+2,..., Vi--1).
l<i<n l<d<4

Note that we have O(kn3) subproblems and each subproblem requires looking
up the solution to at most O(k3n3) smaller subproblems. This yields a running

SPANNING TREES--SHORT OR SMALL 193

cz-- (v v .)

Convex Polygon

kMST

FIG. 6. Decomposition.

time of O(k4n6). When k t(x/-), this running time can be further improved by
organizing the computation of the recurrences for the smaller subproblems better.
Each subproblem specified by s, v, d, and the interval vkl,...,vk2 can be solved
by first computing a partition of the interval into at most four subintervals (exactly
four when d 4). For the first subinterval, we compute the best tree with j- 1
nodes from this subinterval and containing v so that it has degree one in this tree,
for 1 _< j _< s. This computation takes O(nk) time since there are at most s _< k
trees to be computed, and for each j there are at most n nodes with which v shares
the single edge in the best tree. Next, we include the next subinterval and compute
for 1 <_ j <_ s the best tree on j’- 1 nodes containing v and nodes from these two
subintervals, where v have degree two with one edge to a node in the first and one
edge to a node in the second subinterval. This set of trees can also be computed in
O(nk) time given the set of trees for the first subinterval as follows: First, compute
the best tree on j nodes for 1 <_ i <_ s containing v and nodes only in the second
subinterval, where v has exactly one edge to a node in this subinterval, in O(nk) time
as before. Using these values and the analogous set of values for the first subinterval,
the best j’ trees for the first two subintervals can be obtained in O(k2) O(nk) time
since each of the s <_ k trees requires looking up at most s different pairs of trees,
one from each subinterval. This method can be extended to compute the solution
for the whole set of four subintervals in O(nk) time. Since there are O(n3) ways to
partition a given interval into four subintervals, the recurrence for this subproblem
can be solved in O(kn4) time. So the total time to solve one subproblem is O(]n4)
time. Since there are a total of O(kn3) subproblems, the total running time of the
algorithm is O(k2n7).

We now provide a faster algorithm to find the optimal kMST in the case when
all n points lie on a circle. We assume that no two points are diametrically opposite.

LEMMA 5.6. Given n points vl,v2,...,vn on a circle, no vertex in an optimal
kMST has degree more than 2.

194 RAVI, SUNDARAM, MARATHE, ROSENKRANTZ, AND RAVI

Proof. Suppose point Vp in an optimal kMST has degree greater than 2. Then
consider the diameter passing through Vp. At least two neighbors of Vp lie on one side
of this diameter. Let these neighbors be vq and vr, where Vq is closer to Vp than yr.
Then since /VpVqVr is obtuse, we replace VpVr by VqVr to get a smaller tree.

Lemma 5.6 implies that if the points lie on a circle, then every optimal kMST is
a path. Moreover, if the path "zig-zags," then we replace the crossing edge with a
smaller edge. Thus we have the following lemma.

LEMMA 5.7. Given n points Vl,V2,...,Vn on a circle, let a minimum length k-
path on these points be vi,..., vi. Then the line segment joining vi and vi along
with the k-path forms a convex k-gon.

Proof. By Lemma 5.6 the minimum-length k-path is also the minimum-length
kMST. Suppose the line segment joining vi and vi, along with the minimum k-path
does not form a convex k-gon. Then there exists a zig-zag in the path as shown in
Fig. 7. Say the center of the circle lies to the right of the edge (a, b/; then we replace
(a, b by the edge (b, c} to get a smaller kMST, which contradicts the fact that the
k-path with which we started was optimal.

FIG. 7. Illustration of Lemma 5.7.

Lemmas 5.6 and 5.7 lead to a straightforward dynamic-programming algorithm to
compute an optimal kMST for points on a circle: for each point on the circle compute
the minimum-length /-path (1 _< _< k), which lies completely on one side of the
diameter passing through the point; then combine these solutions to find the optimal
kMST. It is easy to see this algorithm takes O(k2n) time.

6. Short trees and short small trees.

6.1. Short trees. In this subsection, we prove our results on short trees. First,
we address the minimum-diameter k-tree problem: given a graph with nonnegative
edge weights, find a tree of minimum diameter spanning at least k nodes.

THEOREM 6.1. There is a polynomial-time algorithm for the minimum-diameter
k-tree problem on graphs with nonnegative edge weights.

SPANNING TPEESnSHORT OR SMALL 195

Recall that the diameter of a tree is the maximum distance (path length) between
any pair of nodes in the tree. We introduce the notion of subdividing an edge in
weighted graph. A subdivision of an edge e (u, v) of weight we is the replacement
of e by two edges el (u, r) and e2 (r, v) where r is a new node. The weights
of el and e2 sum to We. Consider a minimum-diameter k-tree. Let x and y be the
endpoints of a longest path in the tree. The weight of this path, D, is the diameter of
the tree. Consider the midpoint of this path between x and y. If it falls in an edge, we
subdivide the edge by adding a new vertex as specified above. The key observation
is that there exist at least k vertices at a distance at most D/2 from this midpoint.
This immediately motivates an algorithm for the case when the weights of all edges
are integral and bounded by a polynomial in the number of nodes. In this case, all
such potential midpoints lie in half-integral points along edges of which there are only
a polynomial number. Corresponding to each candidate point, there is a smallest
distance from this point within which there are at least k nodes. We choose the point
with the least such distance and output the breadth-first search (bfs) tree rooted at
this point appropriately truncated to contain only k nodes.

When the edge weights are arbitrary, the number of candidate midpoints are
too many to check in this fashion. However, we use a graphical representation of
the distance of any node from any point along a given edge to bound the search for
candidate points. We think of an edge e (u, v) of weight w as a straight line between
its endpoints of length w. For any node x in the graph, consider the shortest path
from x to a point along the edge e at distance t (_< w) from u. The length of this path
is the minimum of g + d(x, u) and w + d(v, x). We plot this distance of the node x
as a function of t. The resulting plot is a piecewise linear bitonic curve that we call
the roof curve of x in e (see Fig. 8). For each edge e, we plot the roof curves of all
the vertices of the graph in e. For any candidte point in e, the minimum diameter
of a k-tree centered at this point can be determined by projecting a ray upward from
this point in the plot and determining the least distance at which it intersects the
roof curves of at least k distinct nodes. The best candidate point for a given edge is
one with the minimum such distance. Such a point can be determined by a simple
line-sweep algorithm on the plot. Determining the best midpoint over all edges gives
the midpoint of the minimum-diameter k-tree. This proves Theorem 6.1.

The following lemma gives yet another way to implement the polynomial-time
algorithm for finding a tree of minimum diameter spanning k nodes.

LEMMA 6.2. Given two vertices in a graph, v and vj, such that every other
vertex is within distance d ofv or dj of vj, it is possible to find two trees, one rooted
at v and of depth at most d and one rooted at vj of depth at most dj, that partition
the set of all vertices.

Proof. Consider the shortest-path trees T and Tj rooted at v and vj of depth
d and dj, respectively. Every vertex occurs in one tree or both trees. Consider
vertex Vp that occurs in both trees. If it is the case that d-depthT (Vp) is greater
than dy-depthTj (Vp), then the same is true of all descendants of Vp in Ty. Hence we
can remove Vp and all its descendants from Ty since we are guaranteed that all these
vertices occur in T. Repeating this procedure bottom-up we get two trees satisfying
the required conditions and partitioning the vertex set.

The above lemma motivates the following alternate algorithm for finding a mini-
mum-diameter tree spanning at least k nodes. For each vertex v in the graph compute
the shortest distance d such that there are k vertices within distance d of v. For each
edge (v, v) compute the least dj + dJ such that there are k vertices within distance

196 RAVI, SUNDARAM, MRATHE, ROSENKRANTZ, AND RAVI

dj of v or d% of vj. Then compute the least of all the d’s and dj / d% / w(v, vj)’s,
and this is the diameter of the k-tree with least diameter. It can be easily seen that
the running time of the algorithm is O(min{k2, E}E).

d(u,x)

d(v,x)

FIG. 8. A roof curve of a node x in edge e (u, v).

We now address the results in the third row of Table 1.
LEMMA 6.3. If the rj values are drawn from the set {a, b} and the elij values

from {0, c}, then the minimum-communication-cost spanning tree can be computed in
polynomial time.

Proof. When the dj values are all uniform, Hu [22] observed that the Gomory-
Hu cut tree with the rj values as capacities is a minimum-communication-cost tree.
We can use this result to handle the case when zero-cost dy edges are allowed as
well. We contract the connected components of the graph using zero-cost dij edges
into supernodes. The requirement value rig between two supernodes vi and vj is
the sum of the requirement values rj such that i E vi and j vj. Now we find a
Gomory-Hu cut tree between the supernodes using the rij values as capacities. By
choosing an arbitrary spanning tree of zero-dj-valued edges within each supernode
and connecting them to the Gomory-Hu tree, we get a spanning tree of the whole
graph. It is easy to verify that this is a minimum-communication-cost spanning tree
in this case.

LEMMA 6.4. When all the dj values are uniform and there are at most two
distinct rj values (say a and b), then the minimum-diameter-cost spanning tree can
be computed in polynomial time.

Proof. Let the higher of the two rj values be a. If the edges with requirement a

SPANNING TREES--SHORT OR SMALL 197

form a cyclic subgraph, then any spanning tree has diameter cost 2a. In this case, any
spanning star (a star is a rooted tree of depth 1) is an optimal solution. Otherwise,
consider the forest of edges with requirement a. Determine a center for each tree in
this forest. Consider the tree formed by connecting these centers in a star. The root
of the star is a center of the tree of largest diameter in the forest. If the diameter
cost of the resulting tree is less than 2a, it is easy to see that this tree has optimum
diameter cost. Otherwise any star tree on all the nodes has diameter cost 2a and is
optimal. Note that we can extend this solution to allow zero-cost dij edges by using
contractions as before. [-1

Now we address the results in the fourth row of Table 1.
LEMMA 6.5. The minimum-diameter-cost spanning tree problem is NP-complete

even when the rj’s and d{j’s take on at most two distinct values.
Proof. It is easy to see that the minimum-diameter-cost spanning tree problem

is in NP. We now prove that it is NP-hard by using a reduction from an instance of
3SAT. Without loss of generality, we assume that all clauses in the given instance of
3SAT contain three distinct literals. We form a graph that contains a special node t
(the "true" node), a node for each literal and each clause. We use two dij values, c
and 5c where we assume c 0. Each literal is connected to its negation with an edge
of distance c. The true node is connected to every literal with an edge of distance c.
Each clause is connected to the three literals that it contains with edges of distance
c. All other edges in the graph have distance 5c. Now we specify the requirements
on the edges. We use requirement values from {a, 4a}, where a 0. The requirement
value of an edge between a literal and its negation is 4a. The requirement value of
all other edges is a (see Fig. 9). It is easy to check that there exists a spanning
tree of this graph with diameter cost at most 4ac if and only if the 3SAT formula is
satisfiable. [:]

FIG. 9.
problem.

C = (X + Y + Z)

Reduction from an instance of 3SAT to the minimum-diameter-cost spanning tree

198 RAVI, SUNDARAM, MARATHE, ROSENKRANTZ, AND RAVI

6.2. Short small trees.
THEOREM 6.6. The minimum-communication k-tree problem and the minimum-

diameter k-tree problem are both NP-hard to approximate within any factor even when
all the dij values are one and the rij values are nonnegative.

Proof. We prove the above theorem for the communication tree case. The proof
of the other part is similar. Suppose there is a polynomial-time M-approximation al-
gorithm for the minimum-communication-cost k-tree problem where all the dij values
are one and all rij values are nonnegative. Then, we show that the k-independent
set problem can be solved in polynomial time. The latter problem is well known to
be NP-complete [19]. Given a graph G of the k-independent set problem, produce
the following instance of the communication k-tree problem: dij 1 for every pair of
nodes i, j; assign rj ---one if (i, j) is not an edge in G and Mk(k- 1) + 1 otherwise.
If G has an independent set of size k, then we form a star on these k nodes (choosing
an arbitrary node as the root). In the star, the distance between any pair of nodes
is at most 2 and the r value for each pair is 1. Thus, the communication cost of
an optimum solution is at most k(k- 1). The approximation algorithm will return
a solution of cost at most Mk(k- 1). The nodes in this solution are independent
in G by the choice of rij for nonedges (i, j) G. On the other hand, if there is no
independent set of size k in G, the communication cost of any k-tree is greater than
Mk(k- 1). D

7. Closing remarks.

7.1. Future research. A natural question is whether there are approximation
algorithms for the kMST problem that provide better performance guarantees than
those presented in this paper. In this direction, Garg and Hochbaum [20] gave an

O(log k)-approximation algorithm for the kMST problem for points on the plane using
an extension of our lower-bounding technique in 4. Blum, Chalasani, and Vempala
[10] recently improved upon this to obtain a constant-factor approximation for points
on the plane. Also, Awerbuch, Azar, Blum, and Vempala [I] obtained an O(log k)-
approximation algorithm for the kMST problem. An interesting observation in this
regard is the following: any edge in an optimal kMST is a shortest path between its
endpoints. This observation allows us to assume without loss of generality that the
edge weights on the input graph obey the triangle inequality. Although we have been
unable to exploit the triangle inequality property in our algorithms, it is possible that
this remark holds the key to improving our results.

Table 1 is incomplete. It would be interesting to know the complexity of the
minimum-diameter-cost spanning tree problem when the distance values are uniform.
Note that any star tree on the nodes provides a 2-approximation to the minimum-
diameter-cost spanning tree in this case. The above problem can be shown to be
polynomial-time equivalent to the following tree reconstruction problem: given inte-
gral nonnegative distances dij for every pair of vertices i, j, does there exist a spanning
tree on these nodes such that the distance between and j in the tree is at most dij ?

7.2. Maximum acyclic subgraph. In the course of our research we considered
the k-forest problem: given an undirected graph is there a set of k nodes that induces
an acyclic subgraph? The optimization version of this problem is the maximum acyclic
subgraph problem. Since this problem is complementary to the minimum feedback
vertex set problem [19], NP-completeness follows. While the feedback vertex set
problem is 4-approximable [7], we show that the maximum acyclic subgraph problem
is hard to approximate within a reasonable factor using an approximation-preserving

SPANNING TREES--SHORT OR SMALL 199

transformation from the maximum independent set problem [6]. This same result was
also derived in a more general form in [27].

THEOREM 7.1. There is a constant c > 0 such that the maximum acyclic subgraph
problem cannot be approximated within a factor (n) unless P NP.

Proof. Note that any acyclic subgraph of size S contains a maximum independent
set of size at least S/2 since acyclic Subgraphs are bipartite and each partition is an
independent set. Further, every independent set is also an acyclic subgraph. These
two facts show that the existence of a p-approximation algorithm for the maximum
acyclic subgraph problem implies the existence of a 2p-approximation algorithm for
the maximum independent set problem. But by the result in [6] we know that there
is a constant c > 0 such that the maximum independent set problem cannot be
approximated within a factor (n) unless P NP. Hence, the same is true of the
maximum acyclic subgraph problem.

Acknowledgments. The authors thank Alex Zelikovsky and Naveen Garg for
helpful conversations during the initial stages of the paper. They are grateful to
Professor John Oomen for observing that our algorithm for points in the plane extends
to the rectilinear case and to Professor Arie Tamir for his observations on 6. We
thank the referees for detailed comments and suggestions that substantially improved
the quality of presentation.

REFERENCES

[1] B. AWERBUCH, Y. AZAR, A. BLUM, AND S. VEMPALA, Improved approximation guarantees
for minimum-weight k-trees and prize-collecting salesmen, in Proc. 27th Annual ACM
Symposium on Theory of Computing, Las Vegas, NV, 1995, pp. 277-283.

[2] D. ADOLPHSON AND T. C. HU, Optimal linear ordering, SIAM J. Appl. Math., 25 (1973),
pp. 403-423.

[3] A. AGGARWAL, H. IMAI, N. KATOH, AND S. SURI, Finding k points with minimum diameter
and related problems, J. Algorithms, 12 (1991), pp. 38-56.

[4] A. AGRAWAL, P. KLEIN, AND R. RAVI, When trees collide: an approximation algorithm for the
generalized Steiner tree problem on networks, in Proc. 23rd Annual ACM Symposium on
Theory of Computing, New Orleans, LA, 1991, pp. 134-144.

[5] S. ARNBORG, B. COURCELLE, A. PROSKUROWSKI, AND D. SENSE, An algebraic theory of graph
reduction, J. Assoc. Comput. Mach., 40 (1993), pp. 1134-1164.

[6] S. ARORA, C. LUND, R. MOTWANI, M. SUDAN, AND M. SZEGEDY, Proof verification and hard-
ness of approximation problems, in Proc. 33rd IEEE Symposium on the Foundations of
Computer Science, Pittsburgh, PA, 1992, pp. 14-23.

[7] R. BAR-YEHUDA, D. GEIGER, J. NAOR, AND R. M. ROTH, Approximation algorithms for the
cycle-cover problem with applications to constraint satisfaction and Bayesian inference, in
Proc. Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, Arlington, VA, 1994,
pp. 344-354.

[8] M. W. BERN, E. L. LAWLER, AND A. L. WONG, Linear time computation of optimal subgraphs
of decomposable graphs, J. Algorithms, 8 (1987), pp. 216-235.

[9] A. BLUM, P. CHALASANI, D. COPPERSMITH, B. PULLEYBLANK, P. RAGHAVAN, AND M. SUDAN,
The minimum latency problem, in Proc. 26th Annual ACM Symposium on Theory of
Computing, Montreal, Canada, 1994, pp. 163-172.

[10] A. BLUM, P. CHALASANI, AND S. VEMPALA, A constant-factor approximation for the k-MST
problem in the plane, in Proc. 27th Annual ACM Symposium on Theory of Computing,
Las Vegas, NV, 1995, pp. 294-302.

[11] H. L. BODLAENDER, Dynamic programming on graphs of bounded treewidth, in Proc. 15th
International Colloquium on Automata, Languages and Programming, Springer-Verlag,
Berlin, New York, NY, 1988, pp. 105-118.

[12] P. M. CAMERINI AND G. GALBIATI, The bounded path problem, SIAM J. Alg. Discrete Methods,
3 (1982), pp. 474-484.

[13] P. M. CAMEPINI, G. GALBIATI, AND F. MAFFIOLI, Complexity of spanning tree problems: Part
1, European J. Oper. Res., 5 (1980), pp. 346-352.

200 RAVI, SUNDARAM, MARATHE, ROSENKRANTZ, AND RAVI

[14] N. CHRISTOFIDES, Worst-case analysis of a new heuristic for the traveling salesman problem,
Report 338, GSIA, CMU, Pittsburgh, PA, 1976.

[15] E. W. DIJKSTRA, A note on two problems in connexion with graphs, Numer. Math., 1 (1959),
pp. 269-271.

[16] D. P. DOBKIN, R. L. DRYSDALE, AND L. J. GUIBAS, Finding smallest polygons, in Advances in
Computing Research 1, JAI Press, Greenwich, CT, 1983, pp. 181-214.

[17] D. EPPSTEIN, New algorithms for minimum area k-gons, in Proc. 3rd Annual ACM-SIAM
Symposium on Discrete Algorithms, Orlando, FL, 1992, pp. 83-88.

[18] D. EPPSTEIN AND J. ERICKSON, Iterated nearest neighbors and finding minimal polytopes, in
Proc. 4th Annual ACM-SIAM Symposium on Discrete Algorithms, Austin, TX, 1993,
pp. 64-73.

[19] M. R. GAREY AND D. S. JOHNSON, Computers and Intractability: A guide to the theory of
NP-completeness, W. H. Freeman and Co., San Francisco, CA, 1979.

[20] N. GARG AND D. HOCHBAUM, An O(log k) approximation algorithm for the k minimum span-
ning tree problem in the plane, in Proc. 26th ACM Symposium on Theory of Computing,
Montreal, Canada, 1994, pp. 432-438.

[21] R. E. GOMORY AND W. C. Hu, Multi-terminal network flows, SIAM J. Appl. Math., 9 (1961),
pp. 551-570.

[22] T. C. Hu, Optimum communication spanning trees, SIAM J. Comput., 3 (1974), pp. 188-195.
[23] D. S. JOHNSON, J. K. LENSTRA, AND A. H. G. RINNOOY KAN, The complexity of the network

design problem, Networks, 8 (1978), pp. 279-285.
[24] P. KLEIN AND R. RAVI, A nearly best-possible approximation for node-weighted Steiner trees,

in Proc. 3rd MPS conference on Integer Programming and Combinatorial Optimization,
1993, pp. 323-332.

[25] J. B. KRUSKAL, On the shortest spanning subtree of a graph and the traveling salesman problem,
Proc. Amer. Math. Sou., 7 (1956), pp. 48-50.

[26] D. LOZOVANU AND A. ZELIKOVSKY, Minimal and bounded tree problems, Tezele Congresului
XVIII al Academiei Romano-Americane, Kishniev, 1993, p. 25.

[27] C. LUND AND M. YANNAKAKIS, On the hardness of the maximum subgraph problems, in Proc.
20th International Colloquium on Automata, Languages and Programming, Lund, Sweden,
1993, Springer-Verlag, Berlin, New York, N, pp. 40-51.

[28] R. C. PRIM, Shortest connection networks and some generalizations, Bell System Tech. J., 36
(1957), pp. 1389-1401.

[29] R. RAVI, Steiner Trees and Beyond: Approximation Algorithms for Network Design, Ph.D.
Thesis, Tech. report TR-CS-93-41, Department of Computer Science, Brown University,
Providence, RI, September 1993.

[30] R. RAVI, M. V. MARATHE, S. S. RAVI, D. J. ROSENKRANTZ, AND H.B. HUNT III, Many birds
with one stone: multi-objective approximation algorithms, in Proc. 25th Annual ACM
Symposium on the Theory of Computing, San Diego, CA, 1993, pp. 438-447.

[31] R. RAVI, R. SUNDARAM, M. V. MARATHE, D. J. ROSENKRANTZ, AND S. S. RAVI, Spanning
trees short or small, in Proc. 5th Annual ACM-SIAM Symposium on Discrete Algorithms,
Arlington, VA, 1994, pp. 546-555.

[32] N. ROBERTSON AND P. SEYMOUR, Graph minors IV: Tree-width and well-quasi-ordering, J.
Combin. Theory Ser. B, 48 (1990), pp. 227-254.

SIAM J. DISCRETE MATH.
Vol. 9, No. 2, pp. 201-209, May 1996

() 1996 Society for Industrial and Applied Mathematics
OO4

ON THE NONEXISTENCE OF PERFECT CODES IN THE
JOHNSON SCHEME*

TUVI ETZIONt

Abstract. Although it was conjectured by Delsarte in 1973 that no nontrivial perfect codes
exist in the Johnson scheme, only very partial results are known. In this paper we considerably
reduce the range in which perfect codes in the Johnson scheme can exist; e.g., we show that there
are no nontrivial perfect codes in the Johnson graph J(2w q- p, w), p prime. We give theorems about
the structure of perfect codes if they exist. This involved structure gives more evidence in support
of the belief that no nontrivial perfect codes exist in the Johnson scheme.

Key words, perfect code, Steiner system, Hamming scheme, Johnson graph, Johnson scheme

AMS subject classifications. 05B15, 05B30, 51E10, 94B25

1. Introduction. Perfect codes always draw the attention of coding theorists
and mathematicians. They are defined on large varieties of metrics, e.g., Hamming,
Johnson, and Lee [7]. Although a lot of results are known regarding the Hamming
metric [4], [7], and the Lee metric [5], [7] (and we don’t give the enormous number of
references in order to save space), only a few results are known on perfect codes in
the Johnson metric.

In the Johnson scheme, we are given two integers, n and w, such that 0

_
w

_
n.

Given a binary code C, all its codewords have length n and constant weight w. Two
codewords u and v are in distance (J-distance) d apart if there are exactly d positions
in which u has 1 value and v has 0 values. Obviously, there are exactly d other
positions in which u has 0 values and v has 1 value. With the Johnson scheme we
associate the Johnson graph J(n, w). The vertex set V of the Johnson graph consists
of all w-subsets of a fixed n-set. Two such w-subsets are adjacent if and only if their
intersection has size w- 1. A code C of such w-subsets is called e-perfect code in
g(n, w) (or in the Johnson scheme) if the e-spheres of all the codewords of C form a

partition of V. In other words, C is an e-perfect code if for each element v E V
there exists a unique element c E C, such that the J-distance between v and c is less
than or equal to e. There are some trivial perfect codes in J(n, w).

1. Vn is 0-perfect.
2. Any {v}, v V, is w-perfect.

l(w- 1).3. If n 2w, w odd, any pair of disjoint w subsets is e-perfect with e
Delsarte [3, p. 55] conjectured that J(n, w) doesn’t contain nontrivial perfect

codes. Bannai [1] proved the nonexistence of e-perfect codes in J(2w- 1, w) and
J(2w + 1, w) for e _> 2. Hammond [6] extended the result and showed that J(n, w)
cannot contain a nontrivial perfect code for n {2w 2, 2w 1, 2w + 1, 2w + 2}. Gen-
eralizations of Lloyd’s theorem [1], [3], didn’t lead to significant results. A significant
improvement was made by Roos [8] who showed the following result.

THEOREM 1.1. If an e-perfect code in J(n, w), n >_ 2w, exists, then n <_ (w-
1)(2e + 1)/e.

Received by the editors October 10, 1994; accepted for publication (in revised form) April 5,
1995. This research was supported in part by Science and Engineering Research Council (United
Kingdom) grant GR/K01605.

Computer Science Department, Royal Holloway College, University of London, Egham, Sur-
rey TW20 0EX, UK. The author is on leave of absence from the Computer Science Department,
Technion-Israel Institute of Technology, Haifa 32000, Israel.

201

202 TUVI ETZION

In this paper we make a considerable improvement on the range in which perfect
codes cannot exist. We show that there are strong connections between perfect codes
and Steiner systems. If nontrivial perfect code exists then many Steiner systems are
embedded in it. They are embedded in such an involved way that it seems impossible
that such a structure can exist. The necessary conditions on the existence of these
Steiner systems reduce the range in which these perfect codes can exist.

This paper is organized as follows. In 2 we introduce the necessary notation
and definitions on codes and Steiner systems that are needed for our discussion. We
also give some simple results that are essential for the discussion. In 3 we give two
theorems that connect the existence of perfect codes with the existence of Steiner
systems. The proofs of these theorems reveal the involved structure of the perfect
codes. In 4 we prove that, except for the trivial perfect codes, there cannot exist
perfect codes which are also Steiner systems. In 5 we give a concept similar to the
weight distribution on e-perfect codes in the Johnson scheme. Using this concept we
will show that there are no e-perfect codes in J(2w + e + 1, w). In 6 we examine
the theorems of 3, 4, and 5 to show that the range in which e-perfect codes exist is
considerably reduced. We also explore the involved structure obtained in 3.

2. Notation, definitions, and preliminaries. Perfect codes in the Johnson
scheme have a strong connection to constant weight codes and Steiner systems. For
this purpose we need to use the Hamming metric. Two binary words u and v of
the same length n have Hamming distance (H-distance) d if they differ in exactly
d positions. Note that two words u, v E V, have J-distance d if and only if their
H-distance is 2d. A code C has minimum H-distance d if for any two codewords
u, v E C, the H-distance between u and v is at least d.

LEMMA 2.1. If C is an e-perfect code in the Johnson scheme then its minimum
H-distance is 4e + 2.

Proof. Since C is an e-perfect code, it follows that the e-spheres of two words
with J-distance less than 2e + 1 have nonempty intersection. Hence, the minimum
J-distance of the code is 2e + 1 and its minimum H-distance is 4e / 2. D

An (n, d, w) code is a code of length n, constant weight w to all the codewords,
and minimum H-distance d. A(n, d, w) denote the maximum size of an (n, d, w) code.
An extensive survey on the lower bounds on A(n, d, w) can be found in [2].

LEMMA 2.2. If C is an e-perfect code in J(n, w) then A(n, 4e + 2, w)
Proof. Assume C is an e-perfect code in J(n, w). By Lemma 2.1 C has minimum

H-distance 4e + 2, and hence it is an (n, 4e + 2, w) code. Given an (n, 4e + 2, w) code,
in the Johnson scheme, its minimum J-distance is 2e + 1 and hence the e-spheres
around its codewords are disjoint. The lemma follows from the facts that all e-
spheres in J(n, w) have the same size and in an e-perfect code they form a partition of
Vn D

A Steiner system S(t, k, n) is a collection of k-subsets (called blocks) taken from
an n-set such that each t-subset of the n-set is contained in exactly one block. The
following theorem is well known, e.g., [7, p. 60].

THEOREM 2.3. A necessary condition that a Steiner system S(t,k,n) exists is
that the numbers n-i (t-i)) integers <_ t.o <_

Henceforth, let N {1, 2,..., n} be the n-set. From a Steiner system S(t, k, n)
we construct constant weight code on n coordinates as follows. From each block B we
construct a codeword with l’s in the positions of B and O’s in the positions of N \ B.
This construction leads to the following well-known theorem [2].

PERFECT CODES IN THE JOHNSON SCHEME 203

THEOREM 2.4. A(n, 2(k t + 1) k) n(n-1) (n--t+l)
k(k-1) (k-t+1) if and only if a Steiner

system S(t, k, n) exists.
From Theorem 2.4 and Lemma 2.1 we immediately infer the following result.
LEMMA 2.5. If C is an e-perfect code in J(n, w) and is also a Steiner system

then it is a Steiner system S(w- 2e, w, n).
COROLLARY 2.6. If C is an e-perfect code in J(n, w) which is not a Steiner

system S(w 2e, w, n) then there exists at least one set of w 2e coordinates which
are not contained in any codeword.

LEMMA 2.7. The complement of an e-perfect code in J(n, w) is an e-perfect code
in J(n, n w).

Proof. This lemma is a simple observation from the fact that J(n, w) and J(n, n-
w) are isomorphic under the mapping which maps each vertex to its complement. D

Finally, we need a few more definitions which we will use in the proofs of the
nonexistence theorems in the sequel. For a given partition of N into two subsets A
and B such that IAI k and]B n-k, let configuration (i, j) consist of all vectors
with weight in the positions of A and weight j in the positions of B. For an e-perfect
code C in J(n, w) we say that u E C J- cover v V if the J-distance between
u and v is less than or equal to e. For a given two subsets u and v we say that u
C cover v if v is a subset of u (this is our usual understanding of the word cover).

In the sequel we will use a mixed language of set and vector notations. It should
be understood from the context which one we are using and the translation between
the two different notations.

3. Perfect codes and Steiner systems. In this section we will prove that if
there exists an e-perfect code in the Johnson scheme, then many Steiner systems are
embedded in it. This fact will force the necessary conditions for the existence of these
Steiner systems also to become necessary conditions for the existence of the e-perfect
codes. The involved way in which these Steiner systems are embedded in the perfect
codes will make it reasonable to believe that except for the trivial perfect codes no
other e-perfect codes exist in the Johnson scheme.

THEOREM 3.1. If an e-perfect code in J(n,w) exists, then a Steiner system
S(e + 1, 2e + 1, w) exists.

Proof. Assume C is an e-perfect code in J(n, w). We partition N into two subsets
A and B, such that IAI w, IBI n- w, and the vector of the (w, 0) configuration is
a codeword. This codeword J-covers exactly all the vectors of all configurations (w-
x,x), where 0 _< x _< e. Since C is e-perfect code and all vectors of all configurations
(w- x, x), 0 _< x _< e, are covered, it follows that C does not contain any codeword of
any configurations (w- x, x), where 1 _< x _< 2e. Therefore, all words of configuration
(w-e- 1, e+ 1) must be J-covered by codewords from configuration (w-2e- 1, 2e+ 1).
Consider now all (e+i) vectors in configuration (w-e- 1,e+ 1) with e+ 1 1’s in e+ 1
fixed positions of B. These vectors are J-covered by codewords from configuration (w-
2e 1, 2e+ 1) with 2e+ 1 l’s in positions of B which C-covers the e + 1 fixed positions.
Let C1 be this set of codewords. Each subset of e + 1 O’s in A with these e + 1 fixed
positions in B must be C-covered and no subset can be C-covered twice (since the code
is perfect). Hence, the complement of the A part of C1 forms a Steiner system S(e+ 1,
2e + 1, w). [:1

By using Lemma 2.7 we also have the following corollary.
COROLLARY 3.2. If an e-perfect code in J(n, w) exists, then a Steiner system

S(e + 1, 2e + 1, n w) exists.

204 TUVI ETZION

THEOREM 3.3. If an e-perfect code in J(n, w), which is not a Steiner system
S(w 2e, w, n), exists then for some k, 0
1, n w + 2e 2k exists.

Proof. The proof will be given in some kind of inductive approach. Assume C
is an e-perfect code in J(n, w) which is not a Steiner system S(w- 2e, w, n). We
partition N into two subsets, A0 and B0, such that IA01 w 2e, IB01 n w + 2e,
and there are no codewords in C from configuration (w- 2e, 2e), but there is at least
one codeword from configuration (w 2e- 1, 2e + 1). This can be done as a simple
consequence from Corollary 2.6. For a given k, 0 _< k _< e- 2, assume N is partitioned
into two subsets Ak and Bk, such that IAkl w 2e + 2k, IBkl n w + 2e 2k,
there are no codewords in C from any configuration (w 2e + i, 2e i), k _< _< 2k,
but there is at least one codeword from configuration (w 2e + k 1, 2e k + 1). Let
C be the set of codewords from configuration (w 2e + k- 1, 2e- k + 1). In the Bk
part of C we search for two coordinates in which each codeword has at least one 0.
If none exist then the B part forms a Steiner system S(2, 2e k + 1, n w + 2e 2k)
(note, that if two codewords of Ck have two l’s in the same two coordinates of the Bk
part their H-distance will be 4e, contradicting Lemma 2.1). If these two coordinates
exist, we join them to Ak to obtain Ak+l and Bk+l N \ Ak+l. Now, IAk+ll
w 2e + 2(k + 1), IB+ll n w + 2e 2(k + 1), and there are no codewords in
C from any configuration (w- 2e + i, 2e- i), k + 1 <_ i <_ 2(k + 1), but there is
at least one codeword from configuration (w- 2e + k, 2e- k). If k e- 2 and we
obtain IAe_l w 2, IB_I n w + 2, there are no codewords in C from any
configuration (w- 2e + i, 2e- i), e- 1 _< _< 2e- 2, but there is at least one codeword
in C from configuration (w- e- 2, e + 2). This means that vectors of configuration
(w 2, 2) can be J-covered only by codewords of configuration (w -e- 2, e + 2).
Since each vector of configuration (w- 2, 2) is J-covered exactly once, it follows that
the Be-1 prt of the codewords from configuration (w e 2, e + 2) forms Steiner
system S(2, e + 2, n w + 2).

COROLLARY 3.4. If an e-perfect code in J(n, w), which is not a Steiner system
S(n- w- 2e, n- w,n), exists then for some k, 0 <_ k <_ e- 1, a Steiner system
S(2, 2e- k + 1, w + 2e- 2k) exists.

4. Only trivial Steiner systems are perfect codes. As said before, for n
2w, w odd, any pair of disjoint w-subsets is e-perfect with e 1/2(w- 1). These two
w-subsets form a Steiner system S(1, w, n). For ny n nd 1 _< w _< n, V is 0-perfect,
and it forms a Steiner system S(w, w, n). A natural question is whether there exist
more perfect codes which are Mso Steiner systems. The answer to this question is our
next theorem. But, first we need the following simple lemmm

LEMMA 4.1. If a Steiner system S(w- k, w, n), k >_ 1, exists then n >_ 2w.

Proof. Assume n < 2w and a Steiner system S(w k, w, n), k _> 1, exists. The
number of blocks in this system is

(n-

The number of blocks in a packing of (n- w)-subsets of N in which each (n- w- k)-
subset of N is contained in at most one block is less than or equal to

(w+k)!.(n-w)!"

PERFECT CODES IN THE JOHNSON SCHEME 205

If n < 2w and k _> 1 then obviously

But since the complement of the code derived from the Steiner system S(w-k, w, n) is
a packing of (n-w)-subsets of N in which each (n-w- k)-subset of N is contained at
most in one block, we have a contradiction. Hence, if a Steiner system S(w- k, w, n),
k >_ 1, exists then n >_ 2w. [:]

THEOREM 4.2. Except for the Steiner systems S(1, w, n) and S(w, w, n), there
are no more Steiner systems which are also perfect codes in the Johnson scheme.

Proof. Assume C is an e-perfect code in J(n, w) which is also a Steiner system.
Since C is e-perfect it follows by Lemma 2.1 that C has minimum H-distance 4e / 2,
and by Lemma 2.5 it is a Steiner system S(w 2e, w, n). Now, we partition N into
two subsets A and B such that IAI w 2e + 1,]B n- w + 2e- 1, and there
is no codeword in C from configuration (w 2e + 1, 2e- 1). Since C is a Steiner
system S(w- 2e, w, n) and no word in C is from configuration (w- 2e + 1,2e- 1)
it follows that there are w- 2e + 1 codewords in C from configuration (w 2e, 2e).
Since the minimum H-distance of C is 4e + 2 it follows that the 2e elements in B, of
any two codewords from configuration (w- 2e, 2e), must be disjoint. Hence, we have
n_> (w-2e+l)+(w-2e+l)2e=(w-2e+l)(2e+l). By Lemma 4.1, n_>2w,
and hence by Theorem 1.1 we have (w 1)(2e + 1)/e _> n, and therefore

(w 1)(2e / 1)/e _> (w- 2e + 1)(2e + 1)

We now distinguish between two cases.
Case 1. For e > 1 this implies 2e / 1 _> w Therefore, the intersection between

any two codewords is empty since the minimum H-distance is 4e + 2. Thus, the code
contains two codewords, n- 2w, and the Steiner system is S(1, w, n).

Case 2. For e 1 this implies n 3w- 3. By Theorem 3.1 a Steiner system
S(2,3, w) exists and hence by Theorem 2.3, w 1 or 3 (mod 6). Therefore, we
have n 0 (mod 6). By Corollary 3.2, Steiner system S(2, 3, n- w) exists also and
hence by Theorem 2.3, n- w 1 or 3 (mod 6). By Theorem 3.3 a Steiner system
S(2, 3, n w + 2) exists also and hence by Theorem 2.3, n w + 2 1 or 3 (mod 6)
which implies that n- w 1 (mod 6). Since n 0 (mod 6), it follows that w 5
(mod 6), a contradiction.

Thus, no nontrivial perfect code is a Steiner system.

5. No e-perfect codes in J(2w + e + 1, w). By Theorem 3.1 and Corollary
3.2, if an e-perfect code exists in J(n, w) then Steiner systems S(e + 1, 2e + 1, w) and
S(e + 1, 2e + 1, n- w) exist. By the divisibility conditions of Theorem 2.3 this implies
that e + 1 divides w- e and n- w- e, i.e., n- w =_ w _= e (mod e + 1). This implies
that e-perfect codes might exist in J(2w + e + 1, w). In this section we prove that
no nontrivial e-perfect codes exist in J(2w + e / 1, w). This result and the results of
the previous sections enable us to show many Johnson graphs in which no nontrivial
perfect codes exist. The proof will proceed in a few steps which also show some
properties of e-perfect codes if they exist. Assume C is an e-perfect code in J(n, w)
and N is partitioned into two parts A and B such that [A[w and [B[n- w. Let
{D(i,j) 0 _< i, j, + j w} denote the configuration distribution of the code; i.e.,
D(i,) denote the number of codewords from configuration (i, j).

206 TUVI ETZION

THEOREM 5.1. There are exactly e + 1 different configuration distributions for an
e-perfect code. If WI, 0 < k < e, is the set of the kth configuration distribution then
Wk contains D(w_k,k) and D(w_2e_l+k, 2e+l-k) a8 the only nonzero elements among
D(_i,i), 0 < < 2e + 1 k.

Proof. Let k be the smallest integer such that C has a codeword from configuration
(w k, k). Since we must J-cover the vector from configuration (w, 0), it follows that
0 < k <_ e. Since by Lemma 2.1 the minimum H-distance of C is 4e + 2, it follows that
there is exactly one codeword from configuration (w- k, k) and no codewords from
any configuration (w- j, j), k + 1 < j < 2e- k. The codeword from configuration
(w k, k) J-covers all vectors from configurations (w i, i) for all i, 0 < i < e k.
Vectors from configurations (w-e+k-1, e-k+ 1) are J-covered by the codeword from
the (w-k, k) configuration if k > 0, and the rest, which are the most, can be J-covered
only by codewords from configuration (w- 2e- 1 + k, 2e + 1 k). Note, that we can
always partition N into A and B such that the first codeword will have w- k l’s in
A and k l’s in B, and hence C contains a codeword from configuration (w k, k). To
complete the proof we have to show that once we are given k, 0 < k < e, such that a
codeword from configuration (w-k, k) is in the code (i.e., D(-k,k) 1, D(-i,i) 0,
0 < _< 2e- k, k), then the configuration distribution is determined. The proof is
by induction; assume we have determined all the values D(_i,i), 0 < < r, for some r,
r > 2e- k, and all vectors from configurations (w- j, j), 0 < j < r- e, are J-covered
by codewords from configurations (w- i,i), 0 < < r. To evaluate D(-r-l,r+l)
notice that by considering how vectors of configuration (w r + e 1, r e + 1) are
J-covered we have

()()w n W C(w_r+e_l,r_e+l)
r e + 1 r e + 1 (o-i,i) D(-i,i)

i--r--2e+

(7(x"Y) is the number of vectors from configuration (x2, y2) which are J-coveredwhere
by a codeword from configuration (xl,yl). Hence we have

w n-w r C(w-r+e-l,r-e+l) D(w_i,i)]
D(_r_,+1) . (w--r+e-- 1,r--e+ 1)

"(w--r--l,r+l)

and hence D(-r-l,+l) is determined, and all vectors from configurations (w- j,j),
0 _< j < r e + 1, are J-covered by codewords from configurations (w i, i), 0 _< <
r+l.

Thus, there are exactly e + 1 different configuration distributions for e-perfect
codes.

LEMMA 5.2. In an e-perfect code in J(2w + e + 1, w) the intersection between any
two codewords is at least e.

Proof. Assume C is an e-perfect code in J(2w + e + 1, w), N is partitioned into
two parts A and B such that IAI--w, IBI w + e + 1, and C contains the vector v,
from configuration (0, w), which ends with e + 1 O’s as a codeword. The only vectors
from configuration (0, w) which are not J-covered by this codeword are the (e+)
vectors which end with e + 1 l’s. Since by Lemma 2.1 any codeword which J-covers
some of these vectors should have H-distance at least 4e + 2 from v, it follows that
these vectors are J-covered by codewords from configuration (e, w- e), which end
with e + 1 l’s. Moreover, note that since D(0,) 1 all the configuration distribution
of C is determined (as in the proof of Theorem 5.1). Now, by Theorem 5.1, for this

PERFECT CODES IN THE JOHNSON SCHEME 207

configuration distribution we have D(w_k,k) 1 for exactly one k, 0 _< k _< e, and for
k, 0 <_ i <_ 2e- k, D(o-,i) 0. If k < e we can exchange one column from A,

with 1 in the codeword from configuration (w k, k), with a column from B, with O’s
in the codewords from configurations (w- k, k) and (0, w). The obtained e-perfect
code C’ has D(0,w) 1 and D(w_k_l,k+l) l, k - 1

_
e, a contradiction to the fact

that D(0,w) 1 determines all the configuration distribution. Thus, D(-,e) 1
and D(_i,) 0 for 0 _< _< e- 1. Now, assume that there exists a codeword from
configuration (w- k- r, k + r), k < e, r > 0, which intersects the codeword from
configuration (0, w) in exactly k positions. Again, we can exchange r columns from
A, with O’s in the codeword from configuration (w k r, k + r), with r columns
from B with l’s in this codeword and O’s in the codeword from configuration (0, w).
The obtained e-perfect code C’ have D(0,) 1 and D(-k,k) 1, for k < e, a
contradiction. Now, note that any codeword can be chosen as the codeword from
configuration (0, w) and hence the intersection of any two codewords is at least e. []

THEOREM 5.3. There is no e-perfect code in J(2w + e + 1, w).
Proof. Assume C is an e-perfect code in J(2w+e+ 1, w) and N is partitioned into

two parts A and B such that IAI w, IBI w + e+ 1, and C contains the vector from
configuration (w, 0) as a codeword. By Lemma 5.2 the intersection between any two
codewords is at least e and hence C cannot contain a codeword from any configuration
(i, w- i), 0 _< _< e- 1. Therefore, the (w++l) vectors from configuration (0, w) are
J-covered only by codewords from configuration (e, w-e). Moreover, every set of e+ 1
positions in the B part must be C-covered by the O’s of exactly one codeword from
configuration (e, w e). Let C1 be the set of codewords from .configuration (e, w e).
Thus, the complement of the B part of C1 forms a Steiner system S(e + 1, 2e / 1, w +
e-F i).

Each set of e columns of the B part of C1 has exactly rows with e O’s since
e+l

the complement of the B part of C1 is an Sle+ 1, /e + 1, w + e + 1}. By exchanging
any e columns from B with e columns of A that contain e l’s from the codewords
of C1 we obtain an e-perfect code C’. Since C has a codeword from configuration
/w, 0} it follows that C’ has a codeword from configuration /w- e, e). Also, note
that C’ contains a codeword from configuration /0, w/. Clearly, not all e columns
of A have e l’s in the codewords of C1. If we exchange any e columns of B with e
columns of A that do not contain e l’s in the codewords of C1 we obtain a code C"
with a codeword from configuration /w- e, e/ but no codeword from configuration
(0, w}. This is in contradiction to Theorem 5.1 that all codes with a codeword from
configuration {w- e, e} have the same configuration distribution.

Thus, there is no e-perfect code in J(2w + e + 1, w). []

Another interesting consequence from Theorem 5.1 is on the structure of e-perfect
codes in J(2w, w). We show now that these codes, if they exist, are self-complement;
i.e., the complement of the code is equal to the code.

THEOREM 5.4. An e-perfect code in J(2w, w) is self-complement.

Proof. Let C be an e-perfect code in J(2w, w), and assume N is partitioned into
two parts A and B such that IAI IBI w and the vector from configuration (w, 0)
is a codeword. By Theorem 5.1 for exactly one k, 0 _< k _< e, we have D(k,_) 1
and for : k, 0 _< i _< 2e-k, D(,w_) 0. If k > 0 then we can exchange one column
from A with 0 in the codeword from configuration (k, w- k) with a column from B
with 0 in the codeword from configuration (k, w- k) to obtain a new e-perfect code
C’. In C’ we have D(w_l,1) 1 and D(k,-k) 1 in contradiction to the unique
configuration distribution when D(k,w-k) 1, 0 <_ k <_ e, obtained in Theorem 5.1.

208 TUVI ETZION

Thus, k 0 and C is self-complement.

6. Applications. The theorems obtained in 3, 4, and 5 make it possible to
reduce the range in which perfect codes in the Johnson scheme can exist. If an e-
perfect code in J(n, w) exists then by Theorem 3.1 and Corollary 3.2 Steiner systems
S(e + 1, 2e + 1, w) and S(e + 1, 2e + 1, n w) exist. By the divisibility conditions of
Theorem 2.3 we have that e + 1 should divide w- e and n- w- e and hence we
have w e (mode + 1). This condition itself limits the range in which e-perfect
codes can exist. Combining this condition with the nonexistence of e-perfect codes in
J(2w + e + 1, w) obtained in Theorem 5.3 we have the following theorem.

THEOREM 6.1. There are no perfect codes in J(2w + p, w), p prime.
In fact, we can obtain many more results similar to Theorem 6.1; e.g., there

are no perfect codes in J(2w + 2p, w), p prime, p : 3 or there are no perfect codes
in J(2w + 3p, w), p prime, p : 2, p : 3, and p 5, and other similar theorems.
The proofs involve carefully examining the divisibility conditions of Theorem 2.3 for
S(e + 1, 2e + 1, w) and S(e + 1, 2e + 1, n w), and using Theorem 5.3. Theorem 6.1
immediately implies the results of Bannai [1] and Hammond [6], that there are no
nontriviM perfect codes in J(2w 2, w), J(2w 1, w), J(2w + 1, w), and J(2w + 2, w).
Together with the other divisibility conditions we have that the range is considerably
reduced. By Theorem 4.2 we know that a nontrivial e-perfect code cannot be a Steiner
system. Hence, we can apply Corollary 3.4 and obtain that if there exists an e-perfect
code in J(n, w) then there exists a Steiner system S(2, 2e / 1 k, w / 2e k) for
some k, 0 _< k _< e-1. This implies that C is an e-perfect code in J(n,w) ifw
is an admissible value for the necessary conditions for the existence of S(e + 1, 2e +
1, w), and also an admissible value for the necessary conditions of one Steiner system
S(2, 2e + 1 k, w + 2e k). The same results are applied also on n w instead of w.
Checking all these conditions we obtain that for e 1, we must have n- w w 1
(mod6), for e- 2, we haven-w- w- 2, 17, 26, 41, or 50 (mod60), and so
on. Compiling all this data, we also have found that there are no nontriviM perfect
codes in J(2w- r, w) and J(2w + r, w) for all 1 <_ r _< 14 with possible exceptions for
r 6, 9, and 12. This comes together with modulos conditions imposed on w and
n- w for any e-perfect code in J(n, w). Assume N is partitioned into two subsets
A and B, such that IAI- w, IBI-n- w, and the vector of the (w, 0) configuration
is a codeword. By considering the way in which the vectors of the configuration
(w e 2, e + 2) are J-covered we can get some more divisibility conditions that
rule out some of the combinations between w and n- w. We can proceed to get
more divisibility conditions. But no other Johnson graph J(n, w) was ruled out as a
candidate to contain nontrivial perfect codes. Similarly, other results can be obtained
from the configuration distribution, but the outcome is less significant.

From the proof of Theorem 3.1 we can see the involved structure of e-perfect
codes in J(n, w). If we partition N into two subsets A and B, such that IAI w
and IBI n w and the vector of the (w, 0) configuration is a codeword, then in the
codewords of configuration (w 2e- 1, 2e + 1) we have in the A part a complement of
a Steiner system S(e + 1, 2e + 1, w) for each set of codewords which C-cover any fixed
e + 1 positions of B. Similarly, we can obtain (and this can be an alternative proof for
Corollary 3.2) that in the B part there is a Steiner system S(e+ 1, 2e+ 1, n-w) for each
set of codewords for which the complements C-cover any fixed e/1 positions in A. This
involved structure, together with the Steiner system of Theorem 3.3 and Corollary
3.4, seems to be impossible to achieve. This is without taking into consideration all
the other configurations which are becoming more and more complicated. Hence, we

PERFECT CODES IN THE JOHNSON SCHEME 209

get more confidence in the belief in the conjecture that no nontrivial perfect codes
exist in the Johnson scheme.

Acknowledgment. The author would like to thank Prof. Chris Mitchell for his
hospitality in Royal Holloway College, which made it possible to obtain these results.

REFERENCES

[1] E. BANNAI, Codes in bi-partite distance-regular graphs, J. London Math. Soc., 2 (1977), pp. 197-
202.

[2] A. E. BROUWER, J. B. SHEARER, N. J. A. SLOANE, AND W. D. SMITH, A new table of constant
weight codes, IEEE Trans. Inform. Theory, IT-36 (1990), pp. 1334-1380.

[3] P. DELSARTE, An algebraic approach to association schemes of coding theory, Philips J. Res.,
10 ().

[4] W. ETZION AND A. VARDY, Perfect codes: Constructions, properties and enumeration, IEEE
Trans. Inform. Theory, IT-40 (1994), pp.. 754-763.

[5] S. W. GOLOMB AND L. R. WELCH, Perfect codes in the lee metric and the packing of polyominos,
SIAM J. Appl. Math, 18 (1970), pp. 302-317.

[6] P. HAMMOND, On the non-existence of perfect and nearly perfect codes, Discrete Math., 39
(gse), ,. 0-0.

[7] F. J. MACWILLIAMS AND N. J. A. SLOANE, The Theory of Error Correcting Codes, North-
Holland, Amsterdam, 1977.

[8] C. Roos, A note on the existence of perfect constant weight codes, Discrete Math., 47 (1983),
pp. 121-123.

SIAM J. DISCRETE MATH.
Vol. 9, No. 2, pp. 210-224, May 1996

() 1996 Society for Industrial and Applied Mathematics
OO5

A GRAPH-COLORING RESULT AND ITS CONSEQUENCES FOR
POLYGON-GUARDING PROBLEMS*

FRANK HOFFMANN? AND KLAUS KRIEGEL

Abstract. The following graph-coloring result is proved: let G be a 2-connected, bipartite, and
plane graph. Then one can triangulate G in such a way that the resulting graph is 3-colorable. Such
a triangulation can be computed in O(n2) time. This result implies several new upper bounds for
polygon guarding problems, including the first nontrivial upper bound for the rectilinear prison yard
problem. (1) J vertex guards are sufficient to watch the interior of a rectilinear polygon with

holes. (2) 5n + 3 vertex guards (L/n+4!3 point guards) are sufficient to simultaneously watch both
the interior and exterior of a rectilinear polygon. Moreover, a new lower bound of 5n- vertex guards
for the rectilinear prison yard problem is shown and proved to be asymptotically tight for the class
of orthoconvex polygons.

Key words, graph coloring, visibility in polygons

AMS subject classifications. 05C15, 52A45

1. Introduction. The original art gallery problem raised by Klee asks how many
guards are suificient to watch the interior of an n-sided simple polygon. In 1975,
Chvtal [2] gave the answer, proving that J guards are always sufficient and some-
times necessary. Since then many results have been published studying variants of the
problem or analyzing algorithmic aspects; see [12], [13], [15] for a detailed discussion.
All notations not explicitly defined below are used as in [12].

One of the main questions still open in this field is the so-called prison yard
problem for simple rectilinear polygons (see [13]); i.e., one wants to determine the
minimal number of vertex guards sufficient to simultaneously watch both the interior
and exterior of any n-sided simple rectilinear polygon.

The prison yard problem for general simple polygons has been completely settled
by Fiiredi and Kleitman, proving that [] vertex guards for convex and [J vertex
guards for any nonconvex simple polygon are sumcient; see [4]. As mentioned in [4]
this does not imply new bounds for the rectilinear case. Here, the only upper bound
known has been the rather trivial 7J + 5-bound (see [12])which can be obtained
by combining the [J-result for the interior (see [5]) with the [1 + 1 vertex guards
for the exterior of an n-sided rectilinear polygon.

We are going to derive several new bounds for the original rectilinear prison yard
problem as well as for the stronger "prison problem," where the guards have to watch
not only the inside and outside of the yard but also all cells of the prison. The key
tools to prove the new upper bounds are coloring and multicoloring arguments. The
new graph coloring result shown in 2 is probably also of some independent interest.
It shows that one can triangulate a 2-connected, bipartite, and plane graph in such
a way that the resulting graph is 3-colorable. Further, we give a characterization
of all triangulations leading to 3-colorable graphs. An O(n2) time algorithm which
generates such triangulations is sketched.

Received by the editors March 30, 1994; accepted for publication (in revised form) May 15,
1995. A preliminary version of this paper appeared in Lecture Notes in Comput. Sci., 762 (1993),
pp. 78-87. This research was supported by the ESPRIT Basic Research Action project ALCOM II.

Institut fiir Informatik, Freie Universitt Berlin, Takustrasse 9, D-14195 Berlin, Germany
(hoffmann@inf.fu-berlin.de and kriegel@inf.fu-berlin.de).

Rectilinear polygons have also been called orthogonal and isothetic.

210

GRAPH COLORING AND POLYGON GUARDING 211

In 3 we apply this 3-coloring result to guarding problems by a suitable modelling
of rectilinear polygons. In 4 we establish lower bounds for the vertex guard number in
staircase-like and in orthoconvex prison yards. Then in 5 we use a new multicoloring
technique to prove these bounds to be asymptotically tight for the described polygon
classes. Table 1 summarizes upper and lower bounds on guard numbers for rectilinear
polygons. Compare with [12] for previous bounds.

Polygon
type

with holes

staircase

orthoconvex

simple

simple

with h holes

TABLE 1.

GuardProblem
type

art gallery vertex

prison yard vertex

prison yard vertex

prison yard vertex

prison yard point

prison vertex

Upper bound
Previous New

Lower
bound

L oJ

F l+l

5nAt first glance some of the new bounds such as seem to be curious. One advantage
of our paper is that we provide rather natural explanations for these fractional num-
bers. We conclude in 6 by discussing algorithmic aspects and posing a few related
questions.

2. A result on 3-colorable plane graphs. We assume that the reader is fa-
miliar with basic definitions and facts about planar graphs. For more details see, e.g.,
[11]. Let G (V,E) be a 2-connected, plane (i.e., embedded planar) graph. The
embedding in the plane of G determines a set of faces including an exterior face. It
is well known that each face boundary of G corresponds to a directed cycle such that
the face lies on the left side of it. A diagonal is an edge which does not belong to E
and connects two vertices on a facial cycle. G is triangulated if it has no diagonals;
i.e., all facial cycles have length 3.

A triangulation of a plane graph is the augmentation of a set of diagonals such
that the resulting triangulation graph is plane and triangulated. In this section we
are going to prove and discuss the following result.

THEOREM 2.1. Let G be a plane, 2-connected, and bipartite graph. Then there
exists a triangulation of G such that the triangulation graph is 3-colorable.

The proof consists of two lemmas. The first one is due to Whitney and can be
proved by standard induction arguments. For an elegant proof see [8].

LEMMA 2.2. A triangulated plane graph is 3-colorable i all vertices have even
degree.

A triangulation of a plane graph G will be called even if in the triangulation graph
each vertex has even degree.

LEMMA 2.3. Let G (V, E) be a plane, 2-connected, and bipartite graph. Then
G has an even triangulation.

Proof. Since G is bipartite, all its facial cycles have even length. By adding
diagonals (if necessary) we can assume, without loss of generality, that all facial cycles
are cycles of length 4. Each graph of this type has a straight-line embedding in the
plane such that each interior face is a convex quadrilateral and the exterior face is the

212 FRANK HOFFMANN AND KLAUS KRIEGEL

complement of a convex quadrilateral. Therefore we will denote by Q the set of all
faces of G. Further, for any face q E Q, the set of the four vertices on the boundary
cycle of q is denoted by Vq and we set Qv {q e QIv e Vq}. We fix a 2-coloring c of
G with colors 0 and 1.

For a face q Q, the diagonal joining the two 0-colored vertices in V is called 0-
diagonal; the other diagonal joining the two 1-colored vertices in Vq is the 1-diagonal.
Now, a triangulation of G is nothing other than choosing for each face either the
O-diagonal or the 1-diagonal and adding it to the graph. We note that a diagonal of
the exterior face cannot be drawn as a straight line within the given plane embedding
of G. The graph obtained, however, is planar and thus there is also a straight-line
embedding of it.

More formally, let us introduce for each q Q a {0, l}-valued variable Xq. We
fix a I-I correspondence between all triangulations of G and all evaluations of the
variables Xq via the following condition for a triangulation T:

Vq Q: T contains the 0-diagonal of q xq 1.

The following observation is straightforward: if c(v) is the color of a vertex v E V,
then the term xq / c(v) (mod 2) describes the increase of the degree of v by the
diagonal of q which is chosen with respect to the value of x. Throughout this proof
all additions should be understood as additions mod 2. The existence of an even
triangulation is equivalent to the condition that the following system of equations has
a solution in GF(2):

deg(v) + E (x + c(v)) 0 (Vv V)
qQ

or, equivalently,

(*) E Xq deg(v) + IQlc(v) (Vv v).
qEQv

We want to illustrate the proof by the example in Figure 1. It shows the Schlegel
diagram of a cube with a 0/1-coloring of its vertices. The six faces of the graph
have variables x1,..., x6. The dotted lines represent exactly those diagonals which
correspond to the indicated evaluation of the variables. It is easy to check that the
represented triangulation is even and that, indeed, (*) is satisfied.

Note that if IYl n then by Euler’s formula IQI n- 2. Thus the system (*) is
overdetermined and has an n (n- 2) matrix A of coefficients. The system has a
solution iff the rank of A is equal to the rank of the augmented matrix A; see, e.g.,
[16]. Here, augmentation means attaching the vector of constants from the right side
of (*) as an additional column to A.

Recall that the rank of a matrix is equal to the maximum number of linear
independent rows. Therefore it is sufficient to show that any linear dependence of
rows in A implies a linear dependence of the corresponding rows in A. Since over

GF(2) sums are the only possible linear combinations, we have to prove the following.
CLAIM. Iffor some set of vertices U C_ V it holds that vEV EqQv Xq -- O, then

E(deg(v) + [Q,[c(v)) O.
vU

GRAPH COLORING AND POLYGON GUARDING 213

FIG. 1. An even triangulation of the Schlegel diagram of the cube.

Here the symbol in the first sum means that each variable xq occurs an even
number of times in equations corresponding to vertices from U.

Since Xq can only occur in the four equations corresponding to vertices in Vq, it
follows from the assumption of the claim that for any q E Q the number IV N U is
0, 2, or 4. So we can subdivide Q according to this cardinality into Q0, Q2, and Qa.

Let us return to our example in Figure 1. Suppose the set U in the claim is the
set of the four inner vertices. Then Q4 consists only of the face in the middle of the
drawing; the other four interior faces form the set Q2, and the only element of Q0 is
the exterior face.

Now we prove the claim by showing that the sums E1 veV deg(v) and E2
Eveu IQlc(v) are both zero.

1) Since G is planar and 2-connected, we know that the degree of a vertex v equals
the cardinality of the set Q. Using this fact and changing the order of summation
we get

E=EIQ’=E E I=E E
veU vU qQ, qQ vVqNU

n uI.

As we have already mentioned, all summands are even numbers and consequently
E1 =0.

2) We start as above changing the order of summation.

vU vU qQ, qQ veVqNU

Now we split the sum into subsums over Qo, Q2, and Qa. Moreover, we subdivide the
subsum over Q2 according to whether the two vertices in V N U lie on a diagonal or
on an edge of q. So we have

qQo vEvqnu -fdia9 vEVqNU _,..-f,edge vEVqnU qEQa vEVqNU

214 FRANK HOFFMANN AND KLAUS KRIEGEL

[.-}diagObviously the first sum is zero and can be deleted We also delete the sum over ’2
since any summand of it has either the form 1 4- 1 or 0 4- 0. Finally, in the sum over
Q4, each summand has the form 1 4- 0 4- 1 4- 0. Deleting this sum also we obtain

QedgeE2= E E c(v)= E (1+0)=1 2 (mod2).
y-)edge vEVqqU (7)edgqE" q’

[-)edgeIt remains to show that 12 is even. Consider the subgraph of G induced by U.
Replacing any (undirected) edge in it by a pair of oppositely directed edges we obtain
a set Eu of even cardinality. Recall that a face q E Q is uniquely determined by its
directed facial cycle. We denote the set of the four directed edges on the cycle by
Eq. Since IVq n U is even, the number IEq rq EuI is either 4 (iff q e Q4) or 1 (iff
q Qdge), or otherwise 0. Let us cancel from Eu all directed edges which arise from
some Eq such that IEq n Eu[4. Clearly, the set obtained in this way is of even

[,-)edge and vice versa.cardinality. Each directed edge in this set determines a face q e 2
This completes the proof. B

To make the last step in the proof more transparent let us once more return to
Figure 1, with U being the set of the four inner vertices. Then Qdge consists of the
four interior faces which surround the middle face and Eu consists of eight directed
edges obtained by traversing the middle cycle in both directions. Since the middle
face has four vertices with U in common, we have to cancel its facial cycle, i.e., the
counterclockwise-directed cycle. Now it is easy to observe that each of the remaining
directed edges uniquely determines one of the faces from ’2

The remaining part of this section is devoted to the combinatorial characterization
of all even triangulations and to algorithmic aspects of Theorem 2.1. Since both topics
are not essential for the rest of the paper, we only sketch them.

It is easy to find graphs with more than one even triangulation. Let us consider
the even triangulation given in Figure 1. If we flip the diagonals in the four faces
which surround the middle face, then the new triangulation is even too.

More generally, let us assume that G (V, E) is a 2-connected, bipartite, and
plane graph such that all its facial cycles have length 4. Then the dual graph G* is
4-regular. If we start a walk in this graph, at any time we have four possibilities for
the next step: to go left, straight ahead, right, or back. A closed walk consisting of
straight steps only is called a straight walk or S-walk. Note that a face either occurs on
two different S-walks or it occurs twice on a single S-walk. For the Schlegel diagram
of the cube we have three S-walks, each of them being a cycle. The graph in Figure
2 shows an S-walk which is not a cycle because it crosses itself.

Suppose an even triangulation of G is given. If we run once around an S-walk
flipping the diagonal in each face visited (if a face is visited twice the diagonal will
be the same in the end), then the triangulation obtained this way is even. The next
result shows that the converse is also true.

THEOREM 2.4. IfT and T are even triangulations of G, then there is a collection

of S-walks such that by flipping the diagonals of T along these walks we obtain T.
We can prove this theorem by formalizing the problem as a system of linear

equations over GF(2). The consistency of the system can be shown by some counting
arguments. However, the underlying combinatorial arguments are much more involved
than those in the proof of Lemma 2.3 and we have omitted them. Details are in [7].

Using Theorem 2.4 we are able to determine a subset Qvat c Q with the property
that for each choice of diagonals for Qvat there is exactly one even triangulation of

GRAPH COLORING AND POLYGON GUARDING 215

S-walk nmnunnnm

unnulmuummmunmiuminmii nmmmnnlammmmmmm

mmmmmmmmmmmmmmmmmmmm

FIG. 2. Example of an S-walk.

the whole graph which contains the chosen diagonals. In terms of the system (*),
this means that a given evaluation of the variables {xqlq E (vat} can be extended to
a solution of (*) in a unique way only.

Finally, we briefly discuss the problem of algorithmically finding an even trian-
gulation more efficiently than by using a general (superquadratic) method for solving
the linear system of equations (*). We have shown that the system has a solution. Its
underlying structure is a planar graph, so we could hope that the generalized nested
dissection technique of Lipton, Rose, and Tarjan (see [10]) applies. This would im-
ply an O(n3/2)-algorithm. However, this special version of the Gaussian elimination
method requires positive definite, symmetric systems. In contrast, our system is not
symmetric (even the matrix of the system is not quadratic) and the solution is, in
general, not unique. By adding dummy variables and dummy equations we could
transform the system into a symmetric one, but this would enlarge the solution space
and hence there is no chance of obtaining a positive definite system in this way.

On the other hand, we can fix an evaluation of the variables {x ,q (val} to
obtain a more restricted system with a unique solution. This new system has the
disadvantage of being highly nonsymmetric. However, we can now adapt some ideas
from the nested dissection approach to it, as outlined below.

We start with a suitable numbering of the faces which can be obtained by applying
the vertex numbering algorithm from [10] to the dual graph G*. This algorithm uses
the planar separator theorem recursively and runs in O(n log n) time. Based on this
numbering we can design a substitution scheme with the following properties:

any substitution is applied to at most O(v/) equations;
the length of each substitution is bounded by O(x/-).

The first point follows immediately from the properties of the face numbering, whereas
the second point requires a more involved machinery including Theorem 2.4 and the
construction of the set Qvat. We reach the following result.

THEOREM 2.5. An even triangulation of a 2-connected, bipartite, and plane graph
can be computed in O(n2) time.

216 FRANK HOFFMANN AND KLAUS KRIEGEL

Once again, the complete algorithm together with its running time analysis can
be found in [7].

3. A graph model for the prison yard problem and general upper
bounds. The idea for our graph model is based on the following nice and simple
proof of the classical art gallery theorem of Fisk [3]: consider an arbitrary geometric
triangulation of a given simple polygon. It is well known that the graph formed by
all polygon edges and all diagonals in the triangulation is 3-colorable. Clearly, any
triangle of the 3-colored graph contains each color. Therefore, choosing guard posi-
tions corresponding to the smallest color class implies that _< [J vertex guards can
watch the polygon.

In [5] Kahn, Klawe, and Kleitman applied a similar idea to rectilinear polygons.
They proved that any rectilinear polygon (possibly with holes) has a convex quadri-
lateralization, i.e., a decomposition into convex 4-gons (subsequently called quadri-
laterals) using only diagonals (called chords) of the polygon. Moreover, it is easy to
observe that for simple rectilinear polygons the graph consisting of all polygon edges,
all chords, and both inner diagonals of all quadrilaterals is 4-colorable. Hence they
obtained an []-upper bound for the rectilinear art gallery problem.

However, the argument cannot be applied in the case of rectilinear polygons with
holes since the graphs are, in general, no longer 4-colorable. But in this situation,
Theorem 2.1 now states that we can select one diagonal per quadrilateral such that
the graph formed by all polygon edges, all chords, and the selected diagonals is 3-
colorable. Again, since each quadrilateral contains each of the three colors, we have
proved the following result.

THEOREM 3.1. [J vertex guards are sufficient to solve the art gallery problem
for rectilinear polygons with holes.

We note that this is an improvement on the previously known -bound, which
was obtained by converting a polygon with holes into a l-connected one by adding h
edges (2h new vertices) [12] and then applying the -result of [5]. Observe that the
guards also watch the interior of the holes if we start from quadrilateralized holes.

As shown below, we can modify this graph model in a way which allows us to
apply our 3-coloring result to prison yard-type problems also. Let P be a simple
n-sided rectilinear polygon. Without loss of generality we can assume that it is in
general position; see [5], [12].

We start by constructing its orthoconvex hull C(P), i.e., the smallest point set
containing P such that its intersection with any horizontal or vertical line is convex

(see Figure 3a). The boundary of C(P) partitions the exterior region of P into
the exterior region of C(P) and those connected components of C(P) \ P which are
different from the interior region of P. These components will be called pockets. Since
all pockets are rectilinear polygons, they can be quadrilateralized just as well as we
quadrilateralize the polygon P itself. The hull construction requires the insertion of
some additional vertices (u in our example in Figure 3a). However, using an idea
from [9] we can shift these vertices to neighboring polygon corners on the boundary
of C(P) in such a way that the resulting polygon C*(P) is also orthoconvex and the
quadrilateralizability of the pockets is not destroyed (see the dashed line in Figure

Clearly, C*(P) is bounded by four extremal edges (northernmost, westernmost,
southernmost, easternmost) which are cyclically connected by monotone staircases.
So the exterior of C*(P) can be covered by four halfplanes defined by the extremal
edges and the cones defined by all concave vertices on the staircases. Such a cone is

GRAPH COLORING AND POLYGON GUARDING 217

(a) (b) (c)

FIG. 3. Modelling the prison yard problem.

exactly the set of points in the exterior visible from the vertex.
Let G(P) be the following planar graph (Figure 3b). Its vertex set is the set of

all polygon vertices, its edge set consists of all polygon edges, all quadrilateralization
chords, and edges connecting pairs of consecutive convex corners (separated by a
concave corner) on boundary staircases in C*(P).

We say that a subset D of the vertex set dominates G(P) if each quadrilateral,
each triangle over a staircase, and each of the four extremal edges contains at least
one vertex from D. In this context the prison yard problem now reads as follows: find
a small dominating set for G(P).

The idea is to find a dominating set by applying Theorem 2.1. It is therefore nec-
essary to modify G(P) such that it becomes bipartite. In particular, all convex regions
(also the exterior cones and halfplanes!) will be represented by convex quadrilaterals.
This can be done by inserting additional vertices and edges.

We start as before by constructing C*(P). Then we use eight new vertices to ob-
tain a copy of each extremal edge as indicated in Figure 3c. Finally, for any monotone
boundary staircase of C*(P) which contains more than one convex vertex (we do not
count the vertices on extremal edges), we copy every second one of them. This allows
us to replace each boundary triangle in G(P) by a quadrilateral in the new graph
G*(P); compare Figure 3c. The number of additionally inserted vertices is bounded
by In--124 / 8. Therefore the total number of vertices G*(P)is bounded by [J + 5.

By Theorem 2.1 we can 3-color the graph. Each color class is a dominating vertex
set for G*(P) and we choose the smallest one. This set may possibly contain vertices
which are not vertices of P; i.e., newly inserted vertices are chosen as guard positions.
But, obviously, these guards can be shifted onto the corresponding original polygon
vertices and we obtain a dominating set for G(P). Therefore we have shown the
following result.

5nTHEOREM 3.2. For any simple rectilinear polygon on n vertices, yJ + 2 vertex
guards are sufficient to solve the prison yard problem.

In fact we observe that we can easily incorporate polygons with holes into the
above construction. We define the prison problem as follows: let a rectilinear polygon

218 FRANK HOFFMANN AND KLAUS KRIEGEL

P with h rectilinear holes P1,..., Ph be given, having in total of n vertices. The prison
problem is to select a set of vertex guards (or point guards) such that any point in
the plane can be watched from one of the selected vertices (points). That is, we want
to simultaneously watch the exterior of the polygon, its interior, and the interior of
all its holes with the polygon edges being obstacles for visibility.

A graph G*(P, P1,... ,Ph) modelling the prison problem can be constructed as
follows:

(1) quadrilateralize the holes P1,. Ph;
(2) quadrilateralize the interior of P;
(3) proceed with the exterior of P as in the construction of G*(P).
Clearly, P has at most n- 4h vertices and hence the number of additional vertices

for the construction of G*(P) is bounded by 8 + [n-4h-124]. Thus, G* (P, P1,..., Ph)
has at most [hn-4h4 + 5 vertices.

COROLLARY 3.3. Let P be a rectilinear polygon with h holes on n vertices.
(i) 12 + 2 vertex guards are sufficient to solve the prison problem.
(ii) [n3-J point guards are sufficient to solve the prison problem for P.
Proof. (i) Apply Theorem 2.1 to the graph G*(P, P1,... ,Ph).
(ii) Let R be a rectangle enclosing P. We consider R together with P as a polygon

P having P as a hole. After quadrilateralizing P as well as the original P together
with all its holes the resulting graph has n + 4 vertices and fulfills the assumptions of
Theorem 2.1.

Observe that in Corollary (ii) we get at most two point guards not sitting on
polygon vertices. The best upper bound for point guards (even in the case h 0)
until now has been the same as for the vertex guard version: -J + 5. The spiral
polygon in this case gives an ([1 + 1)-lower bound; see [12].

4. Lower bounds for the prison yard problem. Any simple convex nonrec-
tilinear polygon requires [1 vertex guards to solve the prison yard problem. What
are the candidates for lower bound examples in the rectilinear world?

guapositions rridors

(a) (b)

FIG. 4. Dorward’s example and lower bound illustration.

Figure 4a shows an example of a rectilinear polygon due to Dorward; see [13].
Periodically repeating the guarding positions indicated in Figure 4a we see that

GRAPH COLORING AND POLYGON GUARDING 219

7n-1 + 2 watchmen are sufficient, which is an improvement on the [] guarding
in [13]. Let P0 be the simplest possible staircase polygon; see Figure 4b.

3nPROPOSITION 4.1. The prison yard Po requires []-6] vertex guards.
Proof. Consider a segment S on 10 vertices as indicated in Figure 4b. Assume

that two guards are sufficient for S. To watch the triangles abc, cde, and fgh there
must be one guard sitting in c and one in f, g, or h. There are also four inner corridors
in S to be watched. This is impossible with one of the two guards sitting in c. Finally,
vertex guards placed outside S cannot help watch these three triangles and the four
inner corridors inside S. [:]

3nIn the next section we will show that []-61 + 2 vertex guards are also sufficient
for any staircase polygon. Surprisingly, there are other orthoconvex polygons which
require even more guards.

Let P1 be the pyramid in Figure 5. Recall that a horizontal pyramid is a rectilinear
polygon with a horizontal edge (bottom edge) the length of which equals the sum of
the lengths of all other horizontal edges; see [12]. We can assume that its edge lengths
are chosen in such a way that to watch an inner quadrilateral (the quadrilateralization

5 guards areis unique!) one has to choose one of its vertices as the guard position, y
sufficient (up to an additive constant) by periodically repeating the I0 guard positions
(on a segment of 32 vertices) as indicated in Figure 5.

PROPOSITION 4.2. The prison yard P1 requires [5n-1016 vertexguards.

5nFIG. 5. - vertex guards are necessary.

Proof. Assume that g guards solve the problem. We can distinguish three types
of guards; see Figure 5. A guard stationed in a concave corner such that he can watch
four inner quadrilaterals is called an a-guard. Observe that each such guard must
have one "partner" on the other side watching the opposite A2-triangle. Let us call
two such guards an a-pair. An a-guard pair watches altogether at most four inner
quadrilaterals, two A1-triangles, and one A2-triangle.

Among all other guards who are not part of a-pairs we distinguish between/3- and
7-guards. fl-guards are sitting in concave corners. They each watch two quadrilaterals,
zero A1-triangles, and one A2-triangle. Finally, 7-guards sit in convex corners and
each of them watches one quadrilateral, one Al-triangle, and one A2-triangle. Each
guard is either a/3- or 7-guard or belongs to an a-pair. We know that our guarding

220 FRANK HOFFMANN AND KLAUS KRIEGEL

n-2set consists of g 2a / b + c guards of a-, /%, and -type. In total there are 2
quadrilaterals and triangles of each type in P1. Since we have assumed that the
guards solve the problem, we have

(1) 4a + 2b + c _> (n- 2)/2,
(2) 2a + c >_ (n- 2)/4,
(3) a + b + c _> (n 2)/4.

Multiplying (3) by 2 and adding (1) and (2) gives 4g > 5(n-2) but this implies the
lower bound.

5. Special upper bounds. In this section we show that the lower bounds de-
rived for rectilinear staircase polygons and for orthoconvex rectilinear polygons are
tight up to an additive constant. To this end we extend the concept of finding a
dominating set for the graph G(P) (as defined in 3) via graph coloring to labellings
and multicolorings.

Let us consider k different colors. A function which labels any vertex of a graph
G(P) with a certain set of colored pebbles is called a k-labelling. A k-labelling is a
k-multicoloring if pebbles in adjacent vertices have disjoint color sets. A k-labelling
is called 1-uniform if each vertex gets a pebble set of cardinality 1. In this notation a
proper graph coloring with k colors is a 1-uniform k-multicoloring.

A k-multicoloring dominates the graph G(P) if for each color the set of all vertices
labelled with a pebble of this color dominates G(P). Therefore a dominating k-
multicoloring of G(P) which uses in total f(n) pebbles implies the existence of an

-J solution of the prison yard problem for P. Both upper bounds which we derive
below are proved using multicoloring arguments.

THEOREM 5.1 [3nY6J + 2 guards are sufficient to solve the prison yard problem
for rectilinear staircase polygons on n vertices.

Proof. Let P denote such a polygon, and assume it has north-west orientation
(see Figure 6). First we note that the quadrilateralization of P is unique and its weak
dual graph is a path W ql, q2,..., q(n-2)/2. Each chord of the quadrilateraliza-
tion connects a convex with a concave vertex and each quadrilateral has a diagonal
connecting two convex vertices (called convex diagonal).

1 2

FIG. 6. 5-multicoloring of a staircase polygon.

Let (di), 1, 2,..., n 1 be the following sequence of polygon edges, diagonals,
and chords which we obtain traversing W. We start with the bottom polygon edge
dl in ql followed by the convex diagonal of q. di is the common edge of q(i-1)/2 and

GRAPH COLORING AND POLYGON GUARDING 221

q(i+l)/2 for an odd _> 1, otherwise it is the convex diagonal of qi/2. Finally, dn-1 is
the top edge of P. The di’s induce a canonical vertex numbering in P. Starting with
d2 each di encounters exactly one new vertex, i.e., Vi+l. Let Qi denote the polygon
generated by the first quadrilaterals.

We show that there is a greedy algorithm which, following the path W, constructs
a dominating 5-multicoloring of G(P) with the following properties:

both the north-westernmost vertex v and the south-easternmost vertex v2
are labelled by four pebbles;
each other convex vertex is colored by two pebbles;
each concave vertex is colored by one pebble.

While building this multicoloring we maintain the following invariant:
each convex diagonal contains exactly three colors, i.e., there is one common
color on both sides of the diagonal.

We start as follows. Color the left vertex vl on the bottom edge dl by two colors
and its right vertex v2 by one pebble with a third color. Complete the multicoloring
of ql by repeating one color from Vl in v3 together with a pebble having the fourth
color. One pebble with the fifth color is put on v4.

Assume that we have already correctly colored Qi. The next vertex to be colored
is v2i+3. It closes a triangle already labelled by three different colors; hence it gets
the remaining two colors, v2i+4 is colored by the fifth color not used before in qi+l.

Finally, to get a dominating multicoloring, on Vn we have to place the remaining
three colors to dominate both the northern and western extremal edge of P, and
similarly we have to place three more pebbles on v2. Why does this scheme work
correctly?

Let x(J) denote the set of colors placed on vertex vj. Assuming qi is colored
correctly we know for its convex diagonal (vk, v2+) that Ix(k) x(2i + 1) 1. Now
the algorithm colors v2i+3 by two pebbles such that Ix(2i + 3) U x(2i + 2) U X(1)l 5,
where vi is that vertex of the ith convex diagonal which is in a common exterior
triangle with v2i+3. But then for the other vertex v, of the ith diagonal it follows
that Ix(2i + 3) x(m)l 1 (so the invariant holds for q+l) and we can indeed color

v2+4 by the fifth color not being an element of the set x(2i + 2) t2 x(2i + 3) U x(m)
which has cardinality 4.

In total we use 22- + __A4 + 4 3n+122 pebbles. Consequently, there exists a
3ndominating color class of size <_ IT6] + 2. [:]

Figure 6 shows part of a 5-multicoloring (with colors 1,... ,5) obtained by this
algorithm. In a similar way we prove the following statement. The greedy algorithm
used will be only slightly more difficult.

5nTHEOREM 5.2. [TJ + 2 guards are always sufficient to solve the prison yard
problem for orthoconvex rectilinear polygons.

Proof. We give the proof for (horizontal) pyramids only. The result then follows
for an arbitrary orthoconvex polygon P by decomposing it into at most two pyramids
and one staircase polygon. For the staircase part of P we extend the 5-multicoloring
constructed in Theorem 5.1 to an 8-multicoloring by adding an independent domi-
nating 3-multicoloring. Using Theorem 2.1, this 3-multicoloring can be chosen to be
1-uniform for all vertices not on extremal edges.

For a pyramid P we again consider the weak dual path W q, q2,..., q(n-2)/2
of its unique quadrilateralization. We will construct a dominating 8-multicoloring of
G(P) with the following properties:

one of the bottom edge vertices has five pebbles, the other has six pebbles;
one of the top edge vertices has four pebbles, the other has five pebbles;

222 FRANK HOFFMANN AND KLAUS KRIEGEL

any other convex vertex has three pebbles, each concave one gets two pebbles.
Again, the existence of such a dominating 8-multicoloring can be shown by a greedy
algorithm along W. Let do be the bottom edge and d for 1 <_ i < - denote
the common edge of the quadrilaterals q and qi+l. We duplicate both bottom edge
vertices and introduce dummy (zero length) horizontal edges on both sides. Now we
are in a situation where on both sides of any d, >_ 0 there are two horizontal edges.
Let denote the path consisting of these two horizontal edges with d in the middle.
d starts and ends with a convex vertex and has two concave middle vertices. During
the algorithm we maintain the following invariant"

denoting the colors by 1, 2,..., 8 the color pattern is (modulo a permutation
among the eight colors) of the form 123- 45- 16- 247. In particular, on
each d one color is missing.

First initialize the coloring on do using this pattern. Having colored the first
quadrilaterals, di+l has two new vertices, one concave and the other convex. The
convex one closes an exterior triangle which already has five colors because of the
color pattern of d. So it gets the remaining three colors. Now it is not hard to see
that q+l already has six different colors, so we can put the remaining two on the new
concave vertex of d+l, which then also fulfills the invariant condition.

Finally, after having dominated the two top exterior triangles on both sides, we
have to put three more pebbles to the top edge and one more pebble to do. We end
up with a dominating 8-multicoloring which gives the bound claimed.

6. Conclusions algorithmic aspects and related problems. In this paper
we have examined coloring and multicoloring techniques to solve various art gMlery-
type problems on rectilinear polygons. In particular, we have proved several new
upper and lower bounds for the prison yard problem as summarized in Table 1. Our
3-coloring result in Theorem 2.1 might also be of independent interest. We now want
to add a few more remarks.

Coloring versus multicoloring. For the result proved in Theorem 2.1 it is
essential that all inner faces of the graph G are 4-cycles. The result is not true if,
as in the graph G(P) in 3, there are also triangles. So the result cannot be used to
prove, for example, an []-bound for the prison yard problem.

On the other hand, it seems curious to use five or eight dominating color classes
when constructing one dominating vertex set as in the previous section. The point
here is that in the constructed multicoloring all convex (concave) vertices not on
extremal edges get the same number of pebbles. So it is trivial to count the pebbles
because the number of convex (concave) vertices does not depend on the special shape
of the polygon. Of course we could try to directly construct, i.e., in a greedy way,
dominating set. However, even in such a regular example as Figure 7 it would be hard
to give a good estimate of its size. We think that replacing the multicoloring argument
used in Theorem 5.2 by an 8-labelling one can show that the following conjecture is
correct.

CONJECTURE 6.1. There is an absolute constant c such that any rectilinear prison
yard can be watched by 5n + c vertex guards.

We mention another possible application of the multicoloring technique: namely,
there is some evidence that for the rectilinear art gallery problem in the presence of
holes, the -lower bound in [6] for the vertex guard number is tight. At first glance
the bound seems to be nonintuitive. However, the next conjecture (if true) gives
satisfying answer.

CONJECTURE 6.2. For each quadrilateralized rectilinear polygon, possibly with

GRAPH COLORING AND POLYGON GUARDING 223

25813
....-’" 1__256

467,iiI o." 37.................... "11)2._ L
4sM ::::::: s

67 "::::::::::::::::::::::::::
123 45

57

FIG. 7. 8-multicoloring of the lower bound example.

27 16

,," 15 27", ,."

37 56

12 34

FIG. 8. Illustration of Conjecture 6.2.

holes, there is a 2-uniform dominating 7-multicoloring.
We illustrate this conjecture in Figure 8 by showing such a 7-multicoloring of the

lower bound example from [6].
Further, it would be interesting to find applications of Theorem 2.1 or of some

multicoloring/labelling to nonrectilinear art gallery-type problems; compare [4], [14],
and Chapter 5.2 in [12].

Algorithmic aspects. All upper bound results proved in this paper can be con-
verted into efficient algorithms. Since our coloring and multicoloring methods require
quadrilateralized polygons, it should be mentioned that based on Chazelle’s polygon
triangulation algorithm [1] one can quadrilateralize simple rectilinear polygons in lin-
ear time. In contrast to this the O(n log n) bound is optimal for quadrilateralizing
rectilinear polygons with holes. It is straightforward that for staircase polygons and

224 FRANK HOFFMANN AND KLAUS KRIEGEL

orthoconvex polygons the greedy algorithms from Theorems 5.1 and 5.2 imply a linear
time solution of the prison yard problem.

Since all general upper bound results in 4 are based on the 3-coloring result
(Theorem 2.1), their algorithmic complexity will be dominated by the O(n2) algorithm
for finding even triangulations. However, we believe that this bound can be improved.

CONJECTURE 6.3. There is a O(n3/2) time algorithm which computes an even
triangulation for a given 2-connected, bipartite, and plane graph.

Acknowledgments. The authors would like to thank Joseph O’Rourke for his
many valuable comments which considerably improved the readability of this paper.

REFERENCES

[1] B. CHAZELLE, Triangulating simple polygons in linear time, Discrete Comput. Geom., 6 (1991),
pp. 485-523.

[2] V. CHV,TAL, A combinatorial theorem in plane geometry, J. Combin. Theory Ser. B, 18 (1975),
pp. 39-41.

[3] S. FISK, A short proof of Chvdtal’s watchman theorem, J. Combin. Theory Set. B, 24 (1978),
p. 374.

[4] Z. FiJREDI AND D. KLEITMANN, The prison yard problem, Combinatorica, 14 (1994), pp. 287-300.
[5] J. KAHN, M. KLAWE, AND D. KLEITMAN, Traditional galleries require fewer watchmen, SIAM

J. Alg. Disc. Meth., 4 (1983), pp. 194-206.
[6] F. HOFFMANN, On the rectilinear art gallery problem, in Proc. International Colloquium on

Automata, Languages and Programming, Lecture Notes in Computer Science 443, Warwick,
England, 1990, pp. 717-728.

[7] F. HOFFMANN AND Z. KRIEGEL, A Graph Coloring Result and its Consequences for Polygon
Guarding Problems, Tech. report TR-B-93-08, Inst. f. Informatik, Freie Universitt Berlin,
1993.

[8] L. Lovisz, Combinatorial Problems and Exercises, North Holland, Amsterdam, 1979.
[9] A. LUBIW, Decomposing polygonal regions ito convex quadrilaterals, in Proc. 1st ACM Symp.

Comp. Geometry, Baltimore, MD, 1985, pp. 97-106.
[10] R. J. LIPTON, D. J. ROSE, AND R. E. TARJAN, Generalized nested dissection, SIAM J. Numer.

Anal., 16 (1979), pp. 346-358.
[11] T. NISHIZEKI AND N. CHIBA, Planar Graphs: Theory and Algorithms, North Holland, Amster-

dam, 1988.
[12] J. O’ROURKE, Art Gallery Theorems and Algorithms, Oxford University Press, New York, 1987.
[13] ., Computational geometry column 15, SIGACT News, 23 (1992), pp. 26-28.
[14] T. SHERMER, Triangulation Graphs that Require Extra Guards, Computer Graphics Tech. report

No. 3D-13, New York Institute of Technology, 1984.
[15] ., Recent results in art galleries, in IEEE Proceedings, 80, 1992, pp. 1384-1399.
[16] E. H. THOMPSON, An Introduction to the Algebra of Matrices with Some Applications, Adam

Hilgr LTD, London, 1969.

SIAM J. DISCRETE MATH.
Vol. 9, No. 2, pp. 225-232, May 1996

() 1996 Society for Industrial and Applied Mathematics
OO6

CLASSIFYING HYPERPLANES IN HYPERCUBES*

OSWIN AICHHOLZER AND FRANZ AURENHAMMER$

Abstract. We consider hyperplanes spanned by vertices of the unit d-cube. We classify these
hyperplanes by parallelism to coordinate axes, by symmetry of the d-cube vertices they avoid, as
well as by so-called hull-honesty. (Hull-honest hyperplanes are those whose intersection figure with
the d-cube coincides with the convex hull of the d-cube vertices they contain; they do not cut d-cube
edges properly.) We describe relationships between these classes and give the exact number of hull-
honest hyperplanes in general dimensions. An experimental enumeration of all spanned hyperplanes
up to dimension eight showed us the intrinsic difficulty of developing a general enumeration scheme.
Motivation for considering such hyperplanes stems from coding theory, from linear programming,
and from the theory of machine learning.

Key words, d-cube, hyperplane cuts, hyperplane enumeration

AMS subject classifications. 68R05, 52A25

1. Introduction. Among the simplest high-dimensional geometric objects is the
d-dimensional hypercube (d-cube), which is the vector sum of d mutually orthogonal
line segments of equal length. The d-cube is a convex polytope that, when having unit
edge length, may be expressed as Cd [0, 1] d. Sometimes Cd is called the measure
polytope, suggested by its use as the unit of content. Despite its simple definition,
Cd has been an object of study from different points of view. The theory of convex
polytopes provides classical results concerning sections and projections of hypercubes;
see Coxeter [7] and Griinbaum [12]. Purely combinatorial properties of Cd, mainly
involving certain subgraphs formed by its edges and vertices (the latter are just the
various d-tuples of binary digits), have been investigated extensively in coding theory
and in communication theory; see, e.g., [5, 9, 10, 25]. Many easily stated questions
concerning the geometry of Cd are still unsettled. A long-standing elementary con-
jecture on hypercube space fillings (Keller’s conjecture) has been recently disproved
by Lagarias and Shor [16].

In recent years, increased interest in problems involving the placement of hyper-
planes in hypercubes can be observed. Among other areas, motivation sterns from
coding theory [25], from linear programming [11, 23], and from the theory of machine
learning [2, 14, 20, 24]. Again, various elementary questions turned out to be sur-
prisingly difficult. Let us mention just a few of them. What is the minimum number
of (nonaxis-parallel) hyperplanes that cover all the 24 vertices of Cd ? How many
edges of Cd may be cut by a single hyperplane? Which hyperplane intersects Cd in a

(d- 1)-polytope of maximum volume? (This was solved in 1986 by Ball [3]; see also
[4].) How many and which types of hyperplanes can be spanned by vertices of Cd ?

The present paper is devoted to the last question. Let us denote with (Cd)
the set of all hyperplanes that can be spanned by (d affinely independent) vertices of
Cd. An attempt is made to characterize and classify the hyperplanes in TI(Cd). An

Received by the editors February 23, 1994; accepted for publication (in revised form) May 25,
1995.

Institute for Theoretical Computer Science, Graz University of Technology, Klosterwiesgasse
32/2, A-8010 Graz, Austria (oaich@igi.tu-graz.ac.at). The research of this author was supported by
the Austrian Ministry of Science and the Jubilumsfond der sterreichischen Nationalbank.

Institute for Theoretical Computer Science, Graz University of Technology, Klosterwiesgasse
32/2, A-8010 Graz, Austria (auren@igi.tu-graz.ac.at). Part of this work was done while this author
was with the Institute for Information Processing and Computer Supported New Media.

225

226 OSWIN AICHHOLZER AND FRANZ AURENHAMMER

obvious criterion is parallelism, where we distinguish between k-parallel hyperplanes
(being parallel to exactly k > 0 coordinate axes) and skew (0-parallel) hyperplanes. A
concept that turns out to be important is symmetry, which is fulfilled by hyperplanes
that halve the set of d-cube vertices they avoid.

We show that k-parallel hyperplanes in (Cd) correspond to skew ones in
and that skew and asymmetric hyperplanes in -/(Cd) correspond to skew and symmet-
ric ones in (Cd+l) in a unique manner. This tells us that the skew and symmetric
type is the only really interesting one. The enumeration of all hyperplanes of this
type, however, is complicated by the following unpleasant phenomenon. In each fur-
ther dimension new kinds of hyperplanes appear that seem not to be accessible by
using the results for lower dimensions. In fact, a theorem by Naumann [19] gives some
evidence for the intrinsic complexity of (Cd). Every (d- 1)-polytope is obtainable
as the intersection of a (d- 1)-dimensional hyperplane and a hypercube of sufficiently
high dimension. We were able to enumerate experimentally the sets up to -/(Cs) but
did not succeed in developing an enumeration scheme for (Cd) for general d. We
rediscovered an upper bound on the size of the normal vector of hyperplanes in (C
which we needed to speed up the enumeration. Generally, we count the contributions
of this paper among the first steps towards a systematic study of the set

The situation gets strikingly simpler if we restrict attention to hyperplanes in
(Cd) that do not (properly) cut d-cube edges. Those might be called hull-honest
hyperplanes as their intersection figure with Cd coincides with the convex hull of the
vertices of Cd they contain. We give an easy-to-use characterization of hull-honest
hyperplanes that leads us to their exact total number in general dimensions.

The following notation will be used throughout. A hyperplane H in Euclidean
d-space Rd is fixed by a pair (v, b), with v Rd, b R, and H {x Rdlv x b}.
For brevity, we shall also write H (v, b). It follows from linear algebra (Cramer’s
rule) that there is always an integer solution for v provided H TI(cd). It will be
assumed that v is an integer vector and as short as possible; i.e., the greatest common
divisor (gcd) of its entries is one. For convenience, we will not distinguish between a
vector and its transposed form.

With Vd we denote the vertex set of Cd. Since Cd was defined to be the unit
d-cube, Vd {0, 1}d, which is the set of all the binary strings of length d. The
Hamming distance of two vertices x, y Vd is the number of coordinates where x
differs from y. Note that x and y are the two endpoints of an edge of Cd iff their
Hamming distance is one (and occurs at the ith bit iff the edge is parallel to the ith
axis of Rd). By symmetry of Cd, for each vertex x (Xl, x2,..., Xd) Vd there is a
vertex 5 (1 Xl, 1 x2,..., 1 Xd) Vd which we call the antipode of x in Cd.

2. Parallel and skew hyperplanes. Our set of interest, ’(cd), can be par-
titioned into classes by considering parallelism of its hyperplanes to coordinate axes.
Let us call a hyperplane H E Rd k-parallel (0 <_ k <_ d- 1) if H is parallel to exactly
k axes of Rd, that is, to exactly k spanning edges of Cd. 0-parallel hyperplanes are
called skew. The following is a trivial but useful observation.

Observation 1. H (v, b) Tl(Cd) is k-parallel iff exactly k entries of v vanish.
For d > 0 and 0

_
k < d, let ek(d) denote the number of k-parallel hyperplanes in

Tl(Cd). It is possible to relate ek to e0 (the number of skew hyperplanes) in a simple
way-.

Observation 2. For d > 0 and 0

_
k < d we have ek(d) ()eo(d- k).

Proof. Let U (v, b) (Cd) be k-parallel. Then k out of d entries of v are
zero and there are (d) possibilities to place them. The remaining entries of v define a

CLASSIFYING HYPERPLANES IN HYPERCUBES 227

vector of dimension d- k without zero entries which obviously is the normal vector
of a skew hyperplane in (cd-k). The number of such hyperplanes was defined to
be eo(d- k). D

Note that we can thus restrict attention to skew hyperplanes, as each nonskew
hyperplane has its skew analogue in some dimension lower.

3. Symmetric hyperplanes. Next we study ways in which a hyperplane H E
7-l(Cd) may partition the vertex set Vd. To this end, we call H a (j, p, k)-plane if it
contains p _> d vertices and splits the rest into subsets of cardinalities j and k where
j<_k.

One might conjecture that a valid triple (j,p, k) uniquely determines a hyper-
plane in 7-l(Cd) up to hypercube symmetries. This is false already in dimension
5 where hyperplanes with a fixed triple (j,p,k) may have a different intersection
with the d-cube. For instance, the two hyperplanes H ((-3, 1, 1, 1, 1), 0) and
H’= ((-1,-3,1,2,2),0)in T/(C5) are both (11, 5, 16)-planes. However, H cuts
10 edges of C5 in their interior while H does this 13 times. Five is the lowest di-
mension where this phenomenon occurs, which turns out to be frequent in higher
dimensions. This already reveals part of the difficulty of classifying the hyperplanes
in -(cd).

A symmetric hyperplane in Rd is one which passes through the center (1/2,..., 1/2)
of Cd, that is, a hyperplane (v, b) E Rd with id=l vi 25. For symmetric hyperplanes
H, every two antipodal vertices x, 5 Vd either both lie in H or they lie on opposite
sides of H. Symmetric (j,p, k)-planes thus have j k; that is, the vertices of the
d-cube which are avoided by the hyperplane are partitioned into equal-sized subsets.

There is a bijection between asymmetric skew (j, p, k)-planes in Tl(Cd) and sym-
metric skew (j + k, 2p, j + k)-planes in 7-/(Cd+I).

THEOREM 1. The number of asymmetric skew hyperplanes in (Cd) that contain
exactly p vertices of Cd is equal to the number of symmetric skew hyperplanes in
7l(Cd+1) with exactly 2p vertices of Cd+l.

Proof. There is an obvious bijection between hyperplanes (v, b) Rd and sym-
metric hyperplanes (w,b) Rd+l given by wi vi for 1, d and Wd+l
2b- -id__ vi. Note that, under this correspondence, (v, b) is asymmetric and skew
if and only if (w, b) is symmetric and skew. Furthermore, it is easy to check that a
vertex x of Cd lies in (v, b) if and only if the antipodal vertex pair (x, 0) and (5, 1) of
Cd+l lies in (w, b). Hence (v, b) is an asymmetric and skew hyperplane in ?-l(Cd) only
if (w, b) is a symmetric and skew hyperplane in 7-l(Cd+). The number of vertices
of Cd+l that lie in (w,b) is exactly twice the number of vertices of Cd that lie in
(v,b). O

The merit of Theorem 1 is that attention can be restricted to skew symmetric
hyperplanes for further classification. Note also that the number of vertices covered
by a symmetric hyperplane H Tl(Cd) is at least 2(d- 1).

4. Hull-honest hyperplanes. A completely different way to classify the hy-
perplanes in 7-l(Cd) is by considering their surface of intersection with Cd. To this
end, H 7-l(Cd) is called a hull-honest hyperplane if the convex hull of H V Vd

coincides with the polytope H V Cd. Expressed in different terms, H cuts edges of
the d-cube only at their vertices but not in their interior. In fact, in dimensions 2
(square) and 3 (cube) each spanned line (plane) is hull honest. But starting with
dimension 4, spanned hyperplanes can properly intersect edges of the d-cube, and
the convex hull of all the vertices lying on the hyperplane is no longer the surface

228 OSWIN AICHHOLZER AND FRANZ AURENHAMMER

of intersection of hyperplane and d-cube. Hull-honest hyperplanes seem to be the
only type in 7-t(Cd) which has been studied previously, motivated by the intersection
polytopes they generate [7, 6]. We now give an easy-to-use criterion to characterize
hull-honest hyperplanes, and we also give the exact number of such hyperplanes in
general dimensions.

THEOREM 2. Let H be a hyperplane in Tl(Cd) and let v (vl,...,Vd) be the
(shortest integer) normal vector of H. Then H is hull honest iff v e {-1, 0, 1}d.

Proof. The assertion is trivial for d 1, so let d >_ 2 below.
Now assume that H is hull honest. We first prove v E {-1,0, 1}d under the

assumption that H contains the origin.
We claim that if vi and vj are nonzero entries of v of opposite sign then Ivjl

Ivil. Suppose for contradiction that Ivjl > Ivl. Then the adjacent vertices x
(0,...,0,..., lj,...,0) and y (0,..., 1,..., lj,...,0) lie on opposite sides of H
and, thus, H intersects the edge between them.

Thus Ivjl Ivl whenever vi and vj have opposite sign. Since not all nonzero
entries of v have the same sign (since H contains the origin but also other vertices),
we conclude that all nonzero entries of v must have the same absolute value A. But
vl,..., Vd have gcd 1, so we have A 1 and v E {-1, 0, 1}d.

To cover hull-honest hyperplanes H (v, b) that avoid the origin, we choose some
vertex x of Cd in H and consider Rd as being spanned by the d-cube edges emanating
from x. This transformation affects only the signs of the entries of v, leaving their
absolute values unchanged.

For the "if" part, let H (v,b) have v {-1,0, 1}d. Suppose H is not hull
honest. Then there is at least one edge of Cd which is intersected by H. The vertices
of this edge, x and y, lie on opposite sides of H; hence, v. x > b and v .y < b. Since
x, y, and v are all integers, we have v. x >_ b + 1 and v.y _< b- 1 which implies
v. x >_ v.y + 2. On the other hand, x and y have Hamming distance one. Say they
differ at position i. This gives Iv.x- v. Yl Ivl; hence Ivl _> 2. This contradiction
proves that H is hull honest. [:1

For skew hyperplanes no entry of a normal vector is zero. Skew hull-honest
hyperplanes, therefore, always have a normal vector with entries from {-1, 1}. We
will now use this fact to derive their exact number in general dimensions. Intuitively
speaking, we look at the 24-1 main diagonals of the d-cube and show that there are
precisely d- 1 hull-honest hyperplanes perpendicular to a diagonal.

THEOREM 3. Let v be a vector in {-1, 1}d, d >_ 2, and let b be an integer. Then
the hyperplane (v, b) is spanned by a set of vertices of Cd if and only if b satisfies
n(v) d < b < n(v), where n(v) is the number of 1 ’s in v.

Before proving the theorem, we use it to count the number of skew hull-honest
hyperplanes in 7-l(cd).

COROLLARY 1. The number of skew hull-honest hyperplanes in Tl(Cd) is given
by

2, d= 1,ho(d) (d- 1)24-1, d >_ 2.

Proof. The case d 1 is obvious, so let d _> 2. By Theorems 2 and 3, we only
need to count the number of distinct hyperplanes of the form (v, b) with v {-1, 1}d
and n(v)- d < b < n(v). For each v e {-1, 1}d, there are exactly d- 1 integers b
within these bounds. Thus there are 24(4 1) pairs (v, b) satisfying the requirements.
Each skew hull-honest hyperplane is counted twice because (v, b) and (-v,-b) give
the same hyperplane.

CLASSIFYING HYPERPLANES IN HYPERCUBES 229

Proof of Theorem 3. Note first that if b lies outside the given range, then (v, b)
contains at most one vertex of Cd, and so the only if part of the theorem follows.

For the if part, define, for v E {-1, 1}d, the vertex x(v) of Cd such that x(v)
(1 + vi). Let X(v,k) denote the set of all vertices of Cd that differ from x(v) in
exactly k coordinates, i.e., whose Hamming distance from x(v) is exactly k. Observe
that X(v,k) is contained in the hyperplane (v, n(v)- k). Furthermore, it is an easy
exercise to show that for k between 1 and d- 1, the vertices in X(v,k) span the
hyperplane. Thus for n(v)- d < b < n(v) the hyperplane (v, b) is spanned by the
vertices in X(v, n(v) b).

Note that a skew and hull-honest hyperplane (v, b) 7-l(Cd) thus contains pre-
cisely (,(v-b) vertices of Cd. (In fact, the corresponding intersection figures turn
out to be well-known polytopes [7] and to have interesting properties [6, 15].) More-
over, up to hypercube symmetries, there is a unique symmetric, skew, and hull-honest
hyperplane in every even dimension and no such one in odd dimensions.

For d _> 1, let h(d) denote the total number of hull-honest hyperplanes in TI(cd),
and let hk(d) count those that are k-parallel (0 _< k _< d- 1).

THEOREM 4.

hk(d) { ()(d- k2d- 1)2d-k-1 for O <_ k <_ d- 2,
fork=d-i,

3d(2d- 3) 1
h(d)

6 + 2d + -.
Proof. According to Observation 2 on the relation between skew and k-parallel

hyperplanes we have ek(d) ()eo(d- k). The proof of Observation 2 shows that
hull honesty is not affected by the construction of k-parallel hyperplanes as we only
add zeros to the normal vector of the original skew hyperplane. Therefore the relation
also applies to hull-honest hyperplanes: hk(d) ()ho(d- k). By using the result of
Corollary 1 for ho(d) we get the formula for hk(d) as claimed above. Finally, summing
overall values of k gives the total number of hull-honest hyperplanes in T/(cd):

d-2

r
k=0

1)2d-k-11 + 2d
k--d--1

This simplifies to h(d) (ed-)
6 + 2d+ 21- by routine manipulation using the binomial

theorem. [:]

5. Exhaustive enumeration of hyperplanes. To get an idea of the behavior
of the numbers and types of hyperplanes in ?’I(Cd) for dimensions d _> 4 we did
some numerical investigations which are briefly reported below. For a more complete
description and discussion see Aichholzer [1].

In order to make the enumeration of TI(Cd) efficient we considered the following
question. For a hyperplane (v, b) ’-(cd), how large can the magnitude of the entries
of v be? (Recall that we assumed v to be an integer and as short as possible.) A
similar problem was considered in the threshold circuit literature many years ago, and
the upper bound dd/2 is well known. Actually, the bound there is slightly weaker,
(d q- 1) (d+1)/2, since it matters from which side the determining points of a threshold
hyperplane come from.

230 OSWIN AICHHOLZER AND FRANZ AURENHAMMER

TABLE
Upper bound of Fact 1 versus the determinant of (0, 1)-matrices.

Dimension d

2. (d4.) (d+l)/2

max Idet({0, 1}dxd)

1.00 1.30 2.00 3.49 6.75 14.18 32.00 76.89 195.3 521.6

1 1 2 3 5 9 32 56 144 320

enumerative max. > 98
1 1 1 2 3 5 9 18 42

vector entry _< 144

We found the improved bound below which, as we have recently learned, was
already given by Muroga, Toda, and Takasu [18] and can be found in more detail in
the book of Muroga [17]. Actually, this improvement was rediscovered several times
(cf. the survey papers of Orponen [21] and Parberry [22]), most recently by Hstad
[14]o

FACT 1. Let A be a (O, 1)-matrix of size d d. Then [det(A)[< 2 (_)(d+1)/2
which is sharp for d 2k 1, k E N.

THEOREM 5. Let g- (v, b) 7-l(Cd) and v (vl,..., Vd),

[vi] < 2-(d-1)d for 1, d,

Ibl < 2-d(d + 1) -.
For threshold circuits the bound for the weights v and the threshold level b is

the same, whereas we can bound v stronger than b for the reason pointed out above.
The bound in Fact 1 is achieved via a transformation from Hadamard matrices of

dimension d + 1. A Hadamard matrix M is an n n matrix with entries from {-1, 1}
which satisfies MMT MTM nIn. In [13] it is shown that there always exists
a Hadamard matrix when n 2k, and its existence is conjectured for every n 4k.
(This conjecture has been verified for n < 428; see [8, 13].) Depending on d mod 4,
some better bounds on the determinant of (0, 1)-matrices of order d and therefore for
Theorem 5 are known; see [8] and references therein.

The bound on v in Theorem 5 is not tight for dimensions d 2, as one might
conjecture from Fact 1. We can give a counterexample for dimension 8" The bound
on order-7 matrix determinants is 32 and has to be tight by Fact 1. This is also the
bound on normal vector entries in dimensian 8 that results from Theorem 5. But by
exhaustive enumerative computation of ?-/(Cs) the largest normal vector entry was 18.
This is somewhat surprising because testing all those hyperplanes also means testing
all linear systems of order 7 with coefficients in {0, 1} and with unique solutions.
By Cramer’s rule each solution coefficient is the ratio of two integers, each having
an absolute value _< 18 (and not 32, to which the corresponding determinants could
increase). Given the importance of linear systems with coefficients in {0, 1} in many
fields, the gap between maximal solution coefficients and maximal determinant values
is worth mentioning. See [8] for some related work in the context of determinant
functions.

Table 1 displays the upper bound of Fact 1 versus the determinant of (0, 1)-
matrices and the size of normal vectors, respectively, as far as we computed them.

CLASSIFYING HYPERPLANES IN HYPERCUBES 231

TABLE 2
Table of the number of different kinds of hyperplanes in the d-cube.

Dimension
d

Number of
hyperplanes in

n(C)
Number of skew
hyperplanes eo (d)

Number of
different types of
skew hyperplanes

Number of skew
hull-honest hyper-

planes ho (d)
1
2
3
4
5
6
7
8
9
10

2 2 1 2
6 2 1 2

20 8 1 8
140 88 3 24

3254 2704 8 64
252434 234688 35 160

71343208 69640192 219 384
86246755608 85682904704 1293 896

? ? ? 2048
? ? ? 4608

Using the above bounds we computed all spanned hyperplanes in dimensions up
to 8. Their numbers turned out to increase superexponentially with d (roughly 2d),
as one would expect from the trivial upper bound (2dd)o (Each d-tuple chosen from the
2d vertices of Cd potentially gives rise to a hyperplane.) An exhaustive enumeration
for dimensions higher than 8 currently seems to be out of reach. For -/(CS), our
program, though exploiting theoretical results reported in the present paper and in
[1], needed about 12 days on a DEC 5000/240, and for ?-/(C9) we estimate a running
time of about 35 years.

The experimental results, on the one hand, led us to observe structural proper-
ties of -l(Cd) which could be made rigorous but, on the other hand, showed us the
intrinsic difficulty of classifying d-cube hyperplanes. In each further dimension we
encountered new types of hyperplanes which could not be brought into connection
with hyperplanes in lower dimensions. Although we only needed to deal with skew
symmetric hyperplanes, this did not really help since the skew type prevails over all
other types, and symmetry gains only one dimension. For instance, in 7-/(Cs) about
99.3 percent of all hyperplanes are skew.

Most hyperplanes are spanned by very few vertices. In ?-/(Cs) about 30 percent
cover only the minimum of 8 vertices. A correlation between the number of vertices
covered by a hyperplane, its degree of parallelism, and the size of its normal vector can
be observed: The smaller the normal vector and the higher the degree of parallelism,
the more vertices may be covered. Saks [2.4])showed([that the maximum number of
vertices covered by a skew hyperplane is Section 4 on hull-honest hyperplanes
tells us that this bound is attainable. It is not difficult to deduce that a k-parallel
hyperplane thus can cover not more than 2k(d-k[_]) vertices. Note that (d-1)-parallel
hyperplanes cover exactly half of the 2d vertices of Cd, the maximum possible.

Some detailed enumerative results are listed in Table 2.

Acknowledgments. We would like to thank Michael Formann, Philip M. Long,
and Lorenz Wernisch for discussions and helpful comments on the presented topic.
We also thank Wolfgang Maass and Pekka Orponen for pointing us to literature on
related topics in threshold logic. The help of an anonymous referee in simplifying
several of our proofs is gratefully acknowledged.

232 OSWIN AICHHOLZER AND FRANZ AURENHAMMER

REFERENCES

[1] O. AICHHOLZER, Hyperebenen in Hyperkuben--eine Klassifizierung und Quantifizierung, Diplo-
marbeit, Inst. for Theor. Comput. Sci., Graz Univ. of Technology, Graz, Austria, 1992.

[2] N. ALON AND Z. FREDI, Covering the cube by ajfine hyperplanes, European J. Combin., 14
(1993), pp. 79-83.

[3] K. BALL, Cube slicing in Rn, Proc. Amer. Math. Soc., 97 (1986), pp. 465-473.
[4] Volumes of sections of cubes and related problems, Lecture Notes in Math. 1376, 1989,

pp. 251-260.
[5] E. R. BERLEKAMP, Algebraic Coding Theory, McGraw-Hill, New York, 1968.
[6] D. CHAKERIAN AND D. LOGOTHETTI, Cube slices, pictorial triangles, and probability, Math.

Mag., 64 (1991), pp. 219-241.
[7] n. S. M. COXETER, Regular Polytopes, Dover Publications, New York, 1963, 1973.
[8] R. CRAIGEN, The range of the determinant function on the set of n n (0, 1)-matrices, J.

Combin. Math. Combin. Comput., 8 (1990), pp. 161-171.
[9] E. N. GILBERT, Gray codes and paths on the n-cube, Bell Systems Tech. J., 37 (1958), pp. 1-12.

[10] R. L. GRAHAM AND H. O. POLLAK, On the addressing problem for loop switching, Bell Systems
Tech. J., 50 (1971), pp. 2495-2519.

[11] M. GRTSCHEL AND M. W. PADBERG, Polyhedral aspects of the travelling salesman problem,
in The Travelling Salesman Problem, E. L. Lawler, J. K. Lenstra, and A. H. G. Rinnooy
Kan, eds., John Wiley and Sons, London, New York, 1985.

[12] B. GRONBAUM, Convex Polytopes, Interscience, New York, 1967.
[13] M. HALL JR., Combinatorial constructions, studies in combinatorics, MAA Stud. Math., 17

(1978), pp. 218-253.
[14] J. H.STAD, On the size of weights for threshold gates, SIAM J. Discrete Math., 7 (1994),

pp. 484-492.
[15] L. S. JOEL, D. R. SHIER, AND M. L. STEIN, Planes, cubes and center-representable polytopes,

Amer. Math. Monthly, 84 (1977), pp. 360-363.
[16] J. C. LAGARIAS AND P. W. SHOR, Keller’s Cube-Tiling Conjecture is False in High Dimensions,

DIMACS Tech. Rep. 92-13, 1992.
[17] S. MUROGA, Threshold Logic and its Applications, Wiley-Interscience, New York, 1971.
[18] S. MUROGA, I. TODA, AND S. TAKASU, Theory of majority decision elements, J. Franklin Inst.,

271 (1961), pp. 376-418.
[19] H. NAUMANN, Beliebige konvexe Polytope als Schnitte und Projektionen hSherdimensionaler

Wiirfel, Simplices und Masspolytope, Mathematische Zeitschrift, 65 (1956), pp. 91-103.
[20] P. E. O’NEIL, Hyperplane cuts of an n-cube, Discrete Math., 1 (1971), pp. 193-195.
[21] P. ORPONEN, Computational complexity of neural networks: A survey, Nordic J. Comput., 1

(1994), pp. 94-110.
[22] I. PARBERRY, Circuit Complexity and Neural Networks, The MIT Press, Cambridge, MA, 1994.
[23] G. REINELT, The linear ordering problem: Algorithms and applications, Research and Exposi-

tion in Mathematics 8, Helderman-Verlag, Berlin, 1985.
[24] M. E. SAKS, Slicing the hypercube, in Surveys in Combinatorics, K. Walker, ed., London Math-

ematical Society Lecture Note Series 187, Cambridge University Press, 1993, pp. 211-256.
[25] N. J. A. SLOANE, A short course on error correcting codes, in CISM Courses and Lectures 188,

Springer, Wien, New York, 1975.

SIAM J. DISCRETE MATH.
Vol. 9, No. 2, pp. 233-257, May 1996

() 1996 Society for Industrial and Applied Mathematics
007

PACKING STEINER TREES: SEPARATION ALGORITHMS

M. GRTSCHELt, A. MARTINt, AND R. WEISMANTEL

Abstract. In this paper, we investigate separation problems for classes of inequalities valid for
the polytope associated with the Steiner tree packing problem, a problem that arises, e.g., in very
large-scale integration (VLSI) routing. The separation problem for Steiner partition inequalities is
JkfP-hard in general. We show that it can be solved in polynomial time for those instances that come
up in switchbox routing. Our algorithm uses dynamic programming techniques. These techniques
are also applied to the much more complicated separation problem for alternating cycle inequalities.
In this case, we can compute in polynomial time, given some point y, a lower bound for the gap
c- aTy over all alternating cycle inequalities aTx >_ . This gives rise to a very effective separation
heuristic. A by-product of our algorithm is the solution of a combinatorial optimization problem
that is interesting in its own right" find a shortest path in a graph where the "length" of a path is
its usual length minus the length of its longest edge.

Key words, dual graph, dynamic programming, multicuts, separation, shortest path, Steiner
tree

AMS subject classifications. 90C, 90C27

1. Introduction. To introduce the problem we are considering, let us begin
with a few definitions. We are given a graph G (V, E). If T is a subset of V,
then an edge set S c_ E is called a Steiner tree in G for T if the subgraph induced
by S contains a path from s to t for every pair s,t of nodes in T. We will call
the elements of T terminals and T terminal set or net. We are further given a list
Af (T1,... ,TN}, N >_ 1, of nets, i.e., subsets of. V, and, moreover, for each edge
e E E, a positive capacity ce IN. A Steiner tree packing is an N-tuple ($1,..., SN)
of edge sets Sk C_ E such that each set Sk is a Steiner tree in G for Tk, k 1,..., N,
and such that each edge e E is contained in at most ce of these Steiner trees.
The Steiner tree packing problem is the task to decide whether, for a given graph
G (V, E) with edge capacities c IN and for a given net list Af, a Steiner tree
packing exists. The ultimate goal of the investigation is to find a minimum weight
Steiner tree packing with respect to some given weight function on the edges.

In [GMW92b] we have shown how the Steiner tree packing problem can be em-
ployed to model various versions of the routing problem in VLSI design. We have
demonstrated that a cutting plane method based on polyhedral investigations can be
successfully utilized for the optimal solution of small real routing problems and that
good lower bounds on the optimum solution value can be computed in acceptable run-
ning time. The cornerstone of our cutting plane algorithm, introduced in [GMW92a],
is an effective implementation of exact and heuristic separation routines for various
classes of inequalities that are valid and under mild assumptions facet defining for
the associated Steiner tree packing polyhedron. The design and investigation of these
separation algorithms are the subject of this paper.

2. The polyhedral approach and some basic results. In this section we
define the Steiner tree packing polyhedron and describe some basic polyhedral results.
We start by introducing some graph-theoretic notation.

Received by the editors October 20, 1993; accepted for publication (in revised form) May 25,
1995. This research was partially supported by Science Program SC1-CT91-620 of the European
Community.

Konrad-Zuse-Zentrum fiir Informationstechnik Berlin, Heilbronner Straie 10, D-10711 Berlin,
Germany.

233

234 M. GRTSCHEL, A. MARTIN, AND R. WEISMANTEL

We denote graphs by G (V, E), where V is the node set and E the edge set. All
graphs we consider are undirected, loopless, and finite. For a given edge set F C_ E, we
denote by V(F) all nodes that are incident to an edge in F. An edge e with endnodes
u and v is also denoted by uv. Given two node sets U, W c_ V, we denote by [U" W]
the set of edges in G with one endnode in U and the other in W. For a node set W,
we also use E(W) instead of [W W]. A set of node sets VI,..., Vp C V, p >_ 2, is
called a partition of V if all sets V are nonempty, the node sets are mutually disjoint,
and the union of these sets is V. (Note that we use "c" to denote strict set theoretic
containment.) If V1,...,Vp is a partition of V, then 5(VI,...,Vp) denotes the set
of edges in G whose endnodes are in different sets. We call 5(V1,..., Vp) a multicut
(with p shores) induced by VI,..., Vp. For W C V, W 0, we write 5(W) instead of
5(W, V \ W) and call this set the cut induced by W. We abbreviate 5({v}) by 5(v).
For an edge set F, we define dF(v) 15(v)A F I, which is the degree of v in the
subgraph (V, F) of G. With a planar graph G we always associate a fixed embedding
of G in the plane. The set of edges that are incident to the outer face of a planar
graph G (V, E) will be denoted by Oc(E). For a subset of edges S c_ E, we define
Oc(S) := O(v(s),s)(S); i.e., O(S) denotes the set of outer face edges of the graph
induced by S.

Let K (v0, el, Vl, e2,..., Vl-1, el, Vl) be a sequence of nodes and edges, where
each edge e is incident with the nodes v-i and v for i 1,... ,/, and where the
edges are pairwise disjoint and the nodes distinct (except possibly v0 and vl). K is
called a path (or a Iv0, vl]-path) if v0 : vt and a cycle if v0 vt and _> 2. The nodes
Vl,..., Vl--1 of a path K are called the inner nodes of K. Each edge that connects two
nodes of a cycle (path) K and that is not in K is called a diagonal of K. We say that
two diagonals uv and uv cross with respect to K if the corresponding nodes appear
in the sequence u, u, v, v or u, v, v, u by walking along the cycle (path). Similarly,
we call two sets of diagonals F and F2 cross-free if, for all el E F1 and e2 E F2,
el and e2 do not cross. Otherwise, F1 and F2 are crossing. For our purposes, it is
convenient to consider a path P or a cycle C, respectively, as a subset of the edge set.
We call an edge set B a tree if (V(B),B) is connected and contains no cycle. The
leaves of a tree B are the nodes that are incident to exactly one edge of B.

Note that a Steiner tree is not a tree, in general. (Our Steiner trees are supersets of
"ordinary" Steiner trees. We employ this slight change of the more standard definition,
since it simplifies a number of technicalities of our polyhedral investigations.) A Stei-
her tree that is a tree and whose leaves are terminals is called an edge-minimal Steiner
tree. We call an edge e in a graph G, given some net T, a Steiner bridge if every Steiner
tree for T in G contains e.

We now introduce a polytope associated with the Steiner tree packing problem.
We are given a graph G (V, E) with capacities ce IN for all e E and a net list
Af {T,...,TN}, N >_ 1. We will denote an instance of the Steiner tree packing
problem by the triple (G,A/’,c). Let IRArE denote the N. IEI-dimensional vector
space IRE ... IRE, where the components of each vector x IRE are indexed by
xek for k {1,...,N}, e E E. Moreover, for a vector x IRE and k {1,...,N},
we denote by xk IRE the vector (xk)eE, and we simply write x (x1, xN)
instead of x ((xl)T,..., (xN)T)T. For a subset E’ C_ E and a vector a ’1E

k for all k 1,...,N and e E Ewe define a vector alE, IRE’ by (alg,)k := a
For an edge set F C_ E, XF IRE denotes the incidence vector of F, i.e., X

g 1
if e F and XF 0 otherwise. Conversely, for each 0/l-vector x IRE, the set
Ix := {e E E Ix 1} is called the incidence set of x. The incidence vector of a

PACKING STEINER TREES: SEPARATION ALGORITHMS 235

Steiner tree packing ($1,..., SN) is denoted by (Xs1,..., XSN).
The Steiner tree packing polyhedron STP (G, Af, c) is the convex hull of all inci-

dence vectors of Steiner tree packings. It is easy to see that the following holds:

STP (G, Af, c) conv {
for all W

N
k <_Ce(ii) E Xe

k----1

(iii) 0 < X

(V \ W) NTk # O, k -1,...,N,

for all e E,

for all e E, k-- 1,..., N,

k(iv) xe e {0,1} for all e E E, k 1,...,N}.
The inequalities (2.1) (i) are called Steiner cut inequalities, inequalities (2.1) (ii)

are called capacity inequalities, and the ones in (2.1) (iii) are called trivial inequalities.
In case N 1, the Steiner tree packing polyhedron is also called the Steiner tree
polyhedron. Note that (2.1) (i)-(iv) yields an integer programming formulation of the
weighted Steiner tree packing problem.

We close this section by listing some polyhedral results that are of importance
for the remainder of the paper. The reader interested in the proofs of these results is
referred to [GMW92a].

First, the problem of deciding whether, for some given E IN, the dimension of
the Steiner tree packing polyhedron is at least is AlP-complete. This follows from the
fact that the Steiner tree packing problem itself is NP-complete. (See, for instance,
[KL84], [$87].) Due to this fact, we have decided to study the Steiner tree packing
polyhedron for problem instances for which the dimension can easily be determined
and to look for facet-defining inequalities for these special instances. The justification
of the choice to be described below can be found in [GMW92a].

We restrict ourselves to considering instances (G, Af, c), where the graph G is
complete, the net list Af {T1,...,TN} is disjoint (i.e., Ti Cl Tj 0 for all i,j
{1,...,N}, # j), and the capacities are equal to one (c 1). It can easily be
verified that the corresponding Steiner tree packing polyhedron STP (G, Af, 1) is full-
dimensional in this case. Lemma 2.1 shows how validity results for the Steiner tree
packing polyhedron for some graph can be transformed to validity results for the Stei-
ner tree packing polyhedron for the graph obtained by deleting some edge or splitting
some node and, thus, by repeated application, how validity results for the complete
graph can be transformed to the general case.

LEMMA 2.1. Let (G,N’, c) be an instance of the Steiner tree packing problem.
(a) (Deleting an edge.) Let aTx > a be a valid inequality of STP(G, Af, c) and

suppose f E is deleted from G. Then tTx > is a valid inequality of
STP(G \ f, Af, clE\{f} where â ak for all e e E \ {f}, k e {1,...,N}
(where G \ f denotes the graph that is obtained by deleting edge f).

(b) (Splitting a node.) Let f E and let 5Tx > be a valid inequality of
STP(G / f,jf, 5). (G / f denotes the graph that is obtained by shrinking
edge f; Af and denote the corresponding net list and capacity vector defined

236 M. GR)TSCHEL, A. MARTIN, AND R. WEISMANTEL

on G / f.) Then aTx >_ a defines a valid inequality for STP(G, Af, c) with
k ^k for all e e E \ {f}, k e {1,...,N} and a 0 for all k 1,...,N.ae ae

The next theorem shows that each nontrivial facet-defining inequality of the Stei-
ner tree polyhedron can be lifted to yield a facet-defining inequality of the Steiner
tree packing polyhedron.

THEOREM 2.2. Let G (V,E) be the complete graph with node set V and
let Af {T1,...,TN},N >_ 2, be a disjoint net list. Let Tx >_ a, g, be a
nontrivial facet-defining inequality of STP(G, {TtL 1) for some {1,... ,N}. Then
aTx defines a facet of STP(G,, 1), wherea xE denotes the vector with

k=Oforallk=l,... N,kl eE.ae ae ae

Theorem 2.2 implies that in order to obtain a complete description of some Steiner
tree packing polyhedron STP (G,, c), t least all "individual" Steiner tree polyhedra
STP (G, {T}, c), T if, must be known completely. Of course, this knowledge will
hardly do. There are many classes of inequalities that combine at least two nets.
We call such inequalities joint. In [GMW92a] and [GMW95], several classes of joint
inequalities are described.

Polyhedral results such as the ones mentioned above re utilized algorithmically
by means of separation algorithms in the framework of a cutting plane method. We
will discuss separation problems for classes of inequMities valid for the Steiner tree
packing polyhedron nd separation algorithms for these classes in the subsequent
sections.

3. Separation of the Steiner partition inequalities. Let a graph G (V, E)
and a set of terminals T C_ V, ITI

_
2 be given. A partition V1,..., V, p

_
2, of V

is called a Steiner partition (with respect to T) if V/ T for 1,..., p. The
inequality

> p

induced by a Steiner partition V1,..., Vp is called a Steiner partition inequality. (Note
that a Steiner cut inequality is the special case where p 2.) A Steiner partition
inequality is valid for STP (G, {T}, 1), because each element of the partition contains
terminals and a Steiner tree must span all these terminals, thus "crossing" the multicut
at least p- 1 times. The separation problem for this class of inequalities can be
formulated as follows.

PROBLEM 3.1 (Separation problem for the Steiner partition inequalities). Let a
graph G (V, E), a terminal set T C_ V, and a vector y E IRE with 0 <_ ye <_ 1 for
e E, be given. Decide whether y satisfies all Steiner partition inequalities. If not,
find a Steiner partition inequality that y violates.

Problem 3.1 is AlP-hard in general (cf. [GMS92]). Restricting Problem 3.1 to
Steiner cut inequalities, i.e., the case p 2, the separation problem can be solved
in polynomial time by min-cut computations using any of the many polynomial time
max-flow algorithms; see [AMO93]. We show now that if we restrict the graph G to
be planar and the set of terminals T to lie on the outer face of G, Problem 3.1 can
be solved in time polynomial in the size of G and the encoding length of y. In the
following we describe this algorithm.

It is shown in [GM90] that the following conditions are necessary and sufficient
for a Steiner partition inequality induced by V1,..., Vp to be facet-defining, provided

PACKING STEINER TREES: SEPARATION ALGORITHMS 237

that the graph G is connected and contains no Steiner bridge:

(i)
(ii)

(iii)

(V, E(V)) is connected for 1,... ,p,
(V, E(V)) contains no Steiner bridge with respect
to the terminal set V r T (i 1,...,p), and
G(V1,..., Vp) is 2-node connected,

where G(V1,..., Vp) is the graph obtained from G by contracting each node set of
the partition to a single node. Moreover, the proof shows that each Steiner partition
inequality that does not define a facet of STP (G, Af, 1) is the nonnegative linear com-
bination of facet-defining Steiner partition inequalities and trivial inequalities. Thus,
we can restrict ourselves to solving Problem 3.1 for facet-defining Steiner partition
inequalities.

Given a Steiner partition V1,..., Vp satisfying (3.1) (i) and (iii), we now describe
how the edge set 5(V1,..., Vp) can be viewed as a Steiner tree in a certain "dual"
graph.

(a)

(c)

d2

d d4
(b)

d2

d5 d

(d)

FIG. 1.

For the remainder of this section we assume that the graph G is 2-node connected.
We can do this without loss of generality because otherwise the overall problem can
be decomposed in an obvious way into subproblems where the corresponding graphs
are 2-node connected. Thus, the edge set Oa(E) that encloses the outer face of G
is a cycle. We may assume that the terminal set T {tl,... ,tz} is numbered in a
clockwise fashion along this cycle. Let us consider the dual planar graph G* (V*, E)
of G. We subdivide the node representing the outer face into z nodes dl,..., dz such
that every edge of Oo(E) that is passed by walking from ti to ti+l on Ov(E) in

238 M. GRTSCHEL, A. MARTIN, AND R. WEISMANTEL

clockwise order is now incident to di+l for 1,..., z. (We identify an index > z
with ((i- 1) modulo z)4- 1.) Let GD (VD,E) denote the resulting graph and set
TD := {dl,...,dz}. We call TD the set of dual terminals. Observe that instead of
working with a bijective mapping, we denote both the edge set of the original graph
G and its "dual" GD by the same symbol E. We make sure that this notational
simplification will not lead to confusion. Figure l(a), showing a 4 6 grid with
five terminals, and Figure l(b), where the edges of GD are displayed by solid lines,
illustrate this construction.

Let us now define the following set of Steiner trees in GD:

S is an edge-minimal Steiner tree in GD
for some J C_ To, [J[>_ 2, such that
ds(j) 1 for all j E J,
ds(t) 0 for all t e TD \ J}.

Clearly, every Steiner tree S in 1) determines the set J c_ TD of its terminals uniquely.
For notational ease we will thus often write Sj to denote a Steiner tree S in 1) and
its associated set J of dual terminals.

LEMMA 3.2. Let G (V, E) be a planar graph and T a set of terminals located
on the outer face of G. The following statements are then true:

1. If VI,..., Vp is a Steiner partition of V with respect to T satisfying (3.1) (i)
and (iii), then the multicut 6(VI,...,Vp) viewed as an edge set of the dual
graph GD is a Steiner tree Sj contained in l) with JI p.

2. If Sj is a Steiner tree in GD contained in 1), then there exists a unique Stei-
net partition VI,..., VIj of V with respect to T satisfying (3.1) (i) and (iii)
such that Sj 6(V1,..., JI)"

Proof. Let VI,..., Vp be a Steiner parfition satisfying (3.1) (i) and (iii). Since
G is planar and all terminals are located on the outer face of G, G(V1,..., Vp) is
outerplanar. This together with property (3.1) (iii) implies that we can assume that
the numbering of the partition is clockwise or anticlockwise (without loss of generality
clockwise) around the outer face. In addition, we have that

(A) IVy" V+I] # 0 for 1,...,p.

For every {1,... ,p}, the graph (V, E(V)) is connected and VNT . Hence,
there exist dl, d. TD such that 5(V) defines a path from dl to d.. Without loss
of generality, dl, d are chosen such that terminal tl V. From (A) and the fact
that V1,...,Vp is a partition it follows that d. d(+l) for i 1,...,p. Thus,

pS :-- [..J__I((V/) ((VI,..., gp) is a Steiner tree for J := Ui=l{di}. Due to (A) and
since VI,..., Vp is a partition with V N T 0, S is edge-minimal and ds(j) 1 for
all j J. Property (3.1) (i) and (A) imply that ds(t) 0 for all t TD \ J. By
construction, J] p, and thus [JI-> 2. Hence, S

Conversely, let Sj be a Steiner tree in GD contained in 1); i.e., Sj is an edge-
minimal Steiner tree for some J c_ TD, [JI >- 2, satisfying ds(j) 1 for all j J
and ds(t) 0 for all t TD \ J. We number the elements in J {ds,..., d.j. } in
clockwise order around the outer face. Every unique path Pi in S from d, to d,+
is a cut in G; i.e., there exists a node set V such that 6(V) Pi. Moreover, we can
assume that ts,-i V/, for 1,..., IJ]. Since S is edge-minimM, V1,..., VIj
partition of V. Moreover, V1,..., lj is also a Steiner partition, because t8,_1
for i 1,...,]J[. Since ds(d) 0 for all d TD \ M, (V, E(V)) is connected for all
i= 1,..., [J[, showing (3.1) (i). Furthermore, from ds(j) 1 for all j J it follows

PACKING STEINER TREES: SEPARATION ALGORITHMS 239

that IV/ V+I] 7 0 for 1,..., IJI. Thus, G(V1,..., lji) contains a hamiltonian
cycle implying (3.1) (iii). []

Lemma 3.2 shows that the Steiner partitions of Y satisfying (3.1) (i) and (iii)
are in one-to-one correspondence to the edge-minimal Steiner trees in GD that are
in/). To illustrate this on an example, consider Figures l(c) and (d): the multicut
5(V1, V2, V3, V4) induced by the Steiner partition V1, V2, V3, V4 of V depicted in Figure
l(c) is a Steiner tree in GD for the subset {dl,d2, d4, dh} of the dual terminals; see
the thick solid lines in Figure l(d).

To check whether a given vector y E]RE, y >_ 0, satisfies all Steiner partition
inequalities x(5(V1,..., Vp)) > p- 1, we determine the value

(3.2) c min (y(Sj)- IJI).Sj6

If c >_ -1, Lemma 3.2 implies that there exists no violated Steiner partition
inequality. Otherwise, the corresponding Steiner tree Sj yields the violated Steiner
partition inequality y(Sj < J 1.

Observe that the objective function of the minimization problem in (3.2) is not
linear. One way to linearize it is to consider the following 2-stage process. First, for
every J c_ TD with IJ _> 2, we determine a Steiner tree S for J in GD such that the
weight y(S) is minimum, where only those Steiner trees Sj that satisfy dsj(j) 1
for all j E J and dsj(j) 0 for all j TD \ J are considered. Then we determine,
among all these Steiner trees S J c_ TD with JI _> 2, a Steiner tree S. such that
the value y(S.)-Ig*l is as small as possible. In other words, (3.2) can be written
in the following way:

(3.3) c- min (min y(S)) -IJI.J_TD S Steiner for J
Igl>_2 S6T)

However, this does not lead to a polynomial time algorithm. Our approach for the
computation of (is based on ideas of [DW71] and [EMV87] who have presented a
dynamic programming algorithm for the solution of the following problem.

Suppose we are given a graph G (V, E) and a set of terminals Z, and we want
to compute a minimal (with respect to some weighting w E -+ IR+) Steiner tree
for Z. The idea of the algorithm is based on the observation that for every minimal
Steiner tree S and every node v V(S) that is not a leaf of S, there exists a subset
J c_ Z such that S can be split into two subtrees, S and $2, where $1 is an optimal
Steiner tree with respect to J U {v} and $2 is an optimal Steiner tree with respect to
(Z \ J) U {v}. This observation leads to the following recursion formula.

For g c_ Z and v V, let /(g U {v}) denote the value of a minimal Steiner tree
in G for g U {v}. Moreover, let v(g {v}) be the minimum over all sums of two
minimal Steiner trees, each spanning v and a nonempty subset of J such that the two
subsets form a partition of J. Then we obtain (see [DW71])

(i) Cv(JU{v}) min 7(I{v})+7((J\I)U{v}),
@CICJ

(ii) /(J U {v}) min w(W(v, u)) + (J U {u}),
u6V

where W(u, v), u, v V denotes a shortest path from u to v in G. Of course, for
arbitrary graphs G and terminal sets Z, the running time of the dynamic program
based on this recursion is exponential in the number of terminals. However, in the

240 M. GR(TSCHEL, A. MARTIN, AND R. WEISMANTEL

particular case where G is planar and all terminals lie on the outer face of G, Erickson,
Monma, and Veinott (cf. [EMV87]) showed that it sumces to consider only subsets of
Z whose elements are located consecutively on the outer face. Since the number of
these subsets is quadratic in the number of terminals, a minimal Steiner tree can be
computed in polynomial time using this recursion.

Let us return to our problem of determining c. We can clearly use the polynomial
time algorithm described above to compute a minimal Steiner tree for every J

_
TD

in GD, because GD is planar and the dual terminal set TD (and thus J) lies on the
outer face of (D. We can also consider the additional condition that every Steiner tree
S for J has to take S E D into account by some slight modifications of the recursion
formula. Moreover, by running the recursion appropriately we can simultaneously
determine the optimal subset J* of TD (and thus solve (3.3)) as follows.

First, from the minimum weight of a Steiner tree for J we subtract the number
of its terminals. This can easily be taken into account in the recursion formula, since
each terminal is a leaf of the Steiner tree. (See properties of D.) Second, the minimum
in (3.3) is taken over all subsets of TD with at least two elements. The number of these
subsets is exponential in the size of the terminals. However, it is possible to decide
locally which dual terminal belongs to the optimal solution. Namely, a shortest path
P(v, d), v VD\TD, d TD, is a branch of a minimal Steiner tree only if y(P(v, d))

_
1

holds. This is due to the fact that if such a branch is added to a minimal Steiner tree,
the left-hand side of the corresponding Steiner partition inequality increases by the
weight of the path, whereas the right-hand side is incremented by one. To sum up,
we obtain the recursion

(i) Y,0 "= min{y(W(v,d))- 1, 0}
(ii) ,j min (yiv,l_ + Yi+l,j-)

l<l<j

for all v VD \ TD,i 1,...,z,

for all v VD \ To,
1,...,z, j 1,...,z 1,

v min (y(W(v,u))+i,j) for allveVD\TD,(iii) Yi,j
UeVD \TD

1,...,z, j 1,...,z- 1,

where W(u, v), u, v VD denotes a shortest path in GD from u to v such that
(TD N VD(W(u, v))) \ {u, v} 0. This additional restriction is necessary to guarantee
that the solution belongs to 9. (3.5) (ii) corresponds precisely to the formula in

(3.4) (i). (3.5) (iii) is the counterpart of (3.4) (ii), except that one-element terminal
sets are treated separately in (3.5) (i); see also the explanations above.

In the following we show that recursion (3.5) works correctly.
For 1,..., z, j --0,..., z- 1, let Pi,j denote the unique path from di to di+y

by walking along the outer face of GD in clockwise order. We define the interval
Ida, d+] :- TD N VD(Pj). Consider a Steiner tree S in GD for some subset J

_
Ida, d+y], J : 0. We denote by ls the index of the "left most" dual terminal and by
1s / rs the index of the "right most" dual terminal of S, i.e., an element of J; in
formulas

1s + h*, with h* := min{h h _> 0, di+h VD(S)},

and

rs := max{h h _< j, dls+h VD(S)}.

Moreover, for 1,..., z, j 1,..., z- 1, we introduce the symbol e,j to denote
the edge that is incident to d and di+j. Set Gi,j :: (VD, E [2 {el,j}). In the planar

PACKING STEINER TREES: SEPARATION ALGORITHMS 241

representation of Gi,j we embed the edge ei,j in the outer face of GD such that it is
homotopic to the path P,j. Figure 2 illustrates this construction. It will turn out to
be useful to employ the symbol e,0 in some recursion formula in order to avoid the
treatment of additional special cases. We will interpret e,0 as a nonexisting edge and,
accordingly, G,0 as the graph GD.

e

di " \\ di+j

FIG. 2.

LEMMA 3 3 For 1, z, j 0, z 1 and v E VD \ TD define T)v.
z3

{S c_ E S is an edge-minimal Steiner tree for J U {v} with J c_ [d,d+j] such
that ds(j) 1 for j J and ds(j) 0 for j TD \ J and such that, if J O,
in addition v VD(Oa,s.s(S U {es,rs})) }. Then, for the values that are computed
using recursion (3.5), the following property holds:

yi,j <_ min (min y(S))
OCJC[di,di+j] s Steiner tree for JU{v)

for all v E VD \ TD, 1,...,z,j O,...,z-- 1.

Proof. Forr 1,...,z,s=0,...,z-1 andv E VD\
and Sr,s E 7:),s be a Steiner tree for D,8 U {v} such that

To, let D,8

/ \
v ’ min (min y(S))y(S,,) ID,.,,I

OcJC[d,d+,] S Steiner tree for JU{v}
S ETvr,

< ,,al for all v E VD \ TD, 1 .,z,jWe must show that Yi,j Y(Si,j)- Dr
0,..., z- 1. We prove the statement by induction over j. For. j 0, Lemma 3.3
is obviously true. Suppose the statement also holds for all k 0,... ,j- 1. Let
V E VD \ TD be any arbitrary node and {1,...,z}. For ease of notation let
:= ls.., r rsT,j, and F := Oat (Si,j U {et,r}). We distinguish two cases.

(1) dzT, (v) _> 2. Since GD is planar, since all dual terminals (and thus Dv.,) lie

on the outer face of GD, and since v VD(F), there exists an index q E {1,...,j}
and two nonempty disjoint subtrees $1, Sa c_ S,i with 5’1 U Sa SZj such that $1 is
an edge-minimal Steiner tree for (Di,j [di, di+q-1]) {v} and S: is an edge-minimal
Steiner tree for i,j f [di+q, di+/])U {v}. (See Figure 3.)

Dr. [di -1] andMoreover, SV" E T)v.,a implies that d& (d) 1 for all d E ,a di+q
d& (d) 0 for all d TD \ (DiV,j [di, di+q-1]). The same holds for $2; i.e., d& (d) 1
for all d Dv.,, C [di+q, di+/] and ds. (d) 0 for all d TD \ (Di,j [di+q, di+j]). Let

242 M. GRTSCHEL, A. MARTIN, AND R. WEISMANTEL

FIG. 3.

dl+r

"’, I v G ,

FIG. 4.

($2 U {ezs2,rs }) It is clear thatFi OGisl,rS1 (SI U {ezSl,fS }) and F2 := OG,s2,s.
VD(F) c VD(F1)U VD(F.) and {v} VD(F1) VD(F:) Therefore, $1 andi,q--1

$2 This yieldsiWq,j--q"

(2) ds,j (v) 1. We consider three subcases.

ID.,,31 >- 2. Then, since Sv.,,3 is edge-minimal, there exists a node u E VD \ TD
with ds,j (u) _> 2 such that Sv.-,,, W(v, u)U S’, where W(v, u)N S’-. (See Figure

4.) Obviously, Is, l, rs, r and, since ds,(v) 1 and v VD(F), we have

that F W(v,u)U Oa,(S’U {et,r}). Moreover, it is easy to check that S’ is an
edge-minimal Steiner tree for Dr. U {u} satisfying all further properties in D. This

,3 3
together with (1) (note that ds, (u) >_ 2) yields

y(W(v,)) + y(S’) -ID*,,
>_ +
> Yi,j"

(b) Dr., {du } for some u {i, + j- 1 }. Then we know that Sv.., I).,,_,.,

PACKING STEINER TREES: SEPARATION ALGORITHMS 243

and we obtain

y(W(v, du)) 1

V V V
Yi,u-i Yi,u-i -+- Yu+l,i+j-u-

V

(c) D..= q}. Here we have that y(Si,j)*,3 ,31= 0 _> i,j >-- Yi,j"
This completes the proof.
Let 3 mineyD\TD Y,z-1 and let S* be the corresponding edge set. Obviously,

(VD(S*),S*) is connected and Lemma 3.3 implies 3 < a. If 3 > -1, then there
does not exist a violated Steiner partition inequality. If 3 < -1, we get p*
IVD(S*) f TDI > 2, since y >_ 0 holds. Thus, S* E 73 and c . Due to Lemma 3.2
there exists a Steiner partition V1,..., Vp. with 5(V1,..., Vp.) S* and 0 > + 1
y(5(V1,..., Vp.))- p* + 1. Therefore, V1,..., Vp. defines a violated Steiner partition
inequality.

This gives rise to the following algorithm.
ALGORITHM 3.4 (Separation algorithm for the Steiner partition inequalities).

Input:
A planar graph G (V, E), a set of terminals T C_ V that are located on the
outer face and a vector y]RE, y _> O.

Output:
One of the following possibilities:

a violated Steiner partition inequality,
the message "there does not exist a violated Steiner partition inequality."

(1) Construct the graph GD (VD,E) with TD ={dl,... ,dz}.
(2) Compute shortest paths W(u, v) for all u, v VD such that no inner node of the

corresponding paths is an element of TD.
(3) Determine Y,z-1 for all v VD \ To using recursion (3.5).
(4) Set := minvevD\TD Y,z-"
(5) If > -1, print the message "there does not exist a violated Steiner partition

inequality," STOP.
(6) Determine the edge set S* corresponding to
(7) Return the violated inequality (xS*)Tx >_ IVD(S*)f TDI- 1.

(8) STOP. The running time for the execution of steps (3) and (4) of Algorithm 3.4

is bounded by O([VD[2IT[2). Also note that (3.1) (ii) can be easily taken into account
in step (i) of recursion (3.5). Summing up, we obtain the following theorem.

THEOREM 3.5. Let G (V, E) be a planar graph and let T C V be a set of
terminals located on the outer face of G. Then the separation problem for the Steiner
partition inequalities can be solved in time O([VD[2]TI 2 + y), where 7 is the running
time for the computation of the shortest paths between all pairs of nodes.

Let us close this section with two remarks.
From Lemma 3.2 we know that each Steiner tree in Go for some subset J of To

corresponds to a Steiner partition inequality. This observation gives rise to several
heuristic algorithms for finding violated Steiner partition inequalities. Namely, instead
of calculating an optimal Steiner tree in Go, we determine a Steiner tree heuristically
as well. Many heuristics are known for the solution of the minimum Steiner tree
problem. (See, for instance, [HAW92] for a survey.) We have implemented one such
algorithm that is based on the ideas described in [TM80]. This heuristic starts with
a terminal d TD. Then, a terminal d TD \ {d} is chosen such that the weight of a

244 M. GR(TSCHEL, A. MARTIN, AND R. WEISMANTEL

shortest path from d to d is minimal. Finally, d and d are connected via a shortest
path. This scheme is iterated until all terminals are connected. For our purposes this
procedure is slightly modified. First, we have to make sure that no inner node on
the corresponding shortest paths is an element of TD. Second, in order to generate
as many inequalities as possible, we compute a Steiner tree starting with all pairs of
nodes d, dj, where d, dj E TD. The advantage of this heuristic is that not only the
final Steiner trees define Steiner partition inequalities, but also any of its iteratively
computed subtrees defines a Steiner partition inequality (cf. Lemma 3.2). By working
in this scheme we obtain plenty of inequalities. For each of them we check whether it
is violated. We will see in the last section that this heuristic works very well for our
problem instances.

Finally, let us point out that Algorithm 3.4 can also be used to solve certain
multicut problems. Suppose there is given a planar graph G, a set of nodes T C_ V
located on the outer face of G, and nonnegative edge weights we, e E E, and we
want to determine min{-A, min{w(5(Vl,..., Vp))- APl VI,..., Vp, p _> 2 is a Steiner
partition of V with respect to T such that G(V1,..., Vp) is 2-node connected}}, where
A is the gain for each element of the partition. By applying some modifications to
Algorithm 3.4 this problem can be solved in polynomial time as well.

4. Separation of the alternating cycle inequalities and extensions. We
first introduce the so-called alternating cycle inequalities. Let G (V, E) be a graph
and Af {T, T2} a net list. We call a cycle F in G an alternating cycle with respect
to T1,T2 if F C_ [T1 T2] and V(F) T1 T2 . (See Figure 5.) Moreover, let
F C_ E(T2) and F c_ E(T) be two sets of diagonals of the alternating cycle F with
respect to T1, T2. The inequality

(XE\(FUF) ,E\(FUI’2))Tx -IFI- 1

is called an alternating cycle inequality.

T

F

F1
F2

E]

FIG. 5.

The basic form of an alternating cycle inequality, i.e., F1 F2 0, is valid for
STP (G, Af, 1), because whenever two terminals of net 1, say, are connected on the
cycle, at least one node of the other net is isolated. This means that in order to connect
both nets simultaneously, at least [V(F)T 1 IV(F)T21-1 IFI- 1 edges not
contained in the cycle must be used. In general, the basic form of an alternating cycle
inequality is not facet defining. The sets F and F2 are used to strengthen the basic
form; in fact, choosing them appropriately, we can obtain facet-defining inequalities.

PACKING STEINER TREES: SEPARATION ALGORITHMS 245

The sets of diagonals F1 _c E(T2) and F2 _c E(T1) are called maximal cross-free
with respect to F if F1 and F2 are cross-free and each diagonal el E E(TI) \ F2 crosses

F1 and each diagonal e2 E E(T2)\ F1 crosses F2. (See Figure 5.) The following
theorem then holds.

THEOREM 4.1. Let G- (V, E) be a graph that contains the complete graph on
node set V as a subgraph and let Af {T1, T2} be a disjoint net list with T1 [-J T2 V
and ITll IT21 l, >_ 2. Furthermore, let F be an alternating cycle with respect
to T1,T2 with V(F) V and F1 c_ E(T:), F2 C_ E(TI). Then, the alternating cycle
inequality

(XE\(FF), xE\(FF2))Tx l- 1

defines a facet of STP (G, Af, 1) /f and only if F and F2 are maximal cross-free.
There is a natural way to extend the alternating cycle inequalities as follows. Let

G (V, E) be a graph and Af {T, T2} be a net list. Let V1,..., V be a partition
of V with k _> 4 and k even such that the following properties are satisfied:

(i) (V, E(V)) is connected for i= 1,..., k,

(4.1) (ii) V2i+ T1 V2i+1 T2 q} for 0, 1

V2 N T O, V2 N T2 O for i I -2(iii) [V’V+I] : 0 for i- 1,...,k.

(An index i > k is identified with the index ((i- 1) modulo k)+ 1.) Condition
(iii) guarantees that the contracted graph G(V,..., Vk) (i.e., the graph obtained by
contracting every element of the partition to a single node) contains at least one

k [V V+] in G that forms ahamiltonian cycle. We choose an edge set F i=l
hamiltonian cycle in G(V,..., V). Note that, due to (ii), F is alternating. rther-
more, let F . [], F2 .o [’] be two edge sets such that F1
and F2, viewed as edge sets in the contracted graph G(V1,..., V), are cross-free with
respect to the alternating cycle F. Then we call the following inequality an extended
alternating cycle inequality:

(E(FF) E(FF))Tx >

_
1.

2

This inequality is valid with respect to STP (G,, 1) due to Lemma 2.1. Let us give
an example.

Example 4.2. Consider the graph G in Figure 6(a) with T1 {1, 3, 5, 10} and
T2 {4,9, 12}. It can easily be checked that the partition V1, V2, V3, V4 satisfies
(4.1); the corresponding contracted graph G(V1, V2, V3, Vd) is depicted in Figure 6(b).
Obviously, F := { {3, 4}, {10, 11}, (9, 10}, {5,9}} is a hamiltonian alternating cycle
in G(V1, V2, V3, Vd) and F1 0, F2 { {2, 6}, {5, 6}} are cross-free sets of diagonals.
Thus, the inequality x6 +x + x7 + x7 + x]7 + x7 1 is an extended alternating
cycle inequality.

Observe that when V1,..., Va are chosen, we have the freedom to pick F, F, and

F2 from among many possible alternatives. We call any triple (F, F1, F2) that satisfies
the additional requirements defined above a feasible triple (for V,..., V).

We do not know under which conditions the extended alternating cycle inequali-
ties define facets of the Steiner tree packing polyhedron and we do not know how to
separate these inequalities in the general case. Our aim here is to outline a separation
routine for extended alternating cycle inequalities in the (practically relevant) case
where a planar graph G is given and all terminals of T1 and T are on the outer face.

246 M. GRtTSCHEL, A. MARTIN, AND R. WEISMANTEL

(a) (b)

FIG. 6.

We proceed in a similar way as for the Steiner partition inequalities. We show that
for each partition V1,..., Vk satisfying (4.1), the multicut 6(Vl,..., Vk) corresponds
to a certain Steiner tree in a graph that remains to be defined. Here an additional
difficulty comes up, since the edges of 6(V1,..., Vk) must be evaluated differently. The
coefficients depend on the choice of the alternating cycle F in G(VI,..., Vk) and on
the sets F and F2. Thus, for the corresponding Steiner tree, a vector must be defined
that "sifts" the edges that correspond to F, F1, or F2, respectively.

Without loss of generality we suppose the planar graph G to be 2-node connected
so that the edge set Oc(E) that encloses the outer face is a cycle. Let T T U T2
and we may assume that T := {t,... ,tz} is numbered in a clockwise fashion along
this cycle. Let us consider the dual graph G* (V*,E) of G. We split the node
representing the outer face into z nodes dl,..., dz such that every edge of Oc(E)
that is passed by walking from t to ti+ on Oc(E) in clockwise order is incident
to di+l for 1,...,z. Let GD (VD, E) denote the resulting graph and set
TD {dl,..., dz}. Figure 7 illustrates this construction for the graph of Example
4.2. Set

M := {di E TD {t-l, t} CI Tk 0 for k 1, 2},
$:= {S c_ E IS is an edge-minimal Steiner tree for M in GD such that

ds(d) 1 for all d E M and ds(d) 0 for all d TD \ M}.

The following relation then holds.
LEMMA 4.3. Let G (V, E) be a planar graph and A/" {TI, T2} where all

terminals are located on the outer face. Then the following statements are true:
1. If V1,..., Vk is a partition of V satisfying (4.1), then the corresponding mul-

ticut 6(V1,..., Vk) viewed as an edge set of the dual graph GD is a Steiner
tree contained in S.

2. If S is a Steiner tree in GD contained in S and IMI >_ 4 holds, then there
exists a partition V, Vk of V satisfying (4.1) such that S 6(V, Vk).

Proof. Let us prove the first statement. Suppose V1,..., Vk with k _> 4 even
is a partition satisfying (4.1). We first observe that V1,..., V is a Steiner partition
with respect to T. Moreover, (4.1) (iii)implies (3.1) (iii) and (4.1) (i) is identical
to (3.1) (i). Thus, Lemma 3.2 implies that S 6(V1,..., V) is an edge-minimal

PACKING STEINER TREES: SEPARATION ALGORITHMS 247

d2 d3

d6 d

FIG.

d2 d3

tl & t2 I t3

]---/
t,l (- - ? d

t5 t4

d6 d

FIG. 8.

Steiner tree in GD for some J C_ T with IJI- k, satisfying ds(j) 1 for j E J and
ds(t) 0 for all t TD \ J. Hence, it only remains to be shown that J M. But
this immediately follows from properties (4.1) (ii) and (4.1) (iii) together with the
fact that k is even.

Conversely, let S S and suppose IMI _> 4. We can apply Lemma 3.2 again,
since S c_ 79, and thus S 79. Lemma 3.2 implies that there exists a unique partition
V1,..., tMI with respect to T satisfying (3.1) (i) and (3.1) (iii). Since G is planar
and all terminals lie on the outer face, G(V1,..., Vp) is also outerplanar. Thus, we
can assume that V,...,M is numbered in clockwise or anticlockwise (without loss
of generality clockwise) order around the outer face and that V N T1 . The fact
that G(V,..., VIMI) is outerplanar and 2-node connected implies [V" V+] for
i= 1,..., IMI, proving (4.1) (iii). (3.1) (i)is identical to (4.1) (i). By construction,

248 M. GR(TSCHEL, A. MARTIN, AND R. WEISMANTEL

V1 N T1 : 0. So, we obtain property (4.1) (ii) from the fact that S is a Steiner tree
for M with VD(S) (TD \ M) O. D

In Figure 8 the Steiner tree S E S which corresponds to the partition V1, V2, V3, V4
shown in Figure 6 (a) is depicted in thick solid lines. From the proof of Lemma 4.3 we
see that the cardinality k of a partition V1,..., Vk satisfying (4.1) equals IMI. So, we
suppose from now on that k IMI _> 4; otherwise, there does not exist any extended
alternating cycle inequality.

Next, we define a "sifting function" for each S E 8. Let vS,..., V[be the
corresponding partition satisfying (4.1) according to Lemma 4.3. We call a vector a
{0, 1}{TI’T2}E a sifting for S if there exists a feasible triple (F, F1, F2) for VlS,..., V
such that a (XE\(FUFI), xE\(FUF2)). Moreover, set r(S):= - and let $’(S) denote
the set of all siftings for S. Consider now the minimization problem

(4.2) min min yl(SAIa)+y2(SnIa2)-(S)
8 a:(S)

where y IR{T’T2}E, y _> 0 is the vector to be cut off and Ib {e E be 1}
for b {0, 1}E. Let it denote the minimum value of (4.2). From Lemma 4.3 and
the definition of a sifting we know that we can solve the separation problem for
the extended alternating cycle inequalities via computing (4.2). If it >_ -1, there
obviously exists no violated inequality. If it < -1, let S E S and 5 9(S) be such
that it yl(nlal) + y2(; RIa2) U(). In this case (xnI,xnIa)

_
() 1

is an extended alternating cycle inequality that is violated by y. Thus, it remains to
solve problem (4.2).

As in the case of the Steiner partition inequalities we develop a dynamic program
in order to compute the optimal Steiner tree S and the optimal sifting 9v().
Consider the following recursion.

RECURSION 4.4. Let yk(u,v) denote the value of a shortest path from u to v
with respect to the weighting yk whose inner nodes have empty intersection with TD.
Moreover, let y(u, v) correspond to the value of a shortest path from u to v with
respect to the weight function yl + y2 whose inner nodes have an empty intersection
with To. Finally, define Y-l(U, v) "= min{)(W) maxew)e W is a path from u
to v whose inner nodes have empty intersection with TD } where 1 yl + y2. Then
for all l,...,z, j O,...,z- l, v VD \ To and k 1,2 (with k 1, ilk-2,
and k 2, if k-l), set

(1) ll(v,i,O)"-- y-l(v, di) 2
l(v, i, O) 0

(2) 12(v,i,j) := min ll(v,i,r-1)+ll(v,i+r,j-r)
l_r_j

(3) l(v,i,j) := min yk(v,u) +12(u,i,j)
UVD\TD

ll(V,i,j) := min y(v, u) + l(u, i, j)
UVD \TD

if d E M;
if di TD \ M;

if ti-1, ti+j Tk;

if ti-1 Tk, ti+j Trc
or ti- T, ti+y Tk.

In principle, (1), (2), and (3) correspond to the formulas in (3.5) (i), (ii), and (iii),
respectively. (1) in Recursion 4.4 takes into account that the resulting Steiner tree S
satisfies ds(d) 1 for all d M and ds(d) 0 for all d Td \ M; see the definition
of . (2) is precisely the formula (ii) of (3.5) and the subcases in (3) arise because
the evaluation of the path from v to u depends on the terminal set to which ti-1 and
t+j belong. The following theorem then holds.

PACKING STEINER TREES" SEPARATION ALGORITHMS 249

THEOREM 4.5. For the value /min minvvD\TD ll(v,l,z- 1) computed via
Recursion 4.4, we have

/min min min y(S n Ial) + y2(S n I2) 7(S).
ses ae:(s)

Proof. We will proceed as in the last chapter and prove a relation between so-
lutions for subproblems in the spirit of Lemma 3.3. Hereto we need some further
notation.

First, we have to define subtrees of Steiner trees in S. For all 1,..., z, j
0,..., z- 1, we use the same notation and definitions as in the previous section, i.e.,
the interval [di, d+j], the edge e,j embedded in the outer face of GD, the graph
G,j (VD,E U {e,j}), and, for a Steiner tree in GD for J C_ [d,d+j], J : 0, the
symbols 1s and rs For v E VD \ TD and 1, z, j 0, z 1, we define S.
as the set of all edge-minimal Steiner trees S in GD for (Ida, d+j] n M)U {v} such
that

ds(d) 1 for all d E [di, di+j] C M,
ds(d) 0 for all d e TD \ ([di, di+j] n M),
V e VD(OGIs, (S U {els,rz})) if Ida, di+j] M O.

Furthermore, we call a vector a {0 1}{TI’T2}E a sifting for S S.. if there

exists a Steiner tree E , and a sifting for such that S c_ , a for all e S
and a 0 otherwise.

S. and set (S):= l[d d+j] nLet 9v(S) denote the set of siftings for S ,
What we want to show is that l(v, i,j) is a lower bound for yl(S nI)+ y2(S F

S. and all siftings a 9v(S) Unfortunately, thisIa)-(S) for all Steiner trees S ,
is not true, in general. It turns out that depelding on the node v, certain siftings
must be excluded.

Let S e S.,.. Define V {w e VD(S) lds(w _> 3}. Let L C_ M n Ida, d+j] be
the set of nodes d such that for the unique path P in S from v to d, VD(P) a V
holds. If L , we set 9vv(S) 9v(S). Otherwise, let Pd, d L, denote the unique
path from v to d. We set 9v(S):= {a e 9v(S) for all d e n there exists an edge

0}. In other words, we allow only siftings where thee SPd with a a
corresponding alternating cycle has nonempty intersection with all paths Pd, d L.

(4.3) l(v,i,j) <_ min min y(SCIa)+y2(SnI)-(S)
ss, :(s)

for all v VD \ T), 1,...,z, j 0,...,z- 1.
We prove this by induction on j. (4.3) is obviously true for j 0. Now, suppose

(4.3) is also true for all 0,... ,j- 1. Consider any arbitrary v VD \ TD and
{1 z}. Let E $.. and 9() such that

J

yl(n Ia + y2(n Ia) 7() min min
scs, c=(s)

yl(S n Ial + y(S n Ia2

We have to show that l(v,i,j) <_ yl(; n the) -- y2(/ n I2) ?(). We distinguish
two cases.

(1) d(v) _> 2. Since GD is planar, all terminals of T are located on the outer
face of GD and v VD(Ol,([2 {et,})); there exists an index r {1,... ,j}
and two disjoint subtrees S1, $2 of such that

S, US S,

250 M. GRTSCHEL, A. MARTIN, AND R. WEISMANTEL

y(s), v y(s),
$1 E S. and $2 E Sv (See also the proof of Lemma 3.3.),r--1 iWr,j--r"

kand kFor k 1, 2, we define values a b as follows:

k. ~k if e E \ $2,ae a

ak’= 0 ifeS2,
~k ifeE\S1bk := ae

bk’- 0 ifeS1.

Next we show that a e ’v(l) and b e $’v($2). Since 5 e $-(S), we know that
a $’($1) and b $’($2). Let L C_ M N [d,d+j] denote the set of nodes d such that
for the unique path P from v to d holds VD(P) V . Denote by L1 and L2 the

corresponding node sets of $1 and $2. From the fact that L L1 t L2 we conclude
that a e 9($1) and b e 9v($2). Finally, note that (S) r](S1) + r](S2). Summing
up, we obtain that

yl(/51)
__
y2(’1 12) ?(;)--yl(S CI/a1) -- y2(S N Ia2 ?(Sl)

+ 1(h) + (. h) ()
>_ll(v,i,r- 1)+ll(v, iWr, j-r)
_> :(, ,) _> (, , j).

(2) d(v) 1. If IVD(S) [di, di+j]l 1, we conclude that there exists an

r {1 j} such that S . and 0 8 or vice versa, 0 E and,r--1 i+r,j--r, i,r--1

8+r,j_r. (Note that j > 0.) Since both r- 1 and j- r are less than or equal to
j 1, we conclude by the assumption of the induction that (4.3) holds.

Now, suppose IVD() [di, di+j]l >_ 2. Then there exists a node u V such

that S W(v,u) US’, W(v,u)S’ O, with ds,(u) > 2 and S’ S.. where

W(v, u) is the unique path in from v to u. (For a more detailed discussion, see the
corresponding case in the proof of Lemma 3.3.) Set a :- a-k for all e E \ W(v, u)

kand a := 0 for all e e W(v, u), k 1, 2. Obviously, () r](S’). Since
we obtain that a e $’(S’). Moreover, 5 e $’() and v e VD(OGt, ([-J

imply that for all e E W(v, u), a~k 1 if ti_ Tk or ti+ Tk for k 1,2. Thus,
taking the correctness of case (1) into account we get the following.

If ti-1, ti+j Tk for some k {1, 2}, we obtain that

If ti-1 T and ti+j T2 or ti_ T2 and ti+j T, we have that

PACKING STEINER TREES: SEPARATION ALGORITHMS 251

We conclude that (4.3) is true. Relation (4.3) finally implies that

/min min ll(V, 1, z 1)
vEVD \TD

< min min min yl (S N Ial) + y2 (S N Ia.)
veV\T Se,_ e:(S)

< min min yl (S f-’l Iax -f- y2 (S CI Ia. rl(S).ses e:(s)

This completes the proof, n
An edge set St that attains the minimum value /min can easily be obtained by

labeling the corresponding edges in Recursion 4.4. Per construction, St is an element of
S. Note that the Recursion 4.4 formulas implicitly define a vector at E {0, 1}{TI’T2}E
such that /min yl(l Ia + y2(l N Ia) ?(l). If/min 1, we conclude from
Theorem 4.5 that there does not exist a violated extended alternating cycle inequality.
If/min < --1, at is not necessarily a sifting of St.

Example 4.6. Consider the example depicted in Figure 9. Given a complete
rectangular 3 3 grid graph, the terminals of net I are printed as small black rectangles
and those of net 2 as small black circles. All other nodes are depicted as white circles.
The solid lines represent edges e with value yl 1, dashed lines edges e having
value y2 0.5, and dotted lines edges e with value yl 0.5. The edge set in GD
yielding/min is drawn in thick black lines. /min results from the following computation:

(4, d3)1/2)+(yl(4, 2)+/min --11(4,4,0)+11(4,3,0)+1(4,1,1) (y-l (4, d4)- -)+(y-1
/1(2, 1,0)+/1(2,2,0))- (0.0-1/2)+(0.0-)+(0.5+(0.0-)+(0.0-))- -1.5. The
branching nodes of the recursion are the nodes 4 and 2; i.e., edge {1, 2} is counted
twice. The branching nodes of the edge set St are the nodes 4 and 1. Therefore, at
does not define a sifting for St. However, at can be modified to a sifting at for St.
In this case we obtain y(St F) + y2(S Fa c(St) -1.0 implying that the
corresponding cycle inequality is not violated.

dl d2

FIG. 9.

We do not see how to avoid these cases. We have no alternative but to check
whether at actually is an element of $’(St). Thus, the proposed algorithm is not an
exact separation method. However, it provides a lower bound for the slack of the

252 M. GRTSCHEL, A. MARTIN, AND R. WEISMANTEL

most violated extended alternating cycle inequality and, if/min

_
-1, a proof that no

extended alternating cycle inequality exists that is violated by y.
Clearly, the recursion itself for computing/min takes time

The values y(u, v) and yk(u, v), k E {1, 2}, can be determined by any shortest path al-
gorithm. However, at first sight it is not obvious how to compute the values y_-, (u, v).
It turns out that these values can be calculated by calling a shortest path algorithm
twice. This will be the topic of the following subsection. Thus, the overall running
time of our algorithm is O(IVDI2(ITll + IT21) 2 +), where 7 is the time to compute
the shortest paths between all pairs of nodes.

Finally, let us remark that in our cutting plane algorithm for computing a mini-
mum weight Steiner tree packing, we do not only try to determine the most violated
extended alternating cycle inequality by using Recursion 4.4. Instead, we also com-
pute Steiner trees for M in (D heuristically. Again, we use the algorithm proposed
by [TM80] with cost function yl _]_ y2. Thereafter, we determine the best possible
sifting for the resulting Steiner trees.

Up to now, all partitions V1,..., Vk of V considered in our separation algo-
rithm have cardinality k IMI. In other words, each node in the contracted graph
G(V1,..., V) is part of the alternating cycle. It is natural to generalize this in the
sense that not all elements of the partition V1,..., Vk belong to the alternating cycle
but are viewed as certain additional nodes in the contracted graph. We have analyzed
this generalization from a theoretical point of view and have identified conditions un-
der which the resulting inequalities are facet-defining. (See [GMW92a].) Moreover,
the dynamic program described above can be adapted to this generalization. It also
provides a lower bound for the slack of the most violated inequality. A detailed de-
scription of this algorithm requires many technicalities that we do not want to present
here. For a discussion of this separation algorithm we refer to [M92].

5. Determining cheapest paths with cost-free edges. The following com-
binatorial optimization problem is an interesting variant of the shortest path problem.
We are given a graph G (V, E) with costs c _> 0 for all edges e E E, two nodes
s, t V, and a nonnegative integer k. We want to find a cheapest path from s to
t where the "cost" of a path is the usual cost minus the sum of the costs of the k
(or at most k) most expensive edges of the path. Another way to view the problem
is the following. We have k tokens that allow us to use k (or at most k) edges for
free. We want to choose a path from s to t and employ the k tokens to use k (or at
most k) edges without any costs in such a way that the total sum paid for the use of
the remaining edges is as small as possible. Clearly, this problem also has a directed
version; we can similarly search for odd or even paths or cycles where k of the edges
can be used for free.

We are particularly interested in the case of Is, t]-paths where k 1, since the
computation of cheapest paths with one cost-free edge is necessary to compute the
values (1) ll(v,i,O) y-l(v, di)- 1/2 in Recursion 4.4. There is an obvious way to
determine a cheapest Is, t]-path with one cost-free edge. For every edge e E, we do
the following: we define a new cost function by setting c} cf, if f : e, and c 0,
and we compute a shortest Is, t]-path in G with cost function c. Every shortest of the
]E Is, t]-paths determined this way is a cheapest [s, t]-path with one cost-free edge.
(This process can be clearly generalized to the case k _> 1.) However, a cheapest
Is, t]-path with one cost-free edge can be computed faster by calling a shortest path
algorithm only twice as follows.

PACKING STEINER TREES: SEPARATION ALGORITHMS 253

ALGORITHM 5.1 (Cheapest paths from s to all other nodes with one cost-free
edge).
Input:

A graph G (V, E), edge costs c >_ O, e E E and a node s V.
Output:

The costs of cheapest paths from s to all v V with one cost-free edge.
Datastructures:

d(v) Length of a shortest Is, v]-path.
re(v) Cost of a cheapest path from s to v with one cost-free edge.
N List of unlabeled nodes that are incident

to some labeled node.

(1) Compute d(v) for all v V using a shortest path algorithm.
(2) Initialize re(v) d(v) for all v V.
(3) Set re(s) 0 and N O.

Label s. (All other nodes are supposed to be unlabeled.)
For all nodes v adjacent to s set
m(v) O and N N U {v}.

(4) As long as there exists an unlabeled node, perform the following steps:
(5) Determine a node v N with re(v)= min{m(u) u N}.
(6) Label v and set N N \ {v}.
(7) For all nodes u adjacent to v perform the following steps:

If min{m(v)+ cvu, d(v)} < re(u), set
re(u) min{m(v)+ cv, d(v)}.

N N u
(S) Return the values m(v) for all v e V.
(9) STOP. The following theorem states the correctness of the algorithm.

THEOREM 5.2. Let G (V, E) be a graph with nonnegative edge costs ce, e E.
Then, Algorithm 5.1 determines the cheapest path from s to v with one cost-free edge
for all v V.

Proof. To void confusion we use the following notation throughout this proof:
for a path P from u to v, we denote by c(P) EeP Ce the "length" of path P nd
use the term "shortest" if c(P) is minimum mong all [u, v]-paths. On the other hand,
for a path P from u to v with one cost-free edge, we call the value c(P) maxep c
the "cost" of pth P and speak of "cheapest" path P if the value c(P) maxeep Ce
is minimum among all [u, v]-paths.

By induction on the number of labeled nodes we show the following: if a node v
is lbeled, then re(v) is the cost of a cheapest Is, v]-path with one cost-free edge. In
order to prove this, we need the property that for all v N, m(v) is the cost of a
cheapest Is, v]-path with one cost-free edge whose inner nodes re only lbeled nodes.
This will be simultaneously shown by the induction.

If s is the only labeled node, the statement is true due to step (3) of Algorithm
5.1. Suppose the statement is true for i- 1 labeled nodes nd we have chosen an ith
node v, say, in step (5). We claim that m(v) is the cost of a cheapest Is, v]-path with
one cost-free edge. If this is not the case, there exists a path from s to v with one
cost-free edge that is cheaper. Suppose P is such a path with cost mp. Then P must
contain n edge that connects an unlabeled node with a labeled one. Let uw (with
w unlabeled) be the first of these edges. Obviously, w E N. From the assumption
of the induction we know that re(w) is the cost of a cheapest Is, v]-pth with one

254 M. GRTSCHEL, A. MARTIN, AND R. WEISMANTEL

cost-free edge whose inner nodes are only labeled nodes. Thus, re(w) <_ mR < m(v),
a contradiction to the choice of v.

It remains to be shown that for all unlabeled nodes u E N the value re(u) is the
cost of a cheapest Is, u]-path with one cost-free edge whose inner nodes are labeled.
We assume that v was the node chosen in step (5).

Due to the induction assumption, re(u) is the cost of a cheapest Is, u]-path with
one cost-free edge whose inner nodes are labeled and different from v. This value is
compared in step (7) with the cost of a cheapest Is, u]-path with one cost-free edge
whose predecessor is v and whose inner nodes are labeled. Suppose there exists an
Is, u]-path P with one cost-free edge that is cheaper and whose inner nodes are labeled
such that v V(P) and wu P, w v. Without loss of generality, let P be the
cheapest of those paths and mR the cost of P. If rnR d(w) (i.e., wu is a maximal
edge), we conclude that mR d(w) >_ d(v) >_ m(u), a contradiction. Otherwise,
mp m(w) - cwu. Since w was labeled before v, there exists due to the assumption
of induction a cheapest path pI from s to w with one cost-free edge whose inner
nodes are labeled and different from v. Let rap, be the cost of PI. We obtain that
mR m(w) + c >_ mR, + Cw

_
re(u), a contradiction. This shows Theorem

5.2. [:]

6. Computational results. In this section we report on the success of our sep-
aration algorithms for the solution of practical problem instances. We have developed
a branch and cut algorithm to solve a certain class of Steiner tree packing problems
arising in the design of electronic circuits. Here, the underlying graph is a complete
rectangular grid graph and the set of terminals are located on the outer face. The
task is to find a Steiner tree packing with minimal weight, where all edge weights
are equal to one. These problems are called switchbox routing problems in the VLSI
literature. We have tested our algorithm on switchbox routing problems discussed
in the literature. We emphasize here the performance of the separation routines and
selected four test samples for this purpose.

TABLE

Example

Difficult switchbox
Terminal intensive
switchbox
Dense switchbox
Pedagogical
switchbox

15 23 24 15 3 4 1 1 [BP83]
16 23 24 8 7 5 4 [L85]

17 15 19 3 11 5 [L85]
16 15 22 14 4 4 [CH88]

Table 1 summarizes the data of our test problems. Column 1 presents the names
of the instances used in the literature. In columns 2 and 3 the height and width of
the underlying grid graph is given. Column 4 contains the number of nets. Columns
5 to 9 provide information about the distribution of the nets; more precisely, column
5 gives the number of 2-terminal nets, column 6 gives the number of 3-terminal nets,
and so on. Finally, the last column states the reference to the paper the example is
taken from.

In [GMW92b] we report on our experiences for solving these problems with a
branch and cut algorithm. For more details on these switchbox routing problems and
on the general outline of our branch and cut algorithm we refer to that paper.

PACKING STEINER TREES: SEPARATION ALGORITHMS 255

We focus in this section on our evaluation of the various separation algorithms
described in the previous sections. We have, in total, implemented nine exact and
heuristic separation routines. We have executed many test runs using just a single
separation routine and two, three, or more separation routines in various combinations
and orders. It seems impossible to present all the data of these runs here and discuss
the relative merits of the choices. We rather want to describe our final selection of
separation algorithms and to indicate why we have made some of the choices.

Initially, we started with the trivial LP relaxation consisting of just the upper
and lower bounds and the degree constraints for all terminals. This turned out to
be a disastrous beginning. It took the separation routines almost forever to add
sufficiently many cutting planes so that the graphs Gk induced by the edges Ek :=

0} became connected. We therefore added a preprocessing stage that,{eEE]xe >
for each net, generates certain Steiner partition inequalities by analyzing the positions
of the terminals of the net. In particular, our program determines all horizontal and
vertical cuts that separate two terminals of a net and a number of further suitably
chosen Steiner partition inequalities. In this stage we keep an eye on the spatial
distribution of the corresponding cuts and multicuts; i.e., we try to select inequalities
in such a way that almost every edge appears with a positive coefficient in one of
the initial inequalities and only few edges occur in many inequalities. The reason for
this rule is that, by this choice, the LP solver is unable to satisfy many inequalities
at once by setting just a few variables to a positive value. Satisfactory rules for
determining Steiner cut and partition inequalities of this type were found by running
various combinations of choices and comparing the computational results on many
practical instances. The introduction of this preprocessing stage was, in retrospect,
decisive for the practical success of our approach.

For the separation of the Steiner partition inequalities, we have programmed the
exact separation routine described in 3 and two heuristics. These heuristics determine
short Steiner trees in the dual graph GD introduced in 3. The running times of
these heuristics are only small fractions of the running time of the exact separation
algorithm. Moreover, the heuristics tend to find significantly more violated constraints
than the exact routine. Our experiments indicated that a certain combination of the
heuristics and the exact method seems to perform best. We first run the two heuristics
and stop the cutting plane generation if a certain threshold for the number of cutting
planes that we want to generate at most in one iteration is surpassed. We control
the heuristics by several parameters so that violated Steiner partition inequalities
of different structure and small overlap are generated. The time-consuming exact
method is only called if none of the separation heuristics is able to find a violated Stei-
ner partition inequality. Column 2 of Table 2 shows the number of Steiner partition
inequalities generated during the runs of our final combination of exact and heuristic
separation algorithms for the Steiner partition inequalities on the test instances. The
results show that our methods are quite successful cutting plane generators.

TABLE 2

Example Steiner part. ineq. Ext. alt. cycle ineq.

Difficult switchbox 5328 924
Terminal intensive 6050 862
switchbox
Dense switchbox 3416 436
Pedagogical switchbox 2977 556

256 M. GRTSCHEL, A. MARTIN, AND R. WEISMANTEL

Our computational experiments revealed that a similar strategy also yields the
best results with respect to separating extended alternating cycle inequalities. Here
our final choice was to execute the separation heuristic described in 4 first and
to call the dynamic program only if the separation heuristic failed to determine a
violated extended alternating cycle inequality. Moreover, based on comparing the
running time spent with the probability of success, we decided to call the separation
algorithms for the extended alternating cycle inequalities not for all net pairs. Our
choice is as follows. We determine "conflicting nets," i.e., those nets that our primal
heuristic for finding a Steiner tree packing is unable to route simultaneously, and run
the separation routines for extended alternating cycle inequalities only for these pairs
of nets. Column 3 of Table 2 shows the number of violated extended alternating cycle
inequalities that were generated with these strategies for our test instances. Again,
this combination of separation methods was highly successful.

Example

Difficult
switchbox
Term. int.
switchbox
Dense
switchbox
Pedagogical
swtchbox

TABLE 3

Steiner cut Steiner part. St. part. + al. cycle
lb ub time lb ub time lb ub time

441 465 1217:11 464 464 1077:05 464 464 983:16

505 oc 986:12 535

433 c 2:44 438

318 oc 91:07 331

544 1227:54 535 539 1495:32

580:52 438 oc 347:02

340 142:35 331 340 158:37

Table 3 emphasizes the performance of our final selection of separation algorithms.
The table shows three different strategies. One is to compute the LP-relaxation of the
integer program (2.1). Violated Steiner cut inequalities (see (2.1) (i)) can be found
in polynomial time by applying min-cut computations. For our test instances, this
separation problem reduces to computing shortest paths in the dual graph GD. (See
3.) This is the method we implemented. Columns 2 through 4 show the lower bound,
the upper bound (computed by an LP-based heuristic), and CPU time in minutes
(spent on a Sun Sparc SS20-502) until no more violated Steiner cut inequalities can
be found. Columns 5 to 7 present the results when Steiner partition inequalities are
also separated in the way previously explained. We report on the numbers that we
achieve with our final separation strategy (including the separation of Steiner partition
inequalities and extended alternating cycle inequalities) in columns 8-10.

Most of the switchbox routing problems that we investigated can be solved to op-
timality without too much branching. This does not only indicate that the separation
algorithms work very well, but also that the Steiner partition inequalities and the al-
ternating cycle inequalities describe the (for our type of problems) relevant part of the
Steiner tree packing polyhedron quite well. Moreover, it has turned out that most of
the violated inequalities were found by the separation heuristics and that the dynamic
programs were called only a few times. Thus, we are hopeful that this approach is
also applicable to practical problem instances where only separation heuristics are at
hand, i.e., where the underlying graph is not planar or the terminals are not located
on a fixed number of faces.

PACKING STEINER TREES: SEPARATION ALGORITHMS 257

[AMO93]

[BP83]

[CH88]

[DW71]

[EMV87]

[GM90]

[GMS92]

[GMW92a]

[GMW92b]

[GMW95]

[HRW92]

[KL84]

[L85]
[M92]

[ss]

[TM80]

REFERENCES

R. K. AHUJA, T. L. MAGNANTI, AND J. B. ORLIN, Network Flows: Theory, Algorithms,
and Applications, Prentice-Hall, Englewood Cliffs, NJ, 1993.

M. BURSTEIN AND a. PELAVIN, Hierarchical wire routing, IEEE Trans. Computer-
Aided-Design, 2 (1983), pp. 223-234.

J. P. COHOON AND P. L. nECK, BEAVER: A computational-geometry-based tool for
switchbox routing, IEEE Trans. Computer-Aided-Design, 7 (1988), pp. 684-697.

S. E. DREYFUS AND R. A. WAGNER, The Steiner problem in graphs, Networks, 1
(1971), pp. 195-207.

R. E. ERICKSON, C. L. MONMA, AND A. F. VEINOTT, Send-and-split method for rain-
imum concave-cost network flows, Math. Oper. Res., 12 (1987), pp. 634-664.

M. GRTSCHEL AND C. L. MONMA, Integer polyhedra associated with certain network
design problems with connectivity constraints, SIAM J. Discrete Math., 3 (1990),
pp. 502-523.

M. GRTSCHEL, C. L.. MONMA, AND M. STOER, Computational results with a cut-
ting plane algorithm for designing communication networks with low-connectivity
constraints, Oper. Res., 40 (1992), pp. 309-330.

M. GRSTSCHEL, t. MARTIN, AND R. WEISMANTEL, Packing Steiner Trees: Polyhedral
Investigations, preprint SC 92-8, Konrad-Zuse-Zentrum fiir Informationstechnik
Berlin, 1992, Mathematical Programming, to appear.

Packing Steiner trees: A Cutting Plane Algorithm and Computational Re-
sults, preprint SC 92-9, Konrad-Zuse-Zentrum fiir Informationstechnik Berlin,
1992; Math. Programming, to appear.

Packing Steiner trees: Further facets, European J. Combin., 17 (1995), pp. 39-
52.

F. K. HWANG, D. S. RICHARDS, AND P. WINTER, The Steiner Tree Problem, Annals
of Discrete Mathematics 53, North-Holland, Amsterdam, 1992.

M. R. KRAMER AND J. VAN LEEUWEN, The complexity of wire-routing and finding
minimum area layouts for arbitrary VLSI circuits, in Advances in Computing
Research, Vol. 2: VLSI Theory, F. P. Preparata, ed., Jai Press, London, 1984,
pp. 129-146.

W. K. LUK, A greedy switch-box router, Integration, 3 (1985), pp. 129-149.
A. MARTIN, Packen yon Steinerbiiumen: Polyedrische Studien und Anwendung,

Ph.D. thesis, Technische Universitt Berlin, 1992.
M. SARRAFZADEH, Channel-routing problem in the knock-knee mode is AlP-complete,

IEEE Trans. Computer-Aided-Design, 6 (1987), pp. 503-506.
n. TAKAHASHI AND A. MATSUYAMA, An approximate solution for the Steiner problem

in graphs, Math. Japon., 24 (1980), pp. 573-577.

SIAM J. DISCRETE MATH.
Vol. 9, No. 2, pp. 258-268, May 1996

() 1996 Society for Industrial and Applied Mathematics
OO8

ON THE POWER OF DEMOCRATIC NETWORKS*

E. N. MAYORAZ

Abstract. Linear threshold Boolean units (LTUs) are the basic processing components of artifi-
cial neural networks of Boolean activations. Quantization of their parameters is a central question in
hardware implementation, when numerical technologies are used to store the configuration of the cir-
cuit. In the previous studies on the circuit complexity of feedforward neural networks, no differences
had been made between a network with "small" integer weights and one composed of majority units

(LTUs with weights in {-1, 0, +1}), since any connection of weight w (w integer) can be simulated
by Iwl connections of value sgn(w). This paper will focus on the circuit complexity of democratic
networks, i.e., circuits of majority units with at most one connection between each pair of units.

The main results presented are the following: any Boolean function can be computed by a depth-3
nondegenerate democratic network and can be expressed as a linear threshold function of majorities;
AT-LEAST-k and AT-MOST-k are computable by a depth-2, polynomial-sized democratic network;
the smallest sizes of depth-2 circuits computing PARITY are identical for a democratic network and
for a usual network; the VC-dimension of the class of the majority functions is n + 1, i.e., equal to
that of the class of any linear threshold functions.

Key words, artificial neural network, weight quantization, linear threshold function, majority
function, circuit complexity

AMS subject classifications. 68Q05, 68R99

1. Introduction. A Boolean function f(b) In] is a linear threshold func-
tion if there exists a weight vector w E n and a threshold w0 E such that

(1.1) f(b) sgn(w0 + bTw).

The numerical representation used in this paper for the set of Boolean values] will
be {-1, +1}, and the sign function sgn: - is defined as sgn(x) +1 if and only
if x > 0. The processing unit computing a linear threshold Boolean function (LTU)
is the basic component of artificial neural networks. A feedforward (i.e., cycle-free)
network Af is characterized by its depth d(Jf), which denotes the length of the longest
oriented path in Af, and by its size s(Af), which will be defined, in the present study,
as the number of processing units in Af. According to the notation used in [2], LT1
denotes the set of all linear threshold Boolean functions, while Td (respectively, LTd)
represents the set of all Boolean functions that can be computed by a feedforward
network composed of LTUs, with a depth d and of any size (respectively, with a size
bounded by a polynomial in the number of inputs of Af).

Since LT1 contains the conjunction and the disjunction of arbitrarily many ar-
guments, the set B of every Boolean function of n arguments is clearly included
in T2. However, when circuits with size bounded polynomially in n are consid-
ered, many questions remain. On the one hand, since the number of linear threshold
Boolean functions of at most n arguments is in 20(n2) (see [11, 21]), B LTd for
any constant depth d. On the other hand, LT1 C LT2 is the only inclusion known to
be proper in the whole hierarchy LTI C LT2 C LT3 C

The quantization of the parameters wi (i 0,...,n) of the LTUs is essential
for any hardware implementation using numerical technologies to store the wi’s. A

Received by the editors February 16, 1993; accepted for publication (in revised form) May 25,
1995. This research was supported by Swiss National Science Foundation grant 20-5637.88.

Department of Mathematics, Swiss Federal Institute of Technology, CH-1015 Lausanne, Switzer-
land. Current address: Dalle Molle Institute of Perceptive Artificial Intelligence (IDIAP), CP 592,
CH-1920 Martigny, Switzerland (mayoraz@ idiap.ch).

258

DEMOCRATIC NETWORKS 259

famous result due to Muroga, Toda, and Takasu [12] (see also [14] for a concise proof)
shows that the weights of any linear threshold function of n inputs can be integers
bounded from above by

(n+ 1) -:
2n

It is easy to see that some Boolean functions such as COMPARISON are in LT1 but
require weights of exponential size. Thus, the most important restriction of LTUs
which has been considered in the literature has small..weights, i.e., integer weights
bounded polynomially in the fan-in [6, 15, 18]. Let LTd denote the set of Boolean
functions computable by a depth-d polynomial-sized circuit co..mposed of LTUs with
small weights. The strongest relationship between LTd and LTd has been obtained
recently by Goldmann and Karpinski [5], who proved that LTd c LTd+I Vd >_ 1.

The class of linear threshold Boolean functions with integer parameters w bounded
by a constant naturally constitutes the next stage in this simplification of the LTUs.
The simplest situation, where each w is either /1, 0, or -1, corresponds to the class of
majority Boolean functions and is the central topic of this paper. From a circuit com-
plexity point of view, this new subset of linear threshold Boolean functions presents
no particular interest since any LTUs can be transformed into a unit computing a
majority function by replacing each connection of value w by Iwl connections of
value sgn(w). Moreover, the polynomial-sized property of a network is preserved by
this transformation when the functions computed by the units of the initial net are in
LT1. Therefore, in all the theoretical works on the circuit complexity of feedforward
networks, the circuits composed of majority,.Boolean functions are only mentioned as
equivalent to these based on functions in LT1.

However, the aim of an artificial neural network is more to be able to learn a
wide family of tasks than to achieve one particular function. Whenever a circuit
architecture has to be determined to suit various tasks, it is of high interest to be
able to choose, for example, between a circuit with a few bits per connections or
another with some more computational units but with at most one connection of
one bit between each pair of units. Also, in simulation it would be desirable to
know whether a given problem, generally formulated as two sets, one of positive
examples and the other of negative examples, can be correctly learned by a network
of a specific architecture (number of layers and number of units per layer) and a
specific quantization level of the parameters.

More specifically, in some other studies, we are designing training algorithms for
democratic networks [7, 8, 9]. Among other approaches, we attempted to develop
methods constructing the network layer by layer during the training phase [1]. In this
context, it is highly important to know, for example, whether there exists a depth-2
network for any task that has to be loaded.

The present paper investigates the computational power of feedforward networks
whose units realize majority functions. It tries to shed some light on the following
question:

Does the computational power of LTUs lie more in the richness of the
various affine combinations of the inputs or in the nonlinear function
sgn?

The remainder of this paper is divided into five sections. The model of the network
involved in the following sections is defined formally in 2. Section 3 presents a couple
of simple constructions for circuits computing some basic Boolean functions such as

260 E. MAYORAZ

AND, OR, AT-LEAST-k, and PARITY. The existence of a depth-2 universal circuit,
i.e., able to realize any functions of B, is discussed in 4. In 5, the VC-dimension of
the class of majority Boolean functions is shown to be equal to that of all the linear
threshold Boolean functions. A general discussion and some suggestions for further
research constitute the concluding section.

2. Majority functions and democratic networks. The class MAJ1 of the
majority Boolean functions is the set of linear threshold Boolean functions with
weights wi restricted to the set {-1, 0, +1}.

Remark 2.1. For the sake of simplicity in the further developments, it is con-
venient to consider a class of functions closed under negation. The negation of a
function f E MAJ1 of weights w is already in MAJI when the number of arguments
of f is odd, since the latter is self-dual. The negation of an "even-majority" function
can be obtained by an inversion of the weight vector, and by simultaneously chang-
ing the convention on the value of sgn(0). For example, this effect can be obtained
by allowing the threshold to take values in {-7, +1/2 }" This limited flexibility of the
threshold gives the choice between an "absolute" and a "nonabsolute" majority and
has no effect on odd-majority functions. Finally, observe that with the closure of
MAJ1 under negation we also get its closure under duality.

In practice, an inversion of every out-going connection of a unit computing f
corresponds to a modification of f into not-f; if all the in-going connections are also
inverted, f is changed into its dual fd and, finally, if the threshold is inverted at the
same time, the new function computed by the unit is f again.

DEFINITION 2.1. A Boolean function f : is a majority Boolean function
(i.e., f MAJ) if there exists a weight vector w {-1, 0, +1} and a threshold

satisfying equation (1.1). The w are also called the coefficients of f andWo +/-7
the dot product w-b is the potential of f for the input b.

DEFINITION 2.2. A democratic network is a feedforward circuit composed of
units computing majority Boolean functions with the additional property that there
is at most one connection between each pair of units. JAJtd (respectively, MAJd)
denotes the set of Boolean functions realizable by a democratic network of depth d and
of any size (respectively, of size bounded by a polynomial in its number of inputs).
A network is said to be degenerate if it does contain at least two distinct subcircuits
computing the same Boolean function.

One observes that the closure of MAJ under negation and duality implies this
same property on /Ad and on MAJd.

3. Representation of basic functions. In the beginning of the last decade,
polynomial-sized constant depth circuits composed of LTUs became popular when it
was first shown that there is no polynomial-sized constant depth circuit computing
PARITYwith only AND, OR, and NOT processing units [4]. A few years later it was
proved that even if we add the PARITY function to this previous set of basic units,
there is no polynomial-sized constant depth circuit able to compute MAJORITY [16].
In contrast, it is interesting to determine the complexity of democratic networks
computing these basic functions.

Since the binary conjunction 2-AND is a majority function, the conjunction of
n arguments n-AND is in MAJ[o by decomposition into 2-ANDs. However, the
conjunction of n arguments can be realized by democratic networks of smaller depth.

PROPOSITION 3.1. n-AND MAJ2.
Proof. Consider the n 1 pairs of inputs (1, 2), (2, 3),..., (n 1, n). For each of

these pairs, introduce two units on the hidden layer, one with coefficients (+1, +1)

DEMOCRATIC NETWORKS 261

and the other with coefficients (-1,-1). Each hidden unit has a negative threshold
and is connected to the output unit by a link of weight +1. The contribution of each
pair of hidden units to the output potential is 0 if the two corresponding inputs are
identical and -2 otherwise. The total output potential will then be 0 if all the inputs
are identical and negative otherwise. Adding one connection from an arbitrary input
to the output will produce the desired function. Moreover, the network is clearly
nondegenerate, and d 2, s 2n- 2.

Note that the latter construction uses only fan-in-2 units on the hidden layer.
When the depth of the circuit is not critical, n-AND can be computed with a number
of units bounded by a logarithm in n.

PROPOSITION 3.2. n-AND can be computed by a nondegenerate democratic net-
work, with s e O(log n) and d e O(log* n).

To verify this proposition let us first prove the following lemma.
LEMMA 3.3. The computation of n-AND can be reduced to the computation of

log2(n + 1) J-AND, using O(log2 n) majority units.

Proof. Consider a partition of the input set I into 11 and I2 with 1121-- [-] 12
Add a hidden unit with
weight +1 and to each input of I2 with a weight -1. If all the inputs of I2 are set to
+ 1, the hidden neuron gives an output /1 only if all the inputs of I1 are also set to + 1.
Thus, the computation of AND over the n inputs is equivalent to the computation of
AND over the hidden neuron and the inputs of I2. Applying this idea recursively to
the subset I2, one can construct one hidden layer composed of h(n) neurons, where
h(n) is given by the following recursive equation:

(3.1) h(n) l+h([-l-1), h(0)- h(1)= 0.

2(n + 1)J for every n > 0.The exact solution of equation (3.1) is h(n) [log2
The number a(n) of arguments of the remaining AND is given by the same recursive
relation as h(n) but with initial conditions a(0) 0 and a(1) 1. By solving this
equation, one obtains a(n) Llog2(n + 1)]. []

Proposition 3.2 is established by recursively applying Lemma 3.3.
Proof. The final size s(n) of the network is given by the following recursive

equation:

(3.2) s(n) h(n) + s(a(n)), s(0) s(1) 0.

It can easily be proved that the solution s(n) of this equation is in O(logn). The
depth of this network is given by the amount of time one has to apply function a to
the number n of inputs until a value smaller than 1 is reached, and this is clearly in
O(log* n). []

Figure 3.1 illustrates this construction by showing the transformation of IO-AND
into a three-layered democratic network.

At first glance, the fact that in our model of majority function the threshold is
limited to {=t=1/2} seems to be very restrictive. Indeed, with a threshold varying in
the set {-n,..., /n}, the set of basic functions would contain n-AND and n-OR and
more generally for every k, AT-LEAST-k (respectively, AT-MOST-k) which takes the
value /1 if and only if there are at least (respectively, at most) k positive inputs. This
restriction on the threshold was maintained for uniformity with the coefficients and
to satisfy the constraints given by the hardware implementation. The next proposi-
tion shows that for every k, AT-LEAST-k and AT-MOST-k are computable by small
democratic networks.

262 E. MAYORAZ

FIG. 3.1. Multilayer democratic circuit simulating a conjunction AND(al,...,alo)
AND(ml, aT,..., ao) AND(m1, m2, ao) AND(m3, ao) too.

PROPOSITION 3.4. AT-LEAST-k, AT-MOST-k
Proof. Considering that MAJ2 is closed under negation and duality and that

AT-LEAST-([J + 1) is in MAJ1, we only have to show that AT-LEAST-k is in

MAJ k [J + 2,...,n.
Regroup the inputs into m [J pairs (1,2), (3,4), Connect each input

directly to the output unit with a positive weight. For each of the m pairs of inputs,
add four hidden units of negative threshold and of coefficients (+1, +1), (+1, 1),
(- 1, +1), and (- 1, 1), respectively. When each of the 6m connections toward the
output unit has the value +1, the contribution of each pair of inputs to the output
potential is -2 times the number of negative inputs in the pair. The total contribution
is then -2/, where is the number of negative inputs among the 2m first inputs.

To realize AT-LEAST-k, we only need to add on the hidden layer 1+2(n-k) units
which should have a positive answer whenever there are at least k positive inputs.
These 1 + 2(n- k) units can be any of the n + 1 units with at least n- 1 among n
coefficients equal to +1. As n + 1 is bigger than 1 + 2(n- k) when k >_] + 2, the
network can always be nondegenerate. Thus, the output potential v will always be
odd and

_> 1 if l<_n-k,
v <_ -1 if l>n-k.

In case of an odd number of arguments n, we just need to add a positive connection
from the nth input to the output and choose a positive threshold for the output
unit. [:]

DEFINITION 3.1. A Boolean function f is symmetric if and only if f(b,..., bn)
f(ba(),..., ba(n)) for any permutation a of the inputs. A well-known characteriza-

tion of symmetric functions is the following: f is symmetric if there exist k integers
ntl,...,tk such that f(b,...,b) 1 if and only if i=lbi e {tl,...,tk} [6, 17].

COROLLARY 3.5. Any symmetric Boolean function is in MAJ3.

DEMOCRATIC NETWORKS 263

Proof. This result is a direct consequence of Proposition 3.4 and of the construc-
tion presented in [6, 17].

(3.3)
f(b) maj_ (AT-LEAST-t (b),

AT-LEAST-t

AT-MOST-tl(b),

AT-MOST-tk(b)),

where maj_ denotes the majority function with all coefficients /1 and a negative
threshold. El

The n-PARITY function is defined as the product of its inputs: f(b,... ,b)
1-[= b. A well-known depth-2 circuit of LTUs realizes n-PARITY with exactly n
hidden units: each of them computes AT-LEAST-k for k 1,..., n, and the output
is a function of MAJ1 with alternating weight signs w (/1,-1, /1,...). This con-
struction is the smallest known when no jumping connections over layers are allowed;
otherwise, the size s of the depth-2 circuit can be divided by 2 [10] and if depth-3
networks are considered, the size can even be reduced to O(v/) [19].

Although the above construction for PARITY reduces by a factor 2 the size s
of the depth-3 democratic network compared with the general construction for a
symmetric function (Corollary 3.5), it cannot be used for the development of a depth-
2 circuit computing n-PARITY. The following proposition presents a completely
different construction solving this problem with no more than n units on the single
hidden layer, and without jumping connections. Note that this construction has been
discovered independently by Grossman and is mentioned without proof in [13].

PROPOSITION 3.6. n-PARITY can be computed by a depth-2 nondegenerate
democratic network composed of n hidden units.

Proof. On the hypercube], let us call the point -b the antipodal of b; equator
of b, noted EQ(b), denotes the set {e]leb 0}. For any Boolean function f,
the characteristic subset of is defined as C(f) {b e Ilf(b) +1}. The two
following observations are the key elements of the proof:

The sum of the outputs of two majority units of positive threshold and with
weights w and -w, respectively, is /2 if the input is in Eq(w) and 0 otherwise
(obvious).
For n even, there exist equators covering C(n-PARITY) without containing
any other points (proved below).

With these remarks, the construction follows easily and it is illustrated in Fig-
ure 3.2 for the case n 4.

The network with n hidden units and one output unit is such that each hidden
unit has a weight vector wi, a positive threshold, and a positive connection with the
output. The wi’s are defined by

and w2, are the cyclic permutations of the n components of wl; i.e., w}
wj, i,j E {1,..., n}, where j (R) 1 denotes the cyclic increment of j (n (R) 1 1).

As a consequence of this definition of the w we note that Vb E n, Vi {1,..., n},

(3.4) b-wi$l bTw {-4, 0, +4}.

264 E. MAYORAZ

wi
w

in Eq(w1)

in Eq(w2)

in Eq(w1) and Eq(w2)

FIG. 3.2. Construction offour-PARITY using four majority units. Four majority units, whose
weight vectors w are equal to the vertices of the hypercube indicated with a thick circle, are used to
cover all the vertices of positive parity without covering any other vertex.

Moreover, if b+ (respectively, b-) denotes the number of positive (respectively, nega-
tive) components in the point b,

0 if b+, b- are even (i.e., n is even),
1 if b+ is odd and b- is even (i.e., n is odd),bTw mod 4-
2 if b+, b- are odd (i.e., n is even),
3 if b+ is even and b- is odd (i.e., n is odd).

When n is even, w and wi+ are antipodal and thus the contribution of the
units and +/- to the output potential is 0 for every point of]n except
those in Eq(w) for which it is -t-2. By equation (3.5), if a point b is in
Eq(w), b+ and b- are both even and thus b E C(n-PARITIO. To complete
the proof it remains to show that any point of C(n-PARITI0 is in Eq(w) for
at least one i. Let b be an arbitrary point in C(n-PARITIO; i.e., b- is even
and by equation (3.5), bTw rood 4 0, and say brw 4c -brw+1.
By property (3.4), the sequence 4c brw b +1w5 --4chastobe0

nfor at least one e (1,..., }, and thus b e Eq(wi).
When n is odd (say n 2m + 1), one observes that bTw -bvwi+’ +/-

2 Vi {1,...,n}, Vb n. This implies that these two dot products are
of the same sign only if they are both /1 or both -1. As n is odd, there
is at least one couple (b-w, b-wi+’) with both elements of the same sign
and by property (3.4), the existence of couples of type (+1, /1) and of type
(-1,-1) are mutually exclusive. The sign of the output is thus completely
determined by the type of these particular couples appearing in the sequence
of the potentials of all the hidden units. Property (3.5) concludes the proof,
since couples of type (+1, +1) correspond to the case of b- even, i.e., b
C(n-PARITY).

4. Universal democratic networks. Although ANDs and ORs are not very
adequate to simulate most of the Boolean functions within a compact-sized circuit,
they remain interesting since every function can be represented in a depth-2 circuit,
using the CNF or DNF forms (conjunctive or disjunctive normal forms). This section
will address the question of what is the shortest democratic network able to compute
any Boolean function.

DEMOCRATIC NETWORKS 265

Using the CNF or the DNF form, an obvious corollary of Proposition 3.1 is that
B’ E A/IA,74. The following proposition shows how Bn E A/tJt3 by the simultaneous
use of both conjunctive and disjunctive forms.

PROPOSITION 4.1. jA.3 n.
Proof. For a given function f, consider a CNF decomposition AND(d1,... ,dk)

and a DNF decomposition OR(c1,... ,el), where di and ci are disjunctions and con-
junctions, respectively, over the set of inputs and their negations. Let us assume that
k >_ l; if it is not the case, one can replace f by not-f and exchange the roles of the
di and the ci. Then we claim that

f maj(cl,...,cl,dl,...,dl_l).

This majority is composed of 21-1 terms. If f(b) /1, then d(b) /1 Vi 1,..., k
and ci(b) +1 for at least one 1,..., l, so at least terms among the 21 1 will
be +1. On the other hand, if f(b) -1, c(b) -1 Vi 1,..., and thus at least
of the 21- 1 hidden units answer -1 for b. [:]

The size of the network obtained by this construction is in O(min{k, 1}), but,
of course, for almost all interesting Boolean functions, this size of the most compact
normal form can be quite large, i.e., exponential in n (e.g., PARITY). Moreover,
there is very little hope to be able to save one more layer of a three-layered democratic
network simulating an arbitrary Boolean function, when the construction is based on
CNFs or DNFs of the functions, as suggested in Proposition 4.1.

An alternative way for constructing Boolean functions is based on the well-known
fact that every Boolean function can be expressed as a polynomial over the field of
rational numbers, in the variables bl,..., bn, when the numerical representations -1
and /1 are used for the Boolean values true and false, respectively. For every Boolean
function f" n], there is a unique vector of coefficients c R2n such that

n

(4.1) f(b)
cE{0,1} i--1

A term of this polynomial, indexed by a, is simply a parity function over the subset of
variables whose characteristic vector is a. Thus, using expression (4.1), an arbitrary
Boolean function can be expressed as a linear threshold function of parities defined
over some of the n inputs. Since the coefficients ca of the polynomial are rational, the
linear threshold function can be simulated by a majority function, assuming a dupli-
cation of the parity functions. Using Proposition 3.6, this polynomial form provides
a depth-3 degenerate circuit of majority units.

In the last part of this section, we are going to show how any Boolean function
can be simulated by a democratic network of depth 2. This issue is of high interest
when we consider incremental training algorithms that build a depth-2 democratic
network by adding hidden units iteratively.

In [2], the polynomial representation (4.1) has been used to simulate any Boolean
function by a network with LTUs, and the author shows how one can get rid of
the second layer in order to get a depth-2 network of LTUs computing an arbitrary
Boolean function. (See Theorem 2.1 in [2].) However, the construction proposed
uses AT-LEAST-k and AT-MOST-k functions in the first layer, and so it cannot be
exploited for the construction of a depth-2 universal democratic network, unless n
constant inputs are artificially added to the n original inputs of the network.

PROPOSITION 4.2. Any Boolean function can be computed by a depth-2 demo-
cratic network.

266 E. MAYORAZ

Proof. Since nondegeneracy is not required in this result, it is sufficient to show
that any Boolean function can be computed by a depth-2 circuit, with majority units
on the hidden layer, and a single LTU as output unit. The latter can then be sim-
ulated by a majority unit and an appropriate duplication of the hidden units. For
this purpose, we are going to start from the depth-3 democratic network mentioned
above and based on the polynomial representation of equation (4.1), and by using
Remark 4.1, we will show how one can get rid of the second layer computing the
parity functions.

Remark 4.1. An intermediate unit can be suppressed from a network composed of
LTUs if the absolute value of its potential is a nonzero constant a for every possible
input of the network. After dropping such a unit of coefficients w and of output
connection value o, for each of its in-connections of value w, a connection of value

should be introduced from the ith predecessor of the unit to its successor.
To complete the proof, we will show that there is a depth-2 democratic network

computing the n-PARITYin such a way that the absolute value of the output potential
is a, where a is a function of n. This network is obtained by placing on the hidden
layer the 2n units with positive threshold and coefficients w E 2n. The output
connection o of a given hidden unit is fixed by the following rule:

+1If n is even, o-
-1

if Eq(w)C C(n-PARITY),
if Eq(w) C C(n-PARITY);

+1 if 3 x C(n-PARITY) s.t. xTw- +1,
ifnisodd, o-

-1 if 3xGC(n-PARITY) s.t. xTw=-l.

This particular choice for the value o enslres that the total contribution to the po-
tential of the output unit is strictly positive if the input is in C(n-PARITY) and
strictly negative otherwise. Moreover, the property assumed in Remark 4.1 is a con-
sequence of the symmetry due to consideration on the hidden layer of all the complete
majorities (i.e., without 0 weights) over the n inputs.

5. The VC-dimension of MAJ1. A characterization of the computational
power of a class of functions is given by the Vapnik-Chervonenkis dimension [20].
In order to formalize this notion, we first introduce some preliminary definitions. A
dichotomy of p points wl,..., Wp in some space is a partition of these points into
two disjoint classes. It can be considered as a function d" {wl,... ,2n} ---]] and
it will be denoted by a Boolean vector d P. Let F be a set of Boolean-valued
functions defined on t; a subset F C_ is said to be shattered by F if each of the
21rl possible dichotomies of F corresponds to at least one function of F restricted to
F. The Vapnik-Chervonenkis dimension of F, noted VC-dim(F), is the size of the
largest shattered subset F t.

When t In, all dichotomies of n + 1 points are linearly separable if and only if
the n + 1 points are not contained in an n- l-dimensional hyperplane ofn [3]. Since
it is easy to find n + 1 points in not contained in an n- l-dimensional subspace
of n, the VC-dimension of the set of all linearly separable Boolean functions of n
arguments is n + 1. The following proposition shows that the VC-dimension does not
change when the set of Boolean functions is restricted from LT to MAJ1.

PROPOSITION 5.1. VC-dim(MAJ1 N n) n / 1.

Proof. Since MAJ1 C LT1, the VC-dimension of MAJ Bn is bounded from
above by n + 1. To prove the proposition, we will show that the following set of n / 1

DEMOCRATIC NETWORKS 267

points of n is shattered by MAJI"

Let an arbitrary dichotomy of these n+ 1 points be given by d (do, dl,..., dn) E
]+1. Since MAJ1 is closed under negation, we can assume without loss of generality
that do +1.

Consider the following definition of the threshold and of the weights:

1 di di-1(5.1) w0 , wi 2
’i-- 1,...,n.

With these choices, equation (1.1) gives f(b) +1 d0, since wo + w-b wo /
1-d.2 1- -, which is either 7 or 23-. Let us call a the quantity 1 . Finally,
observe that for all i 1,...,n, Wo + w-rb wo + w-b + w-(b b) o +
1_ En (dj dj_l)(b b) o / E---1 (dj dj-1) ce -k di 1 which is c (i.e2 j=l
positive) if di 1, and a- 2 (i.e., negative) if di -1. Thus, the choice of the
parameters proposed in (5.1) solves the dichotomy d. [:l

6. Discussion. Throughout this paper, we established various results suggesting
that many Boolean functions can be represented efficiently by multilayered networks
composed of majority units, even if multiple connections between two units are not
allowed. This suggests that a usual network of fixed architecture has no intrinsic
limitations when its parameters are limited to +1, 0, and -1.

The constructions developed in the first part of 3 for the computation of AND
and AT-MOST-k are quite simple and their results are not surprising. On the other
hand, the number n of hidden units used for the computation of n-PARITY with a
depth-2 nondegenerate democratic network without jumping connections is probably
a tight bound of the minimum, since this value is also the best-known one when
general LTUs compose the network.

Many open questions are related to universal democratic networks. Is any Boolean
function f computable by a depth-2 nondegenerate democratic network? This ques-
tion has been solved positively by computer for n _< 4 but is still open for larger
numbers of arguments. The polynomial (4.1) is unique and gives the exact value +1
or -1 of the function for any input, and so the sgn function is not necessary. Another
open question we attempted to solve without success is the following:

Can the coefficients ca of this polynomial be restricted to -1, 0, +1
when only the sign of the polynomial is required to match with the
output of function f?

This issue goes beyond the neural network field, since it will provide a general way of
expressing any Boolean function into a majority of distinct parities. We also checked
this question by computer, and it was found to be true for all functions with up to
five arguments, but the general question remains open.

Acknowledgment. This work was initiated while the author was working at the
Swiss Federal Institute of Technology. It was terminated during a postdoctoral visit at
RUTCOR--Rutgers University’s Center for Operations Research--and at DIMACS--
Center for Discrete Mathematics and Theoretical Computer Science. Thanks are
expressed to Frederic Aviolat for his valuable participation in the result of 5 and for
his research on the question quoted in the discussion section. I am also grateful to

268 E. MAYORAZ

an anonymous referee for his pertinent remarks and especially for his suggestion of a
simpler form of the proof of Proposition 5.1.

REFERENCES

[1] F. AVIOLAT AND E. MAYORAZ, A constructive training algorithm for feedforward neural net-
works with ternary weights, in Proc. European Symposium on Artificial Neural Networks,
F. Blayo and M. Verleysen, eds., Brussels, 1994, pp. 123-128.

[2] J. BRUCE, Harmonic analysis of polynomial threshold functions, SIAM J. Discrete Math., 3
(1990), pp. 168-177.

[3] T. M. COVER, Geometrical and statistical properties of systems of linear inequalities with
applications in pattern recognition, IEEE Trans. Electronic Computers, 14 (1965), pp. 326-
334.

[4] M. FURST, J. B. Sixn, AND M. SIPSER, Circuits and the polynomial-time hierarchy, in Proc.
22nd IEEE Symposium on Foundations of Computer Science, 1981, pp. 260-270.

[5] M. GOLDMANN AND M. KARPINSKI, Simulating threshold circuits by majority circuits, in Proc.
25th Annual ACM Symposium on Theory of Computing, San Diego, CA, 1993, pp. 551-
560.

[6] A. HAJNAL, W. MANSE, P. PUDL,K, M. SZEGEDY, AND G. TUR,N, Threshold circuits of bounded
depth, in Proc. 28th IEEE Symposium on Foundations of Computer Science, Los Angeles,
CA, 1987, pp. 99-110.

[7] E. MAYORAZ, Maximizing the stability of a majority perceptron using tabu search, in Proc.
International Joint Conference on Neural Networks, Baltimore, MD, 1992, pp. II254-II259.

[8] , Feedforward Boolean Networks with Discrete Weights: Computational Power and
Training, Ph.D. thesis, Department of Mathematics, Swiss Federal Institute of Technology,
Switzerland, 1993.

[9] E. MAYORAZ AND V. ROBERT, Maximizing the robustness of a linear threshold classifier with
discrete weights, Network, 5 (1994), pp. 299-315.

[10] R. C. MINNICK, Linear-input logic, IEEE Trans. Electronic Computers, 10 (1961).
[11] S. MUROGA, Threshold Logic and Its Applications, John Wiley & Sons, New York, 1971.
[12] S. MUROGA, I. TODA, AND S. TAKASU, Theory of majority decision elements, J. Franklin Inst.,

271 (1961), pp. 376-418..
[13] D. NABUTOVSKY, T. GROSSMAN, AND E. DOMANY, Learning by CHIR without storing internal

representations, Complex Systems, 4 (1990), pp. 519-541.
[14] I. PARBERRY, Circuit Complexity and Neural Networks, Tech. report CRPDC-91-9, Department

of Computer Sciences, University of North Texas, Denton, TX, 1991.
[15] I. PARBERRY AND a. SCHNITGER, Parallel computation with threshold functions, J. Comput.

System Sci., 36 (1988), pp. 278-302.
[16] A. A. RAZBOROV, Lower bounds on the size of bounded depth circuits over a complete basis

with logical addition, Math. Notes, 41 (1987), pp. 333-338.
[17] K.-Y. Su AND J. BRUCE, Neural computation of arithmetic functions, Proc. IEEE, 78 (1990),

pp. 1669-1675.
[18] On the power of threshold circuits with small weights, SIAM J. Discrete Math., 4 (1991),

pp. 423-435.
[19] K.-Y. Su, V. P. ROYCHOWDHURY, AND W. KAILATH, Depth-size tradeoffs for neural computa-

tion, IEEE Trans. Comput., Special Issue on Neural Networks (1991), pp. 1402-1412.
[20] V. N. VAPNIK, Estimation of Dependences Based on Empirical Data, Springer-Verlag, New

York, 1982.
[21] Y. A. ZUEV, Asymptotics of the logarithm of the number of threshold functions of the algebra

of logic, Soviet Math. Dokl., 39 (1989), pp. 512-513.

SIAM J. DISCRETE MATH.
Vol. 9, No. 2, pp. 269-273, May 1996

1996 Society for Industrial and Applied Mathematics
OO9

BOUNDING FUNCTIONS AND RIGID GRAPHS*

MICHAEL O. ALBERTSONt AND RUTH HAASt

Abstract. A function f bounds graphs from above if there exists an infinite family of graphs
such that if G E G then f([VG[) [EG[and for all nonempty subgraphs H of G we have that

f([VH[) >_ IEH[. This paper considers the question: Which functions bound graphs?

Key words, graphs, extremal graph theory

AMS subject classification. 05C99

1. Introduction. Let VG (EG) denote the vertex (edge) set of a simple graph
G. A function f is said to bound graphs from above if there exists an infinite family of
graphs , such that if G E G, then f(IVa]) levi and for all nonempty subgraphs U
of G we have that f(IVul) >_ IEHI. If we insist on inequality for all proper subgraphs
we say that f strictly bounds.

In this context we say that a family of graphs is bounded (strictly bounded). We
will also speak of a single graph being bounded when its membership in a particular
family is implicit. For example, the function f(n) n strictly bounds the cycles Cn,
since any proper subgraph of Cn with k vertices contains fewer than k edges. The
function f(n) () bounds (but not strictly) since the graphs in must be complete.

Some graph properties are characterized by bounding functions. For instance,
a graph is a Hamilton cycle if and only if it is strictly bounded by f(n) n. Not
surprisingly, a tree is characterized by f(n) n- 1. More generally, we have the
following result.

THEOREM 1.1. A graph is the edge disjoint union of k spanning trees if and only
if it is bounded by the function f(n) k(n- 1).

Proof. Suppose G can be decomposed into k disjoint spanning trees. Since any
subgraph, say H, of G will contain a forest from each of these k trees, IEHI <_
k(IVH 1).

On the other hand, suppose that the G is not decomposable into k disjoint span-
ning trees. If IEal # lv l- k then clearly G is not bounded by k(n- 1). So we
must only consider the case where [EI- klval- k. We invoke a result of Tutte.]

THEOREM 1.2 (see [3]). A graph is the union of k disjoint spanning trees if and
only if for every partition of the vertices of G into m nonempty parts, there are at
least k(m- 1) edges between parts.

Hence, there exists a partition of the vertices of G into m parts such that the
number of edges between parts is strictly less than km- k. Thus the total number of
edges from within the parts is at least k(m- IVGI) + 1. By the pigeon hole principle
at least one part, say H, must have more than klVH]- k edges. D

Originally, we were intrigued by the role of bounding functions in rigidity theory.
Suppose we construct the graph G in the plane using inflexible bars for the edges and
rotatable joints for the vertices. This immersion is rigid if the only motions of this
structure are trivial (rotations and translations). The graph G is said to be rigid in
the plane if some immersion of it is rigid. A graph is minimally rigid if the removal
of any edge makes it nonrigid. See [1], [2], and [4] for further information on rigidity.

Received by the editors August 17, 1992; accepted for publication (in revised form) June 30,
1995.

Math Department, Smith College, Northampton, MA 01063 (albertson@smith.smith.edu and
rhaas@smith.smith.edu).

269

270 M.O. ALBERTSON AND R. HAAS

There is a combinatorial characterization of planar rigidity which in our language is
stated as follows.

THEOREM 1.3 (Laman, see [2, p. 243]). A graph is minimally rigid in the plane
if it is bounded above by f(n) 2n- 3 for subgraphs on two or more vertices.

In higher dimensions a minimally rigid graph must have a bounded number of
edges, but this condition is not sufficient. Specifically, if a graph is minimally rigid in
3 space then it is bounded above by f(n) 3n- 6.

There are other properties of graphs for which belonging to a family bounded by
a function is only necessary and not sufficient. For example, maximal planar graphs
must be bounded by f(n) 3n- 6. Graphs that are decomposable into k disjoint
Hamiltonian cycles must be strictly bounded by f(n) kn, but again this condition
is not sufficient. For instance, there are graphs on 6 vertices with 12 edges that are
strictly bounded by f(n) 2n but will not have two disjoint Hamiltonian cycles.

It would be interesting to determine which graph properties are characterized by,
or just imply, a bounding function. In this paper we address a more fundamental
issue, namely which functions bound graphs. Section 2 constructs families of graphs
bounded by every reasonable linear function. Section 3 provides constructions for
many quadratic functions. Section 4 considers functions between linear and quadratic
with only modest success. Section 5 provides an extended definition of bounding and
examines the interrelationships between the definitions.

2. Linear functions. In this section we address the question of which linear
functions bound graphs. Specifically, we obtain the following two theorems.

THEOREM 2.1. Given rational c >_ 1 and integer d >_ O, the function f(n) cn+d
strictly bounds graphs from above.

THEOREM 2.2. Given c a positive multiple of 1/2 and integer d >_ -c, the function
f(n) cn + d bounds graphs from above.

The condition that d _> c is in some sense the best possible. If d < -c then
f(1) < 0, and the inequality would fail for subgraphs of one vertex.

Our constructions depend on combining families of graphs while preserving the
fact that they are bounded. The simplest such combination is an edge union. If G
and G* are edge disjoint graphs on the vertex set V with edge sets E and E*, then
we define the graph G + G* to be the graph whose edge set is E 2 E*. If and * are
families of graphs such that whenever G E G and G* E G* have the same number of
vertices, there are vertex labelings that make G and G* edge disjoint; then we define
G + G* to be the family of graphs whose individuals are G + G*.

THEOREM 2.3. If and * are families of pairwise edge disjoint graphs bounded
above by f and f*, then / * is bounded above by f + f*. Moreover, if f or f*
bounds strictly then so does f + f*.

Proof. Let H be a subgraph of G / G* on some vertex set VH C Vc. Each edge
of EH comes either from Ec or Ea. but not both. Thus IEHI IEHnG] + IEHnG. --f(IVH[) + f*(IVH*I) (f + f*)(IVHI). If at least one of f or f* bounds strictly then
the inequality is strict. [:]

From this theorem we can immediately construct families of graphs with n vertices

(for n sufficiently large) that are strictly bounded above by f(n) cn for any integer
constant c. These are graphs whose edge sets are decomposable into c Hamiltonian
cycles. A more general result can also be obtained using perfect matchings.

COROLLARY 2.4. Any family of graphs, each of whose members consists of c

perfect matchings (and is thus c-regular), is bounded above by f(n) n.
Let G be a family of graphs (strictly) bounded by f(n). If G 6 has n vertices

nand f(n) <_ (2)-d, then we can construct a graph G* with n vertices and d edges

BOUNDING FUNCTIONS AND RIGID GRAPHS 271

that is edge disjoint from G. If there is an infinite number of G’s such that this can be
done, then by Theorem 2.3 f(n)+d (strictly) bounds the family G +G*. For example,
if we take f(n) cn for positive integer c, then cn + d bounds for all positive integers
c and d.

To prove Theorem 2.1 it suffices to show that for rational c >_ 1, f(n) cn strictly
bounds. We construct a family of strictly f bounded graphs where f(n) (1 +)n
where p and q are integers and p < 2

. These graphs will have vertices of degree 2
and 3 only. Since every graph with minimum degree at least has a Hamiltonian
cycle, the complement of such a graph on n vertices will contain at least - 2 disjoint
Hamiltonian cycles.

FIG. 1. The ladder for p 3, q 11, and 1.

Fix such a p and q. For each integer t we construct Gt, a graph with n 2tq
vertices and (1 +)n edges. The construction begins with the Cartesian product of
an edge and the cycle C2tp. Alternatively one can imagine two disjoint copies of C2tp
where corresponding vertices in the two cycles are adjacent. This graph is called a
ladder and the edges between the two cycles are called rungs. The remaining t(2q-4p)
vertices will be partitioned into 2tp parts, each part containing either [(q- 2p)/pJ
or [(q- 2p)/p vertices. Each rung is subdivided by the vertices of one part. The
resulting graph (t contains 2tq vertices, t(2q- 4p) of degree 2, and 4tp of degree
3. Thus, it contains (1 +)2tq edges. Figure 1 illustrates this construction with
p 3, q 11, and t 1. To see that (t is strictly bounded we look at the average
degree of its subgraphs. If a graph has average degree greater than 2 then its average
degree can be increased by deleting all vertices of degree 1. The reader may verify
that any proper subgraph of (t that contains no vertices of degree 1 must have lower
average degree. Consequently, Gt is strictly bounded. D

To prove Theorem 2.2 we use Theorem 2.3 to construct a family of graphs bounded
Graphs in thisby cn- d for positive integer d <_ c and c a positive multiple of 3"

family are those that are decomposable into d Hamiltonian paths and 2(c-d) perfect
matchings.

3. Quadratic functions. DEFINITION 3.1. Given a graph G on n vertices we
compose k copies of G as follows. Make k vertex disjoint copies of G and from each
vertex in a particular copy of G put an edge to all vertices in all other copies of G.
This gives a graph with a total of rn kn vertices. This new graph will be denoted by
the symbol Kk (G).

THEOREM 3.2. Suppose is a family of graphs bounded by the function f(n)
where f" <_ 1. Then the graph Kk(G) is bounded by the function F(m) kf() +
k-1 m(---)--. Further, if f(n) strictly bounds then so does F(m).

272 M. O. ALBERTSON AND R. HAAS

Proof. It is straightforward to check that Kk(G) contains F(m) edges. We show
the case where f(n) and consequently F(m) bounds strictly. To show that the family
is strictly bounded we look at all subgraphs on V vertices (V < m). Suppose the
subgraph consists of vi vertices from the ith copy of G, i 1,..., k and vi > 0 for
all i. The edges of the subgraph come from within the copies of G and between the
copies of G. The number of edges that come from between is given by (1/2)Ev(Y-v),
and the number of edges that come from within the copies of G is less than Ef(v).
Combining these we get that the total number of edges in the subgraph is less than

We will show that this function achieves its maximum value when all v are equal.
The vlue at the mximum is then

(1) k k +kf F(V).

Consider two copies of G in Kk(G), say G and Gj. The number of edges from
these copies to all the others is equal regardless of how the vertices are divided between
G and Gj. Suppose G hs W t vertices and Gj has W + t vertices. (W need not
be an integer.) The number of edges in G and Gj and between these two parts is
then less than

(t) (W t)(W + t) + f(W- t) + f(W + t).
We use the first degree Taylor polynomial pproximation of f near W to get that

t2
(t) W t + eI(W) + f’(W)(t + t) + (-t)f"() + "2

for some W- t < Cl < W and W < c2 < W + t. By sumption, f"(c) 1 for ny
value of c. Thus, g(t) W2 + 2f(W).

Hence, the number of edges that can come from within nd between just two
parts is bounded by the case that these two parts have n equal number of vertices.
Since this argument can be made for any pir of copies of G the mximum number
of edges occurs when all the prts hve an equal number of vertices.

4. logn + n bounds. Let Q denote the standard r-cube. Q has 2 vertices
and r2 edges. So a cube with n vertices has log2 n edges.

THEOREM 4.1. The cubes form a family that is bounded by f(n) log2 n.
Proo The proof will be by induction on the dimension of the cube. The base

case is elementary. Suppose H is a subgraph of Q with m vertices. Let H be the
restriction of H to those vertices whose first coordinate in Q is 1, while H is the
restriction of H to those vertices whose first coordinate in Q is 0. Both H1 and H2
are subgrphs of Q-l. Let m denote VH . Then VH= m- ml. We my assume
that m m- m. The edges in H are either in H1, in H2, or between these two.
Since H nd H2 are bounded by the inductive hypothesis, we obtain

m m ml log2 (m ml) + ml.(1) +
It is straightforward to see that the second derivative of the right-hand side of the
preceding equation is positive. Thus a maximum value must occur at one of the
endpoints. om this it is immediate that]EH log2 m.

By Theorem 2.3, for large enough n we can add a Hamiltonian cycle to Q. We
then obtain the following.

n log2 n + n bounds strictly.COROLLARY 4.2 f(n)

BOUNDING FUNCTIONS AND RIGID GRAPHS 273

SE 0

FIG. 2. Relationship between various notions of bounding.

5. Extensions. In our original example of rigidity, the bounding condition only
needed to hold for subgraphs on two or more vertices. This suggests that we should
use a broader definition for functions that bound from above.

Extended definition. A function f bounds graphs from above if there exists an
infinite family of graphs and an integer no > 0 such that if G E then f(IV(G)I
]E(G)I and for all subgraphs H of G with at least no vertices we have that f(]V(H)]) >_
IE(H)I. As before, we say f strictly bounds if the inequality is strict for all proper
subgraphs with at least no > 0 vertices.

Most of our results still hold under this extended definition. We will get a larger
class of functions that bound and that strictly bound this way. For example, the
function f(n) an- (2a- 1), with a _> 3 an integer, strictly bounds graphs from
above as witnessed by the family a-2Cn_2 / K2.

Let S be the set of functions that strictly bound under the original definition,
O the set of functions that bound under the original definition, E the functions that
bound under the extended definition, and SE the set of functions that strictly bound
under the extended definition. Figure 2 shows the relationships between these.

We show that the sets are arranged as indicated by the figure. It is clear that
any function that bounds strictly also bounds and that any function that bounds
under the original definition will bound under the extended definition. The function
f(n) n- 1 is in O and not in SE, while 2n- 4 is in SE but not in O. Functions of
the form cn- c for c _> 2 are in both SE (for subgraphs on two or more vertices) and
O, and not in S. We have no examples to show that SE[J 0 E, but we suspect
this to be so. The functions n d for d _> 2 are examples of increasing functions for
which there are graphs with n vertices and n-d edges, but yet these are not bounding
functions.

REFERENCES

[1] J. GRAVER AND B. SERVATIUS, Combinatorial Rigidity, Graduate Studies in Mathematics 2,
American Mathematical Society, Providence, RI, 1,993.

[2] A. RECSKI, Matroid Theory and Its Applications in Electrical Network Theory and in Statics,
Springer-Verlag, Berlin, 1989.

[3] W. W. TUTTE, On the problem of decomposing a graph into n-connected factors, J. London
Math. Soc., 36 (1961), pp. 221-230.

[4] W. WHITELEY, Matroids and rigid structures, in Matroid Applications, N. White, ed., Ency-
clopedia of Mathematics and its Applications 40, Cambridge University Press, Cambridge,
England, 1992, pp. 1-53.

SIAM J. DISCRETE MATH.
Vol. 9, No. 2, pp. 274-289, May 1996

1996 Society for Industrial and Applied Mathematics
010

A LINEAR ALGORITHM FOR MAXIMUM WEIGHT CLIQUES IN
PROPER CIRCULAR ARC GRAPHS*

BINAY BHATTACHARYAt, PAVOL HELLt, AND JING HUANG$

Abstract. We present an O(n) algorithm to find a maximum clique in a proper circular arc
graph. We assume that the input graph is represented by a sorted simple family of circular arcs or by
an equivalent representation. In Deng, Hell, and Huang [SIAM J. Comput., 25 (1996), pp. 390-403],
we gave an O(m -t- n) algorithm to find such a representation for a proper circular arc graph given by
its adjacency lists. As an application we also give an O(n) algorithm for q-coloring proper circular
arc graphs for a fixed q. (Such an algorithm was first given by Teng and Tucker.) Finally we indicate
how our algorithm can be modified to find a maximum weight clique in a weighted graph, also in
time O(n).

Key words, proper circular arc graph, maximum clique, maximum weight clique, coloring,
algorithms, complexity

AMS subject classifications. 05C85, 68Q25

1. Introduction. An undirected graph G is a circular arc graph if there is a one-
to-one correspondence between the vertex set V(G) and a family 9v of arcs on a circle
such that two vertices are adjacent if and only if the corresponding two circular arcs
intersect. The family 9v is called a representation of G. A proper circular arc graph is
a circular arc graph which admits a representation by an inclusion-free family 9v. We
shall, in this paper, be mostly concerned with proper circular arc graphs, and, unless
explicitly stated otherwise, shall only consider inclusion-free representations. A sorted
representation is a representation " A1,A2,... ,An in which the specified circular
order of the arcs is such that the clockwise endpoints (and since is inclusion-free,
also the counterclockwise endpoints) appear in their clockwise circular order. A simple
representation 9 is a representation in which no two arcs share an endpoint or cover
the entire circle. It is well known that a proper circular arc graph always admits
a simple representation [5]. In fact, according to [10], an arbitrary representation
can be made simple in time O(n). (We use n to denote the number of vertices and
rn the number of edges.) However, obtaining a sorted representation, in general,
requires time proportional to n log n because it entails sorting the endpoints. On the
other hand, for an arbitrary graph G (given by its adjacency lists), we can, in time
O(m + n), decide whether or not G is a proper circular arc graph, and, if it is, obtain
a sorted simple representation of it [2, 3]. Our algorithms apply to sorted simple
representations.

Proper circular arc graphs have been widely studied, cf. [4, 5, 6, 9, 18], and
have many applications, including those in traffic control [15], cyclic scheduling, and
compiler design [17].

A clique of a graph (or an oriented graph) is just a complete subgraph. A clique
of maximum size is called a maximum clique. Maximum cliques in circular arc graphs
can be found in time O(m log logn + n log n) [13]. Recently this was improved to
an algorithm of complexity O(rn + n log n) in [1]. For proper circular arc graphs,
Manacher and Mankus [10] gave an O(n log log n) algorithm to find a naximum clique,

Received by the editors December 7, 1992; accepted for publication (in revised form) June 30,
1995.

School of Computing Science, Simon Fraser University, Burnaby, BC V5A 1S6, Canada.
Department of Mathematics and Computer Science, Odense University, Odense DK-5230,

Denmark.

274

MAXIMUM CLIQUES IN PROPER CIRCULAR ARC GRAPHS 275

assuming that a sorted simple representation is given. In this paper we give an O(n)
time algorithm, also assuming that a sorted simple representation is given. (While
revising this paper we learned that Manacher and Mankus also recently improved
their algorithm to time O(n) [11].) Moreover, our algorithm can be adapted to find
the maximum weight clique in a weighted proper circular arc graph also in time O(n).
(The improved algorithm [11] yields O(n2) for the weighted case. The algorithm of
[13], of time complexity O(m log log n + n log n), mentioned above, also applies in the
weighted case.)

The problem of q-coloring proper circular arc graphs arose in the cyclic scheduling
and register allocation applications. It was first studied by Orlin, Bonuccelli, and
Bovet [12]. The best current algorithm for finding the chromatic number of a proper
circular arc graph is due to Shih and Hsu and has a time bound of O(n) [14]. On the
other hand, for a fixed q, Teng and Tucker [16] gave an O(n) algorithm for q-coloring
proper circular arc graphs given by a sorted simple representation. We shall show
how to use our maximum clique algorithm to derive a q-coloring algorithm which is
also O(n) (for any fixed q).

We first introduce a purely combinatorial description of representations. It is
possible to formulate our algorithms in terms of circular arcs, but we found it more
convenient to use the following alternate description. Let D be an oriented graph,
i.e., a digraph without directed two-cycles. We write xy and say that x dominates
y (or that y is dominated by x) when xy is an arc of D; we write x y and say that
x and y are adjacent if x--y or y--.x. We write A-.B and say that A dominates B
(or that B is dominated by A) if each vertex of A dominates each vertex of B for
arbitrary sets A, B of vertices of D. A round enumeration of D is a circular ordering
of its vertices v, v2,..., Vn, such that for each i there exist nonnegative integers l
and r with vvy being an arc if and only if -- 1 _< j _< i + r and vkv being an arc if
and only if i- l _< k <_ i- 1 (all additions and subtractions are modulo n). We define
R(u) w just if u vi and w vi+r and L(u) w just if u v and w v_. An
oriented graph D is round if it admits a round enumeration. A round enumeration of
D with complete FO-information is a round enumeration Vl, v2,..., Vn of D, together
with all values R(v) for 1, 2,..., n (the "Farthest Out-neighbors" of all vertices).

It is helpful to visualize a round enumeration of an oriented graph D by draw-
ing the vertices vl, v2,..., vn clockwise around the circle, as illustrated in Fig. lb.
The FO-information associated with this example consists of the values R(Vl)
Vh, R(v2) Vh, R(Vh) v6...R(vT) v2. If a v and b vj are two vertices
in a round enumeration Vl, v2,..., vn of D, then we define the interval [a, b] as the
set {vi, v+l, v+2,...,Vj_l, vj}, with the subscripts calculated modulo n. Thus in
our illustrative representations, the interval [a, b] extends from a to b clockwise. The
intervals (a, b), (a, b], and [a, b) are defined analogously. If a--b then b e (a, R(a)],
and therefore ad for each d e (a, b] c_ (a,R(a)]. Furthermore, each d e (a, b] is
dominated by every c [a, d) by a similar argument. Thus, we conclude that if ab
and [c, d]

_
[a, b], then also cd. This means that each interval [a, R(a)] is a tran-

sitive tournament in D, and in particular a clique of D. Consider, for instance, the
tournament induced by [Vl, R(Vl)] {Vl, v2, v3, v4, Vh} in Fig. lb. Because of the
above property, we can simplify our illustrations by not depicting arcs cd such that
[c, d] is properly included in some interval [a, b]. In Fig. lb, for instance, the interval
[Vl, R(vl)] {Vl, v2, v3, v4, v5 } properly contains the intervals [Vl, v4] and Iv2, Vh] and
so the arcs VlV4, v2v5 (and also VlV2, VlV3, etc.) are not pictured in Fig. lc. Note
that this convention may result even in some arcs aR(a) not being pictured, such as
the arc v2v5 in Fig. lc. Thus in these symbolic depictions (Figs. lc, 2b, and 3) the

276 BINAY BHATTACHARYA, PAVOL HELL, AND JING HUANG

p

FIG. 1. (a) an inclusion-free family of circular arcs, (b) the corresponding round enumeration,
and (c) a simplified depiction of the round enumeration.

presence of each arc ab implies the existence of all arcs cd with [c, d] C [a, b].
Note that if Vl, v2,..., vn is a round enumeration of D, then v2,..., Vn is a round

enumeration of D- vl. Hence we may omit vertices from the round enumeration
maintaining a round enumeration of the corresponding induced subgraph.

We first establish a correspondence between round enumerations of D with com-
plete FO-information and sorted simple representations of the underlying graph of
D.

LEMMA 1.1. A graph is a proper circular arc graph if and only if it can be oriented
so that the resulting oriented graph is round.

Proof. Suppose that G is given by a sorted simple representation 9r A1, A2,...,
An. Let v be the vertex of G corresponding to the arc A. Let D be the orientation
of G in which v-vj just if A contains the counterclockwise endpoint of Aj. This is
an oriented graph because no two arcs of 9r cover the entire circle; i.e., we cannot have
both arcs vvj and vj--+vi. It is easy to see that D is round, and that the circular
order Vl, v2,..., Vn is a round enumeration of D. Moreover, R(v) vj, provided Aj
is the last arc, in the clockwise circular direction, intersecting A. Conversely, suppose
that G is given by a round enumeration Vl, v2,..., vn with complete FO-information
(thus with all values r known). Construct a circle from the real interval [0, n] by
identifying 0 and n. Associate with each v the circular arc from to + r + 1 n+l
This produces a sorted simple representation of G.

In Fig. la,b we illustrate the above correspondence between a representation by
circular arcs and a round enumeration.

This proof yields easy O(n) time transformations between a sorted simple repre-
sentation of G and a round enumeration with complete FO-information of a suitable
orientation of G. Thus, from now on, we shall be searching for a maximum clique
(q-coloring, maximum weight clique) in a round oriented graph D with complete FO-
information.

The oriented graph D is connected if its underlying graph G is connected; the
degree of a vertex v in D is just the degree of v in G; the maximum degree of D,
denoted by A(D), is just the maximum degree of G. For our purposes, D may be
assumed to be connected and have no vertices of degree n- 1. Indeed, both the
maximum clique and coloring problems can be solved for each component separately.
Furthermore, any maximum clique must contain all vertices of degree n- 1, and
any coloring must assign each vertex of degree n- 1 a color not used by any other

MAXIMUM CLIQUES IN PROPER CIRCULAR ARC GRAPHS 277

vertex. Thus it is sufficient to solve both problems for the graph obtained by removing
all vertices of degree n- 1. Moreover, having our graph D represented by a round
enumeration with complete FO-information, we can easily identify the components
and the vertices of degree n- 1 in time O(n). Therefore we shall assume from now
on that D is a connected graph with A(D) _< n- 2. This assumption implies that for
every vertex u there is at least one nonneighbor of u between R(u) and L(u). Thus,
in our illustrations, for any vertex u, we first encounter (moving clockwise from u)
all out-neighbors of u (the last one being R(u)), then all nonneighbors of u (of which
there is at least one), and, finally, just before returning to u, all in-neighbors of u (the
first one being L(u)); cf. Fig. lb.

2. The maximum clique algorithm. We first give some geometric intuition;
the concepts suggested below will all be formally defined later, in the context of round
enumerations.

Orlin, Bonuccelli, and Bovet [12] introduced the notion of an overlap clique. Given
a family of circular arcs and a point p of the circle, the overlap clique of p is the set
of all circular arcs from the given family which contains the point p. For instance, for
the family in Fig. la and the point of the circle corresponding to 3 o’clock, we obtain
the overlap clique {A1, A2, A3}.

Although every overlap clique is a clique, it is not the case that a maximum
clique must be an overlap clique. (But note Corollary 2.3.) In Fig. 2a there is a
family of circular arcs for which the largest overlap clique has nine elements (nine
arcs contain the point pl and no point is contained in ten arcs), but there is a clique
with eleven elements: Indeed, consider the three points Pl, P2, P3 depicted in Fig. 2a
and all circular arcs that contain at least two of these three points. There are 11 such
circular arcs, A, A2, A3, A4, As, AT, As, A9, A3, A4, A5, and it is clear that any two
intersect.

At a=v " " 7v--bl
" / v,. /v

A8 VII ’’’"............ V a

Vo Vs
v9 =b

FIG. 2. (a) a clique generated by three points pl,p2,p3 on the circle, and (b) the corresponding
3-overlap clique.

This suggests a generalization of overlap cliques: For any family $" of circular
arcs (whether inclusion-free or not), any odd integer # 2# + 1, and any set of #

278 BINAY BHATTACHARYA, PAVOL HELL, AND JING HUANG

points of the circle, the set of all arcs of 9c which contain at least # + 1 of the chosen
points is a clique. We can show (cf. [8]) that for any family of circular arcs (whether
inclusion-free or not) some maximum clique must be of this form. In this paper, we
will prove this only for proper circular arc graphs and will do it in the language of
round enumerations.

In order to motivate the appropriate definitions in terms of round enumerations,
we first note that the circular arcs in a usual overlap clique correspond to consecutive
vertices in the corresponding round enumeration, which span some interval Ix, y].
Corresponding to {A1,A2, A3} in Fig. la, we have in Fig. lb the clique [Vl,V3]. It
is clear that if p is chosen to be the clockwise endpoint of some arc x (e.g., of A1 in
Fig. la), then, in the corresponding round enumeration, an overlap clique spans the
interval Ix, R(x)] ([Vl, Vb] in Fig. lb).

In Fig. 2b, the vertices corresponding to the eleven circular arcs A1, A2, A3, A4,
Ab, AT, As, A9, A13, A14, A15 form a clique which consists of the three intervals Iv1, Vb],
[vT, v9], and [v13, v15]. Here the interval Ivy, Vb] consists of the vertices corresponding
to the circular arcs containing Pl and P3, the interval [vT, v9] consists of the vertices
corresponding to the circular arcs containing Pl and P2, and the interval [v13, Vlb]
consists of the vertices corresponding to the circular arcs containing p2 and P3. Note
that R(Vl) v9, R(VT) Vlb, and R(v13) vb--the beginning of the ith interval is
associated with the end of the (i + 1)st interval. This suggests, in a general situation,
to take vertices al, bl, a2, b2,..., at‘, bt‘, in circular order, such that each R(ai) bi+t‘,.
It is then easy to see that [a, bl] U [a2, b2] U... U [at‘, bt‘] is a clique.

We now give the formal definitions. (These are independent of the above geomet-
ric intuition, which should be viewed only as a rough motivation.) Assume that D is
a round oriented graph with a given round enumeration. Let # 2# + 1 _> 3, and let
al, bl, a2, b2,..., at‘, bt‘ be vertices of D lited in clockwise circular order, such that
for each i- 1,2,...,#,

R(ai) hi+t‘, and I[ai, bill

where the subscript additions are modulo #. Then we say that C [a, bl] U [a2, b2] U
U [at‘, bt‘] is a p-overlap clique (generated by al, a2,..., at,). We also refer to the

vertices al, a2,..., at‘ as the generators of C.
The condition I[ai, bill > I(bi+t‘,, ai+t‘,+)l is assumed only for technical conve-

nience (cf. the proof of Claim 6). If, for instance, in our example in Fig. 2b we had
I[a3, b3][_< I(bl,a2)l, then it would be better to replace [a3, b3] by (bl,a2), thereby
obtaining the 1-overlap clique [al, R(al)].

Note that for each 1, 2,..., it there is at least one vertex between bi+t‘, and
ai+t‘,+l, because otherwise the vertex ai has degree n- 1, contrary to our assumption
(cf. Fig. 25). By our cardinality restriction this means that each interval [ai, bi] has
at least two vertices, i.e., that ai 7 bi.

For convenience we also define 1- and (-1)-overlap cliques: A 1-overlap clique
(generated by al)is any interval [al, b] with bl R(al) and a (-1)-overlap clique is
just the empty set .

LEMMA 2.1. There exists a maximum clique which is a p-overlap clique for some
odd integer #.

Proof. Let C be a set of vertices which induces a maximum clique of D. If
C 0, then there exists an integer # such that C may be written as C [al, b] U
[a2, b2] U... U [at‘, bt‘] where al, bl, a2, b2,..., at‘, bt‘ appear in this clockwise circular
order in the round enumeration of D. Let C and it be chosen so that it is as small

MAXIMUM CLIQUES IN PROPER CIRCULAR ARC GRAPHS 279

as possible among all maximum cliques of G. Then, by the minimality of #, every
(bi, a+l) contains at least one vertex. This implies that b and ai+l are distinct and
it will be seen from Claim 6 below that a and b are also distinct.

Suppose that # 1, i.e., that C [al, bl]. Consider the adjacent vertices al,bl.
If bl -al, then [bl, all is also a clique, contradicting A(D) _< n 2. Thus al ---bl, and
hence R(al) E [bl,ax). Since [al,bl] is a maximum clique, R(al) bl and C is a
l-overlap clique. Thus suppose for the rest of this proof that tt > 1.

Claim 1. If u [a, b] is adjacent to all vertices of [a, b] then u[a, b] or

[a, b]-u.
Suppose there are two vertices x, y E [a, b] such that ux and yu. This means

that u---(u, x] and [y, u)---u. Together with the assumption that u is adjacent to each
vertex of [a, b], we contradict the fact that A(D) _< n- 2.

Claim 2. If : j then either [a, b][ay, by] or [aj, by]--/[a, b].
If a---by then xy for each x [a, b] and y Icy, bj]. On the other hand, if

by---a then two applications of Claim 1 yield bjb and aj-b. Thus in this case
x--y for each x e Icy, by] and y e [a, b].

Claim 3. If [a, b][aj, bj] then [a+l, b+l][aj+l, by+l].
Suppose that [a,b]-[aj,bj] and [aj+l,bj+l]---*[a+l,b+l]. Let u e (b,a+l). (It

was noted above that (b, a+l) = .) Then u is adjacent to all vertices of [a+l,
t2 Icy, by] because a--by and to all vertices of Icy+l, by+l] ... (2 [a, b] because

aj+l--bi+l. This contradicts the maximality of our clique.
Claim 4. # is odd (say, # 2# + 1).
If # is even, then [a,b]--[a+,b+] implies [a+,b+]---[a,b] by Claim 3,

contrary to Claim 2.
Claim 5. R(a) b+t, for each 1, 2,..., #.
Since a and b+, are in C, they are adjacent. If some b+,,---+ai, then Claim 2

implies that [a+t,, b+,,]--[a, b] and Claim 3 implies that [a, b]--[a+,,+l, b+,,+l].
However, this is impossible, as a--b+,+l implies a---b+,. Hence a--b+, for each

1,2,...,#. In particular, a+,,+1---b+2,+l b. So R(a) [b+,,,a+,,+l). On
the other hand, if R(a) b+,,, then R(a) is adjacent to every vertex of [a, b]
[a+l, b+l]t2...t2[a+,, b+,,], and because a+,,---b+2,, b-l, R(a) is also adjacent
to every vertex of [a+,,+l, b+,+l] t2... t2 [a-l, b-l]. Thus R(a) is adjacent to every
vertex of C, contradicting its maximality. Therefore R(a) b+,.

Claim 6. liar, b]l > I(b+,, a+,+l)l for each 1, 2,..., #.
If I[a,b]l <_ I(b+,,a+,+l)l for some i, then let C’- [al,bl] t2...t2 [a_2, b_2] t2

[ai-1, bi-1] t2 [ai+l, bi+l] [-J... t2 [ai+t,_l, bi+t,_l] t2 [ai+t,, bi+,,+l] [2 [ai+,,+2, bi+t,+2
[a,b]. In effect, C’ is obtained from C by replacing [a,b] with (bi+t,,ai+,+l).

We see easily that C is also a clique: We only need to verify that each vertex
u (b+,,a+,+l) is adjacent to all other vertices of Ct. Since a+l-b+,+l and
hence ai+l--u, we conclude u is adjacent to [a+l, b+x] t2... U [ai+t,_l bi+t,_l
[a+,,u); since a+,-b_l and hence u--bi-1, we also conclude that u is adjacent
to (u, b+,+l] t2... t2 [a-l, b-l]. Thus C’ is a clique with fewer intervals than C and
with IC’I _> ICI, contradicting the choice of C. [:]

For a fixed #, we call a #-overlap clique of maximum size a largest #-overlap
clique.

LEMMA 2.2. Let tt >_ 3 be an odd integer. Let C [al, b] U [a2, b2] ...
be a #-overlap clique of D and suppose that x (bi-1, bi] for some 1, 2,..., #.

If I[x, R(x)] _> liar, R(a)]l, then the vertices al, a_l,X, a+l, a generate
a #-overlap clique C’, with IC’I >_ ICI. Moreover, IC’I]C if and only ifl[x,R(x)]

280 BINAY BHATTACHARYA, PAVOL HELL, AND JING HUANG

Proof. To prove that C is a #-overlap clique we need to show
1. R(x) E (ai+t,,ai+t,+l),
2. I[x, bill > I(R(x), a+t,,+l)l and
3. I[ai+t,,,R(x)]l > I(bi_l,X)l.

Since a_---b+,_, we have x-b+t,,_l. Since a+,+l--b, we also have a+t,,+-x.
Thus R(x) e [b+,,-1,a+,,+l). We claim that R(x) [b+,,_,a+,,). Suppose, on
the contrary, that R(x) e [b+,,_l,a+,,). Then x e (b_,a) because a--b+,,.
Since I[x,R(x)][>_ I[a,R(a)]l, we have I[x,a][>_ [[R(x),R(a)] I. But, on the other
hand, we have I[x, a]] _< I(b_l, a)l < I[a+,,, b+,,]l _< I[R(x), R(a)]l, a contradiction.
This proves 1.

Now we prove 2 and 3 together.
If x e (b_, a], then R(x) (b+,,, a+,,+) as otherwise we would have a-R(x)

contradicting the fact that R(a) b+,,. Thus R(x) e [a+,,, b+,,]. Then I[x, a)l _>
I(R(x), b+,,]l because I[x, R(x)]I >_][a,R(a)]l, and hence

I[ai+.,,R(x)] I[ai+.,,bi+.,]l I(R(x),bi+.,]l > I(bi-l,ai)l- I[x, ai)l I(bi_l,X)l.

On the other hand, ifx e (ai,bi), then R(x) e (bi+,,, hi+,,+1) and I(bi+t,,,R(x)]l >
I[a,x)l because I[x,R(x)]I > I[ai, R(ai)]l. Thus

I[x, bi]l I[ai, bi]l I[ai, x)l > I(bi+,,,ai+,,+l)l I(bi+,,,R(x)]l I(R(x),ai+t,,+)l

and

I[ai+.,,R(x)] I[ai+.,,bi+.,]l + I(bi+.,,R(x)]l > I(bi-l,ai)l + I[ai,x)l

It is now easy to conclude that IC’I >_ IcI because I[x,R(x)]l >_ I[ai, R(ai)]] means
I[x, ai]l >_ I[R(x),R(ai)] (or I[ai, x]l <_ I[R(ai),R(x)]]); similarly we can conclude that
IC’I ICI if and only if I[x, R(x)]] I[ai, R(ai)]].

COROLLARY 2.1. Suppose that [a, bl]U[a2, b2]U...[_J[at, bt is a largest p-overlap
clique. Then for every 1, 2,..., # and each x (bi-1, bi] we have I[x, R(x)]l _<
I[ai, R(ai)] I.

COROLLARY 2.2. Let # >_ 3 be an odd integer. IfC [al, bl]U[a2, b2]U...U[a,, b,]
is a largest p-overlap clique, then for any x (bi-1, bi] with I[x, R(x)]l I[ai, R(ai)]l,
the vertices al, ai-l,X, hi+l,..., a, generate a #-overlap clique C, which also is
a largest #-overlap clique.

Let C [a, b] U [a2, b2] ... [a, b] be a largest p-overlap clique. Then C
is called normalized (with respect to ai) if, for every j and each x (bj_i,ay),
I[x, R(x)] < I[aj, R(ay)]l. Trivially, any 1-overlap clique [a,R(a)] is normalized (with
respect to a).

To illustrate these concepts in Fig. 2b, for x
I[Vll, V2]I < I[aa, R(a3)]l][v13, v5]l; in fact, C is normalized with respect to Vl.

However, if we added the arc VlV3 then I[x,R(x)]l I[a3, R(a3)]l, and C would no
longer be normalized with respect to Vl" The clique C’= [Vl, v3]U [vT, v9] U Ivan, v15]
would have the same cardinality as C and C would be normalized with respect to Vl.

LEMMA 2.3. If x generates a largest 1-overlap clique, then x is a generator of
some maximum clique which is a p-overlap clique normalized with respect to x.

MAXIMUM CLIQUES IN PROPER CIRCULAR ARC GRAPHS 281

Proof. Let [al,bl] U [a2, b2] U... U [a,bt, be a p-overlap clique which is also
a maximum clique. Then x e (b_,b] for some i. By Corollary 2.1
I[a,R(a)]l. Since x generates a largest 1-overlap clique,
Hence I[x, R(x)] -I[a,R(a)]l, and by Corollary 2.2, a,..., a_,x, a+,..., a gen-
erate a p-overlap clique C which is also a maximum clique.

Now to obtain a maximum clique which is a p-overlap clique normalized with
respect to x, we proceed as follows, making use of Corollary 2.2: Replace the gener-
ator a+t,,+ by the closest vertex R(x) in [ai+t+l,a+t,+l to (R(x),a+t,+l with

R(a+,,+l)]l I[a+,+l, R(a+,,+l)]l, and then repeat this procedure for the gener-
ators in the order hi+l, ai+t,+2 ai+2 ,hi-l, ai+,. [:]

We note the following interesting consequence of our lemma, which will simplify
our task of finding a maximum clique.

COROLLARY 2.3. If K is a largest 1-overlap clique and if IKI <_ then K is a
maximum clique.

Proof. Suppose that K Ix, R(x)] is a largest 1-overlap clique which is not a
maximum clique. Then, by Lemma 2.3, there is a p-overlap clique C, with # _> 3
and generators x hi,a2,... ,ate. We claim that ate,+2 generates a clique of size
greater than K I[a,R(al)]l, contrary to the choice of K. Note that we have
I(R(al),al)l >_ I[a,R(a)] since IKI _< . Hence I[a,,+2,R(at,+2)] -I[a,,+2, al)l +
I[ax,R(at,+2)]l > I[a,,+2, al)l + I(R(al),at,+2)l I(R(a),a)l >_ I[a,R(a)] I. (Since
R(al) b,+l nd R(at,,+e bl, the inequality I[al,R(a,,+e)]l >
follows from the definition of a #-overlap clique.)

According to this corollary, we only need to search for p-overlap cliques with

> 1 when a largest 1-overlap clique contains more than half of the vertices.
We now present our algorithm for finding a maximum clique in a round oriented

graph of maximum degree smaller than n- I, given by a round enumeration with
complete FO-information. To simplify the notation, we write x + k y if x v and
y v+k, with the additions calculated modulo n. (Thus each v + k v+k and, in
general, x + k is the kth vertex after x in the clockwise direction.)

The algorithm first finds a vertex x0 which generates a largest 1-overlap clique.
If the clique contains more than half of the vertices, then the algorithm proceeds to
repeat a basic iteration step I. The iteration step I(x), using the starting vertex x
(initially x x0), normally produces a vertex s which will be the starting vertex of
the next iteration; if I(x) does not produce an s we say that I(x) fails. Moreover,
I(x) may produce another vertex g, which will be one of the generators of our final
maximum clique; we note that I(x) may produce a g even if it fails.

Specifically, the step I(x) is defined as follows:
g - undefined, and I(x) fails and I(x) fails g - undefined

do until {x + k R(x)+ k + 1} or {x + k xo and k > 0} or {R(x) + k + 1 x0}
kk+l

if {x + k x0 and k > 0} then s - undefined nd g - undefined, nd I(x) fails
else if {R(x) + k + 1 x0} then g - x and s undefined, and I(x) fails

else if x + kR(x) + k + 1 then s x + k and g - undefined
else s -- R(x) + k + 1 nd g - x

Thus, we start from x seeking the least nonnegative integer k such that x + k is
djacent to R(x) + k + 1. (In fact, we could have started with k 1 because x is
never adjacent to R(x) + 1.) In this search we only consider values of k up to the
point when either x + k or R(x) + k + 1 reaches the fixed vertex xo. If neither of
these happens, then I(x) succeeds and terminates with s x + k nd g undefined if
x+kR(x)+k+ 1 or terminates with s R(x)+k+ 1 and g x if R(x)+k+lx+k.

282 BINAY BHATTACHARYA, PAVOL HELL, AND JING HUANG

If I(x) fails because x + k became x0 then it doesn’t produce either g or s, and if it
fails because R(x) + k + 1 became x0 then it produces g x but no s.

We state the entire algorithm as follows.

ALGORITHM MAx-CLIQ
find a vertex x0 which generates a largest 1-overlap clique
if I[xo, R(xo)]l <_ then halt
X---Xo
do until I(x) fails

perform I(x)
X+--8

The correctness of our algorithm relies on the following lemma.
LEMMA 2.4. Let C [a, b] [a2, b2] [_J [a,, b] be a maximum clique of

D which is a p-overlap clique normalized with respect to xo a and assume that
n

(Let denote any subscript 1, 2,...,# and recall that we reduce the subscripts
modulo #; also recall that it 2# + 1.)

1. I(a) will always produce the value g a.
2. If #’+ 1 then I(a) will also produce a value s (b,+,a,++l] with

n(s) e (a, b].
3. I(a,,+l) will either produce a value s e (b,,al) with R(s) e (a,,+l,b,,+),

or fail.
4. /f x e (b_l,a) and R(x) e (a,,+, b,,+) then I(x) will not produce a value

ofg.
5. If x e (bi_,a) and R(x) e (a,,+, b,,+) and 1 then I(x) will produce

the value s e (x, ai] with R(s) e (a,,+i, b,+i].
6. /f x e (b,,al) and R(x) e (a,,+,b,,+l) then I(x) will produce the value

s e (x, al) with R(s) e (a,,+l,b,,+l), or fail.
Proof. Note that according to the assumption of the lemma, we have the inequal-

ity I[ai, bi]l > I(b,,+i, a,,+i+l)l (from the definition of a #-overlap clique with # _> 3)
even when # 1.

Consider an iteration I(ai). We first observe that the value k found by the
iteration is such that ai+k c [ai, b] and R(a)+k+l b,,++k+l c (b,+, a,+i+l].
Indeed, by the time k became large enough for R(ai)+k+l a,,+i+l to hold, we must
still have ai+k [ai, bi] (because I[ai, bill _> I(b,,+i, a,+i+l]l) and hence R(ai)+k+ 1
and ai+k are adjacent, because [R(ai)+k+l, ai+k] [a,+i+l, ai--k] c_ [a,+i+l, bi]
[a,,+i+l, R(a,+i+l)]. Since ai + k [ai, bi] we cannot have ai + k x0. Moreover, we
cannot have ai + k--R(ai) + k + 1 because in this case ai + k would generate a larger
l-overlap clique than hi, contradicting Corollary 2.1. Thus the iteration I(ai) will
produce g hi, proving statement 1. When : #t + 1, then at,+i+l x0 a and
I(ai) also produces a value s R(ai)+k+l (b,+a,++l]. We have R(s) (a,b],
again by Corollary 2.1. This proves statement 2. Statement 3 is proved analogously,
the only difference being that in this case R(a,+l) + k + 1 may become equal to x0
and hence I(a,+) might fail.

To prove statement 4, assume that x C (bi_, hi) and R(x) (a,+i, b,+i). The
iteration I(x) will either fail with i 1 and x+ k x0 a or find a value k for which
x + k Ix, ai] and R(x)+ k + 1 (R(x), b,+i]. Indeed, if : 1 then I(x) does not
fail, because by the time x + k ai we must still have R(x) + k + 1 (R(x), b,+i] (as
Ix, ai]l < I[R(x), b,+i]l by the definition of a normalized clique). Furthermore we see
that R(x) + k + l---.x + k is impossible, because otherwise [al, b] U... [a,+, R(x)] t5

MAXIMUM CLIQUES IN PROPER CIRCULAR ARC GRAPHS 283

It, b,+l] U [a,+2, b,+2] U... t [a, bt,]U[x v] is a clique larger than C, contrary to our
assumption. Hence I(x) will not produce a value g, proving statement 4. Moreover,
when 1, then I(x) will also produce s x + k E Ix, a], and by Corollary 2.1,
we have R(s) (R(x),bt,,+]. This proves statement 5. Finally, when 1, as we
noted above, I(x) may fail with x + k x0 al (and hence R(s) R(al) bt,,+l).
Otherwise I(x) will produce s x+k (x, al) with R(s) (at,,+x b,+l), conpleting
the proof of statement 6. [:]

We now explain how to use the above lemma to prove the correctness of our
algorithm. Firstly, according to Lemma 2.3, there exists a maximum clique C
[al,b] U [a2, b2] U... U [a,b] of D which is a #-overlap clique normalized with
respect to x0 al. Recall that R(a) b+t,, for each 1, 2,..., # 2# + 1. We
claim that the sequence gl, g2,..., gd of values g output by our algorithm is precisely
the sequence al, a,+2, a2, art,+3, a3,..., at,,+l.

Assume first that # > 1. Our algorithm first performs the iteration I(al). By
Lemma 2.4, statement 1, I(al) will produce the value gl al. According to state-
ment 2, I(a) will also produce a value s (b,,+,a,+2] with R(x) (al,bl]. The
algorithm will let x - s and next perform the iteration I(x). Suppose first that
x E (b,+,a,+2). Then statements 4 and 5 imply that no g is produced and the
value of s is in the interval (x, a,,+2] and R(s) (R(x), bl]. Since this s is used as the
next x, and since each iteration moves x clockwise, we will eventually (after at most
I(b,,+l, a,+2]l iterations) perform I(a,,+2). This iteration will produce the next value
of g, namely g2 a,+2, according to statement 1. Moreover, statement 2 applies,
and we obtain an s (bl, a2] with R(s) (a,+2, b,,+2]. As above, the algorithm will
not produce another value of g until we perform the iteration I(a2). Continuing this
way, we see that our algorithm will find g3 a2, g4 art,+3, g5 a3, and so on, until
we invoke the iteration I(at,+l). (In the following discussion we also include the case

1, when the very first iteration I(a) is I(a,,+).) For the iteration I(a,,+x) we
argue in a similar fashion, using statements 3 and 6 in place of statements 2 and 5.
First, I(at,,+l will produce g, a,,+l. Moreover, there will be at most I(b,,al]l
further iterations, which do not produce any further values g, and then we must fail.

To illustrate the algorithm and its proof of correctness, consider first the 3-overlap
clique in Fig. 2b. Suppose we found (in one pass, from the complete FO-information)
the vertex Vl as the generator of a largest l-overlap clique. The algorithm starts
by performing I(Vl). Thus we search for the least nonnegative integer k such that
Vl + k and R(Vl)-k-- 1 are adjacent. In our case we find that Vl + 1 v2 is
already adjacent to R(vl)--2 Vl. So the least nonnegative integer k equals 1.
Now we need to check whether Vll--+V2 or V2--+Vll. Since Vll--+V2, the iteration I(Vl)
produces gl Vl as the first generator, and the vertex s vii as the starting vertex
of next iteration. Following the same procedure, the next iteration I(v) finds that
v12 is not adjacent to v4 but v13 is adjacent to v5; thus k 2. Since v3v5 the
iteration I(vll) does not produce a value g, and will yield s v13. The next iteration
I(v13) will produce the generator g2 v3 and s vT. Finally the iteration I(vT)
fails because R(v7) + 2 v15 + 2 Vl is our fixed starting point (called xo in the
algorithm). However, even though I(v7) fails, it still produces the generator g3 v.
Thus our algorithm correctly identifies the 3-overlap clique [Vl, v5] U [v7, v9] U [v13, v15]
(generated by Vl, v13, vT) as a maximum clique. To illustrate a situation in which I(x)
fails because x + k becomes xo, consider the example in Fig. lb: Starting with I(Vl)
we produce gl Vl and the value s v7. Now I(v7) fails because v7 + 1 v8 is not
adjacent to R(vT) + 2 v2 + 2 v4, and v7 + 2 Vl. In this situation neither g nor
s is produced and the algorithm only produced one generator, corresponding to the

284 BINAY BHATTACHARYA, PAVOL HELL, AND JING HUANG

fact that Iv1, R(Vl)] is a maximum clique.
We next consider the complexity of our algorithm. First, we can find the vertex

xo in time O(n) from the complete FO-information. For the remainder of the analysis
we may assume that I[xo, R(xo)]l > ; i.e., I[xo, R(xo)]l > I(R(xo),xo)l. Suppose that
the #-clique generated by the algorithm is C [al, bl] U [a2, b2] U... tO [a, b], where
al xo. Note that the time for I(x) is dominated by the time spent searching for k.
We claim that the total time spent on searching for the k’s over all the iterations is
proportional to I(bl, a2] tO (b2, a3] tO... tO (b, al]l. For instance, during I(xo) we search
(R(Xo),sl] (bAt,+1, Sl (where 81 is the s produced by I(xo)), then during I(sl) we
search (sx, s2] (where s2 is the s produced by I(Sl)), and so on, until we generate
g2 at,,+l; by this time we have searched the whole interval (bu,+l, au,+2] at a cost of
I(bu,+x, au,+2]l. The next sequence of iterations will search the interval (bu,+2, au,+3]
at a cost of I(b,,+2, au,+3][and so on. Note that this is so even when I(si) eventually
fails--this will only happen when we are searching the interval (b,al], and in this
case as well, the time for searching is proportional to I(bu, al]l. When I(xo) fails, the
total time for searching for k is I(bl,ax)l < I[al,bl]l (where bl R(al) R(xo)). In
general we have, for each i, that I[ai, b]l > I(bu,+, a,,+i+l)l. Therefore the time is
always at most proportional to I(bl, a2] tO (b2, a3] tO... tO (b,, al]l _< ICI.

THEOREM 2.1. There is an O(n) algorithm which finds a maximum clique in an
oriented graph given by a round enumeration with complete FO-information.

COROLLARY 2.4. There is an O(n) algorithm which finds a maximum clique in
a proper circular arc graph given by a sorted simple family of circular arcs. rl

By combining the above theorem with the O(m + n) algorithm of [2, 3], which
finds a round enumeration with complete FO-information of a proper circular arc
graph, we conclude the following fact.

COROLLARY 2.5. There is an O(rn + n) algorithm which finds a maximum clique
in a proper circular arc graph, rl

3. An application to q-coloring. We now apply the above algorithm to derive
another O(n) q-coloring algorithm for proper circular arc graphs for any fixed q. (An
O(n) algorithm was previously given in [16].) We again assume that D is a connected
oriented graph of A(D) < n- 1, given by a round enumeration Vl, v2,..., vn with
complete FO-information. Let q be a fixed integer. We first find, using the algorithm
of the previous section, a maximum clique C which is a #-overlap clique for some odd
integer #. Let w

If w > q, then D is not q-colorable. If w q and n is divisible by q then an
easy q-coloring was proposed by Orlin, Bonuccelli, and Bovet [12]" D is q-colorable
in the order Vl,V2,... ,vn by consecutive "stretches" each consisting of colors 1,2,

q. The fact that q divides n means that these stretches fit together to color all
n vertices (as 1, 2,..., q, 1, 2,..., q, 1, 2,..., q). The fact that w q assures that
this is a proper coloring: Indeed, any two vertices x, y of the same color have "circular
distance" of at least q + 1 (that is, both x + k y and y + k x require k _> q); if
they were adjacent then Ix, y] or [y, x] would be a clique of size q + 1.

A similar idea takes care of the case when co _< q- 1. This allows us to use both
stretches 1, 2,..., q and 1, 2,..., (q- 1). If n is big enough, then we can easily fit these
stretches of size q- 1 and q together to cover the circular arrangement of all n vertices.
Assume for instance that n > (q- 1) 2 and n P(q- 1) + S with 0 _< S < q- 1.
Since P _> q- 1 > S, we can color the first Sq vertices by stretches of size q, and
color the remaining (P- S)(q- 1) vertices by stretches of size q- 1. On the other
hand, if n _< (q- 1) 2, then any algorithm (for example, the one in [12]) can be used

MAXIMUM CLIQUES IN PROPER CIRCULAR ARC GRAPHS 285

to find a q-coloring in time O(n), since n O(1).
We suppose from now on that w q. Consider first the situation when # is

greater than one: let C [al,bl] U [a2,b2] t2... U [a,b]. If a q-coloring exists,
it must assign a different color to each vertex of C. Thus we may, without loss of
generality, arbitrarily assign colors 1, 2,..., q to the vertices of C. When can this
coloring be completed to a q-coloring of the entire D? Note first that the vertices of
each interval (b,ai+l) are adjacent to each other and to all vertices of C with the
possible exception of [a_u,, b_u,]. This is due to the fact that (b, a+) is contained
in both cliques [ai-u,+l,R(ai-u,+l)] and [ai, R(ai)], which together cover all vertices
of C except for [ai_u,, bi_u,]. Therefore, our coloring can be extended if and only
if each vertex of (bi,ai+l) admits a different nonneighbor in [ai_u,,bi_u,] for each
i 1, 2,..., it. This happens if and only if there is, for each i, a matching of (bi, hi+l)
into [ai_u,, bi-u,] in the complement of the underlying graph of D. In fact, we now
show that these matchings may be assumed to have a very special form: a round
matching associates with each vertex x of (b, a+l) a nonneighbor rn(x) in [a_,, bi_,
in such a way that circular order is preserved; namely, for any other vertex x E
(bi, hi+l), exactly one of x’, rn(x’) belongs to (x, re(x)). We claim that a matching
(as above) exists if and only if a round matching exists. (Of course, it will be easier
to test for the existence of round matching, cf. below.) Indeed, suppose that each
vertex x of (bi, ai+) is matched with a different nonneighbor m(x) in [ai_u,, bi_,,].
A round matching can be obtained as follows: write (b,a+) {Y,Y2,... ,Ys} and
{rn(x) x e (bi, ai+l)} (Zl,Z2,...,zs} where yl,y2,...,y,zl,z2,...,z appear
in the clockwise circular order. We prove that yi, zi are not adjacent. Suppose,
without loss of generality, that yi dominates zi; then [yi, zi] is a clique, and hence it
was impossible to match {Zl, z2,..., z} with {Yl, Y2,..., Y-I}, a contradiction. This
proves the claim, and hence it suffices to look for round matchings. Round matchings
can be found by an obvious greedy algorithm. Hence we can determine, in time O(n),
whether or not the coloring of C is extendable to a q-coloring of D.

Thus it only remains to explain what to do when w q, C is a 1-overlap clique,
andnisnot divisible byq, say, n= Qq/R, with0 < R< q. It is known that D
admits a q-coloring if and only if it admits a q-coloring with R "larger" classes of size
Q / 1 and q R "smaller" classes of size Q [12]. The clique C must have one vertex
in each of the color classes. Let Y denote the set of vertices of C which belong to the
larger color classes. Then D Y has precisely Q vertices of each of the q colors. Thus
D is q-colorable if and only if there exists a set Y of R vertices of C such that D has
a q-coloring in which D Y has precisely Q vertices of each color. Since q is fixed,
there are at most a constant number

of possible sets Y and we can afford to try all of them. Thus it will suffice to test if,
for a fixed set Y of R vertices of C, there exists a q-coloring of D in which D Y
has precisely Q vertices of each of the q colors. This is what we shall do below, by a

greedy approach. To guide our choice of coloring we shall be referring to "blocks" of
a vertex. For a fixed vertex v of D, the zeroth block has R consecutive vertices of D
(in the clockwise order), starting with v; the first block consists of the next q vertices;
the second block of the next q vertices after that and so on. (Thus the ith block of v
is [v+(i-1)q+R,v+iq+R-1].)

Let yl, y2,..., YR be the vertices of Y, and color y by color i. This uses colors
1, 2,..., R in C. We color the remaining vertices of C by the remaining q- R colors

286 BINAY BHATTACHARYA, PAVOL HELL, AND JING HUANG

in any order. It remains to color the vertices of D- C. The first step will be to color
those vertices that will obtain colors 1, 2,..., R. We first color by 1 the first vertex
v not dominated by yl (first in the linear order on D- C, induced by the clockwise
order of D). It is easy to see that v is in the first block of yl. Suppose we have just
colored a vertex u in the jth block of y by color i. If < R, and if s was the last
vertex we colored by + 1 (possibly s y+l), we find the first vertex w after u which
lies in the jth block of y+ and is not dominated by s, and we color it by i + 1. If

R and j < Q and if t was the last vertex colored by 1, then we find the first vertex
z after u which lies in the (j + 1)st block of y and is not dominated by t, and we
color it by 1. It can be shown, cf. [7], that these vertices w, z always exist. However,
it is not necessarily the case that this will produce a proper coloring. It is not difficult
to see that if two vertices of color are adjacent then they are y and the last vertex
colored by our procedure. This is easy to check as part of our procedure. If this
happens (y is adjacent to the last vertex colored i) for some i, we try a different set
Y. If each color class C is independent, then we easily extend the coloring to the
remaining vertices by using the colors R / 1,..., q as follows: Let D be the subgraph
of D consisting of all uncolored vertices, listed in the same circular order. Then D
has Q(q R) vertices, and it can be shown [7] that it has no 1-overlap clique of size
q R + 1. Thus it can be colored by stretches of colors R + 1,..., q, as above.

It is not difficult to see that all procedures in our algorithm can be performed in
time O(n). Thus we have, for any fixed q, an O(n) algorithm to test for q-colorability
of an oriented graph given by its round enumeration with complete FO-information
or, equivalently, of a proper circular arc graph given by a sorted simple family of
circular arcs. As for maximum cliques, this implies, in conjunction with [2, 3], an

O(m + n) q-coloring algorithm for abstract proper circular arc graphs.

4. The maximum weight clique algorithm. In this section, we show how our
maximum clique algorithm can be extended to weighted circular arc graphs. Thus
assume that D is a round oriented graph with complete FO-information, and that
each vertex v has an associated weight w(v) > 0. (Note that vertices of nonpositive
weights may be removed from the graph without affecting the optimum solution.)
The weight of a set S of vertices of D, denoted W(S), is the sum of the weights of the
vertices in S; if D’ is a subgraph of D with vertex set S’, then we let w(D’) w(S’).
We shall seek a maximum weight clique of D, i.e., a clique C in D with the greatest
value of w(C). As in the unweighted case, we may assume that A(D) _< n- 2.

We extend the definitions by replacing all cardinalities by the corresponding
weights. Thus a #-overlap clique generated by al,a2,... ,at (# 2# + 1 _> 3) is
a clique C [a, b] U [a2, b2] [-J (-J [at, b] such that al, bl, a2, b2,..., a,, b, are
vertices of D in clockwise circular order and for each 1, 2,..., #,

R(ai) bi+,, and w([ai, bi]) > w((bi+,,,ai+,,+l)).

It is still the case that there is at least one vertex in each interval (bi+,,, ai+,,+l);
however, we note that this no longer implies that ai : bi for each i. For instance in
Fig. 3 we have a bl in the depicted maximum weight clique.

By proofs similar to those of 2, we easily show that some maximum weight clique
must be a #-overlap clique in the above sense, and that any generator x of a maximum
weight l-overlap clique is also a generator of some maximum weight clique which is a
#-overlap clique normalized with respect to x. (In the definition of a normalized clique
we again replace the cardinalities by the corresponding weights.) It also remains true

MAXIMUM CLIQUES IN PROPER CIRCULAR ARC GRAPHS 287

(R)

o"" / \ v

Vl O.., ?(R) ,,, /

11-’ a
vs=bz

FIG. 3. A maximum weight clique generated by al, a2, a3 (the circled numbers denote weights).

that if the weight of a maximum weight 1-overlap clique K does not exceed half of
the total weight of D, then K is a maximum weight clique.

We now explain how to adapt the algorithm: We again begin by finding a vertex

x0 which generates a maximum weight 1-overlap clique K and halt if w(K) < (D)
2

Otherwise we proceed, as in the unweighted case, with basic iteration steps I(x) using
the starting vertex x (initially x x0).

Before we define the iterations in the weighted case, let us look more closely at
the motivation for the iterations in the unweighted case. The iteration I(x) seeks a
suitable k such that x + k R(x) + k + 1. We view the current x as a candidate for
the next generator and if x / k--.R(x) + k / 1 then we conclude that x / k is a better
candidate. In fact, using x/k in place of x will have the effect of replacing, in the clique
being formed, the interval Ix, x+k) by the interval (R(x), R(x)+k/ 1]. Since we always
have I[x,x+k)l < I(R(x),R(x)+k/ 1]1 this will result in a larger clique. On the other
hand, if R(x)+ k + lx+ k, then we accept x as a generator and go on to look for the
next generator, starting with R(x) + k / 1 as the first candidate. This is a reasonable
choice, in part because we always have I[x,x + k]l > I(R(x),R(x)/ k + 1)l. In the
weighted case we lack the "weight equivalents" of these two cardinality inequalities,
and we must do something to assure their validity. Let
A denote the event x + kR(x)+ k’ and w([x,x + k)) < w((R(x),R(x) + k’]),
B denote the event R(x) + k’-x + k and w([x,x + k]) > w((R(x), R(x) + k’)),
C denote the event x / k x0 and k > 0, and
D denote the event R(x) + k xo.

The iteration I(x) is defined as follows.

k --0 and k - 1
do until A or B or C or D

if w([x,x + k]) _< w((R(x),R(x) + k’]) then k k + 1
else k - k + 1

if C occurs then s - undefined and g - undefined, and I(x) fails

288 BINAY BHATTACHARYA, PAVOL HELL, AND JING HUANG

else if D occurs then g - x and s - undefined, and I(x) fails
else if A occurs then s - x + k and g - undefined

else s -- R(x) + k + 1 and g - x

Finally, we present the entire algorithm.

ALGORITHM MAX-WEIGHT-CLIQ

find a vertex x0 which generates a largest 1-overlap weighted clique
if w([xo, R(xo)]) <_ then halt

X’---Xo
do until I(x) fails

perform I(x)
X+--8

The correctness of the algorithm follows by arguments similar to those in the
unweighted case. In particular, the six statements of Lemma 2.4 still hold, although
their proofs need to be slightly modified. For instance, in the proof of statement 1, we
now first prove that the values k and k’ found by I(ai) are such that ai / k E [a, b]
and R(a)+k’ b,++k’ (b,+, a,++l]. This is certainly the case for the starting
values of k 0, k’ 1. If ai+k [a, b) and R(a)+k’ (b,+, a,++l) and if either
k or k’ is incremented by I(a), then we still have ai + k [a, b] and R(a)+ k’
(b,+i, at,+i+l]. If R(a) + k’ a,+i+l and ai / k [ai, bi], then R(ai) + k’a + k,
as [R(a)+ k’,a + k] [a,++,a + k] c_ [a,,++,b] [a,++l,R(a,,+i+)]. If
w([a,a + k]) > w((R(a),R(a)+ k’)), then the event B occurs and the current
values of k and k are the final values produced by I(a); note that this includes
the case when we also had a+k b. On the other hand, ifw([a,a/k]) _<
w((b,+,R(ai) + k’)) <_ w((b,+,R(a) + k’]) then I(a) directs us to increment k,
and we still have a+k [a, bi] and R(a)+k’ (b,+, a,++]. Finally, if a+k b
and R(ai)/k’ (b,+i, at,+i+l), then we cannot have R(a)+k’a +k, as otherwise
the l-overlap clique generated by R(a)+ k would have weight greater than that
generated by a,+i+l; this would contradict the weighted analogue of Corollary 2.1.
Thus the event B does not occur. It is also clear that neither C nor D are occurring
as a / k b. Moreover, it is easy to see that the event A cannot occur either,
because the l-overlap clique generated by b ai / k would contradict the weighted
analogue of Corollary 2.1. Since w([a,a + k]) w([a,b]) > w((b,,+,a,+i+l)) >_
w((b,+, R(a)+k’]), the iteration I(a) increments k’ and we still have a+k [a, b]
and R(a) + k’ (b,+,a,++l]. The rest of the proof of statement 1 proceeds in
a manner analogous to the proof in the unweighted case, taking into account the
modifications in the statement of the algorithm and replacing cardinalities by the
corresponding weights.

The complexity of this algorithm is analyzed in a way similar to the unweighted
algorithm. However, because of the modifications of the algorithm, we may visit all
vertices of Ix, x / k] t2 (R(x), R(x) / k’] when searching for k and k’ in the iteration
I(x). Hence we may have to search through all the vertices of the graph; nevertheless,
the time is still proportional to n.

Thus we have an O(n) algorithm to find a maximum weight clique in a weighted
oriented graph given by a round enumeration with complete FO-information, or equiv-
alently, in a proper circular arc graph given by a sorted simple family of circular arc
graphs. Therefore, using [2, 3], we obtain an O(m + n) algorithm to find a maximum
weight clique in a weighted proper circular arc graph.

MAXIMUM CLIQUES IN PROPER CIRCULAR ARC GRAPHS 289

To illustrate the algorithm consider the weighted oriented graph in Fig. 3. Using
the complete FO-information it is still possible to find in one pass a largest l-overlap
clique, in this case the one generated by vl (which has weight 20). The algorithm starts
by performing I(vl), which searches for k and k such that A or B or C or D occurs.
Since Vl --0 Vl is not adjacent to R(Vl) + 1 vs + 1 v9 and w([vl, vii) 6 > 1
w((v8, v9]), we increment k’ and consider vl and v8 + 2 Vl0. Since these vertices are
not adjacent either and w([vl, vii) 6 > 3 w((vs, v0]), we again increment k’ and
consider v and v. Now Vl-V and w([v, v]) 6 > 3 w((vs, Vl)); that is, B
occurs. Thus I(v) finds k 0 and k 3 and produces the value g vl and s v11.
Next the algorithm performs I(v11) which finds k 3, k 4 and produces g Vl,

s Vh. Finally, the iteration I(Vh) finds k 3 and k’ 3, and I(vh) fails, producing
g v5 but no value of s. Hence the algorithm correctly finds the three generators
Vl, vii, v5 of the maximum weight clique [Vl, Vl] [_J [Vh, v8] [.J [vii, v14] (of weight 21).

REFERENCES

[1] B. BHATTACHARYA AND D. M. KALLEP, An O(m+ n log n) Algorithm for the Maximum Clique
Problem in Circular Arc Graphs, Simon Fraser University report CSS/LCCR TR 94-26.

[2] X. DENG, P. HELL, AND J. HUANG, Recognition and representation of proper circular arc
graphs, in Integer Programming and Combinatorial Optimization, Proc. 2nd IPCO confer-
ence, E. Balas, G. Cornujols, and R. Kannan, eds., Pittsburgh, PA, 1992, pp. 114-121.

[3] Linear time representation algorithms for proper circular arc graphs and proper interval
graphs, SIAM J. Comput., 25 (1996), pp. 390-403.

[4] F. GAVRIL, Algorithms on circular-arc graphs, Networks, 4 (1974), pp. 357-369.
[5] M. C. GOLUMBIC, Algorithmic Graph Theory and Perfect Graphs, Academic Press, New York,

1980.
[6] P. HELL, J. BANG-JENSEN, AND J. HUANG, Local tournaments and proper circular arc graphs,

in Algorithms, Lecture Notes in Computer Science 450, T. Asano, T. Ibaraki, H. Imai, and
T. Nishizeki, eds., Springer-Verlag, Berlin, New York, 1990, pp. 101-109.

[7] P. HELL AND J. HUANG, Linear Algorithms for c-Coloring and for Finding Maximum Cliques in
Proper Circular Arc Graphs, Dept. of Math. and Compt. Sci., Odense University, Odense,
Denmark, 1993, Preprint 9.

[8] , Two remarks on circular arc graphs, Graphs Combin., to appear.
[9] J. HUANG, Tournament-Like Oriented Graphs, Ph.D. thesis, Simon Fraser University, Burnaby,

BC, 1992.
[10] G. MANACHER AND W. MANKUS, Finding normal forms, cliques, hamiltonian paths, and hamil-

tonian circuits in a set of proper circular arcs in optimum time and space, in Proc. 26th
Allerton Conference on Communication, Control, and Computing, Allerton, IL, 1988, pp.
832-841.

[11] ., Finding a maximum clique in a set of proper circular arcs in time O(n), manuscript.
[12] J. B. ORLIN, M. A. BONUCCELLI, AND D. P. BOVET, An O(n2) algorithm for coloring proper

circular arc graphs, SIAM J. Alg. Disc. Meth., 2 (1981), pp. 88-93.
[13] W. K. SHIH AND W. L. HSU, An O(n log n + m log log n) maximum weight clique algorithm for

circular arc graphs, Information Processing Letters, 31 (1989), pp. 129-134.
[14] ., An O(n1"5) algorithm to colour proper circular arcs, Discrete Appl. Math., 25 (1989),

pp. 321-323.
[15] K. E. STOUFFERS, Scheduling of trajfic lights--a new approach, Transportation Res., 2 (1968),

pp. 199-234.
[16] A. TENG AND A. TUCKER, An O(qn) algorithm to q-color a proper family of circular arcs,

Discrete Math., 55 (1985), pp. 233-243.
[17] A. TUCKEI, Colouring a family of circular arcs, SIAM J. Appl. Math., 29 (1975), pp. 493-502.
[18] Matrix characterization of circular arc graphs, Pacific J. Math, 39 (1971), pp. 535-545.

SIAM J. DISCRETE MATH.
Vol. 9, No. 2, pp. 290-300, May 1996

() 1996 Society for Industrial and Applied Mathematics
011

THE ULTIMATE CATEGORICAL INDEPENDENCE RATIO OF A
GRAPH*

JASON I. BROWNt, RICHARD J. NOWAKOWSKI, AND DOUGLAS RALL:
Abstract. Let /(G) denote the independence number of a graph G. We introduce A(G)

limk-. (Gk)/IV(G)I k, where the categorical graph product is used. This limit, surprisingly, lies
in the range (0,1/2] U (1. We can show that this limit can take any such rational number, but
is there any G for which A(G) is irrational? A useful technique for bounding A(G) is to consider
special spanning subgraphs. These bounds allow us to efficiently compute A(G) for many G. We
give a condition which if true for G shows that A(G) > (G)/IV(G)I. This brings up the question:
for which G does A(G) (G)/IV(G)I? This happens if G is a Cayley graph of an Abelian group
or if G is a connected graph that has an automorphism which has a single orbit.

Key words, independence number, ultimate categorical independence ratio, decomposition,
self-universal

AMS subject classifications. 05C70, 05C99

1. Introduction. Graph products have been used to find the essential value of
graph parameter (such as independence number or chromatic number) of a graph
by "multiplying" G by itself k times and examining the growth of the parameter

on Gk. For example, the Shannon capacity [12, 15, 16] of a graph G is defined by

G)1/

where (R) is the strong product of graphs and/(H) denotes the independence number
of graph H (i.e., the maximum cardinality of an independent set of vertices of H).
The Shannon capacity of a graph arose from a problem of transmission of words over
a noisy line but has a number of other applications (see [12]).

Another such concept is the ultimate chromatic number of a graph G; that is,

X(G)- liin (x($ki_lG)) ilk.

(Here denotes the lexicographic product and x(H) the chromatic number of H.)
This was introduced by Hilton, Rado, and Scott [11] (see also [5]) and is related to
the problem of assigning radio frequencies to vehicles operating in zones (see Gilbert
[6] and Roberts [13, 14]). The determination of both the Shannon capacity for some
graphs and the ultimate chromatic number for all graphs can be solved using linear
programming techniques. (See [15] for the former and [9] for the latter.)

In contrast to the Shannon capacity, one can investigate the parameter of the
independence number by looking at the ratio of this parameter to the total number
of vertices in the graph; if IV(G)I n, the ultimate independence ratio of G is

I(G) lim l(E]i=lG)/nk,

where [::] is the Cartesian product. This was introduced in [10].
analogous (but significantly different) concept.

We consider an

Received by the editors November 9, 1994; accepted for publication (in revised form) June 30,
1995.

Department of Mathematics, Statistics, and Computing Science, Dalhousie University, Halifax,
Nova Scotia B3H 4H6 Canada. The research of these authors was partially supported by an NSERC
grant.

Department of Mathematics, Furman University, Greenville, SC 29613.

290

ULTIMATE CATEGORICAL INDEPENDENCE RATIO 291

Let G (V(G),E(G)) be a graph. We will assume that graphs are finite and
simple. We write a b if a is adjacent to but not equal to b, and a 2_ b if a is neither
adjacent nor equal to b. The categorical product G H of G and H has the vertex
set V(G) V(H) and (a,x) (b,y) if both a b and x y. As the categorical
product is the only product we shall consider henceforth, for the rest of the paper

k G and Gk interchangeably. The parameter we consider is the ultimatewe use i__1
categorical independence ratio of a graph G which is defined as

kA(C) lim /(xi=a)/nk

where IV(G)I n. We show that this limit exists in the next section.
The next two sections deal with upper and lower bounds, respectively. The fourth

section investigates disjoint unions of graphs, and we find classes of graphs for which
the sequence (l(Gk)/IY(Gk)l) is not constant; i.e., A(G) > (G)/IV(G)I. In the fifth
section we look at graphs for which A(G) (G)/IV(G)I and in the last section we
pose several problems.

We follow standard graph theoretic terminology (cf. [1, 2, 8]), but we make
explicit note of a few definitions. We abbreviate the disjoint union of m copies of
graph G by raG. Let S c_ V(G) and v e V(G). Then {S} denotes the induced
subgraph on the vertices of S. The neighborhood of v e V(G) is N(v) {Y Y v}
and N(S) UvesN(v); N[v] N(v) {v} is the closed neighborhood of v and
N[S] Uvesg[v]. The set S is called independent if {S} contains no edges and, as
mentioned above, (G) denotes the maximum cardinality of an independent set of G.
The chromatic number of G is denoted by x(G). We remark that G x H is connected if
and only if both G and H are connected and at least one is 3-chromatic [17]. It is easy
to see as well that G x H H x G, G x (HUK) (G x H)U(G x K), and x(G x H) <_
min{x:(G), x:(H) }. Whether x(G x H) min{x:(G), x:(H)} is Hedetniemi’s conjecture,
an open problem that has attracted (and frustrated!) a number of mathematicians
(see, for example, [4, 3]).

2. Upper bounds for A(G). The first fact needed is that the ultimate categor-
ical independence ratio really exists for any graph. We will make use of the following
elementary but important fact.

LEMMA 2.1. Let G and H be graphs. Then/(G x H) >_ max{/(G)lY(g)l,
(U)}.

Proof. If I is an independent set of H then UaelG x {a} is an independent set
of G H and thus/(G x H) >_/(H)IV(G)I. The second part follows similarly since
the product is commutative. [:]

From this lemma it follows that (Gk)/n >_ n(Gk-1)/nk /(Gk-1)/n-1.
Therefore the sequence (Gk)/nk is nondecreasing and is bounded above by 1 and
so the ultimate categorical independence ratio exists. We contrast this with the
ultimate independence ratio of Hell, Yu, and Zhou [10], where I(G) is the limit of the
nonincreasing sequence/(wlik___lG)/nk).

The following observation is extremely useful and forms the basic idea for this
and the next section.

LEMMA 2.2. If G is a spanning subgraph of S then A(G) > A(H).
Proof. For all k, Gk is a spanning subgraph of Hk. Thus (Gk) >_ (Uk) and

therefore (Gk)/nk >_ (Hk)/nk.
The previous result, along with the next, is quite helpful in bounding the ultimate

categorical independence ratio of a graph.
THEOREM 2.3. If G is a regular graph of degree r > 0 then A(G) <_ 1/2.

292 J.I. BROWN, R. J. NOWAKOWSKI, AND D. RALL

Proof. Let I C_ V(G) be an independent set with III= (G) and let C V(G)-I.
Each vertex in G has degree r so summing the degrees of the vertices in C we have
(n-/(G))r. Some edges have been counted twice, but the edges between I and C have
only been counted once. Therefore, since I is an independent set, r/(G) <_ (n-/(G))r;
i.e.,/(G)/n <_ 1/2. Now Gk is a regular graph of degree rk so (Gk)/n <_ 1/2 and
consequently A(G) < 1/2.

Theorem 2.3 and Lemma 2.2 give the following corollary.
COROLLARY 2.4. IfH has a regular spanning subgraph of degree at least one then

1
(H)/n <_ A(H) <_ -.

This result shows that A(V2n) A(P2n) 1/2, the latter because P2n has
perfect matching as a spanning subgraph. Moreover, if G has a Hamiltonian cycle
then A(G) <_ 1/2. However, if G has a Hamiltonian path then it is possible for A(G)
to be greater than 1/2. For example, A(P2+I) > (n + 1)/(2n + 1) > 1/2. Indeed,
this raises the question: What is A(P2n+)? We answer this question later.

General upper bounds for the ultimate categorical independence ratio are few and
far between. One technique that appears fruitful involves partitioning the vertex set
into subgraphs. In the following, the phrase K decomposes into L1,..., Ll means that
LIU..-tALl is a spanning subgraph of K. (We denote this as well by K = LU.-.tALl.)

LEMMA 2.5. IfG is a graph of order n and G H = nH then (G H) (H)n.
Moreover, if also H -- G then A(G) (G)/n.

Proof. From Lemma 2.1 we have that (G H) >_ (H)IV(G)I >_ (H)n for any
graphs G and H.

Suppose that G H can be partitioned so that the subgraphs in each partition
are all isomorphic to H. Thus any independent set of G H intersects each part
in no more than/(H) many vertices. Therefore/(G H) <_ (H)n. Consequently,
(C x H)=/(H)n.

If a graph C is of order n and (2 decomposes into nG, then inductively
n-C and (C)/n < (nk-(G))/nk =/(G)/n. Thus A(G) (G)/n. B

This follows since K2 can be decomposedThis result shows that A(K) .
into nKn: if the vertices of K, are Z,, and Xi is the subgraph of K2 induced by
{(j,j + i): j E Z,}, then K2 decomposes into Xo,... ,Xn-1; i.e., K2 nKn.

Decompositions can be utilized to prove the following general upper bound.
THEOREM 2.6. Suppose G == H U Kin1 U kJ Kmp where IV(H)I n and

x(H) <_ m <_... <_ rap. Then A(C) <_ A(H).
Proof. Suppose H U Kml U"" U Kmp is a spanning subgraph of G, where x(H) <

m <_... < rap. Then Gk decomposes into

We observe that if x(H) <_ r then H Kr has a decomposition into r copies of
H, as follows. Let x(H) j and the color classes of H be C1, C2, Cj. Let
V(Kr) {al, a2,..., at}. The ith copy of H would be (C {ai})U (C2 {ai+ })U

U (Cj {ai+j-1 }) for 1, 2,..., r where the subscripts are taken modulo r.
Since x(Hi) <_ x(H) for all i, using the previous remark we have (for < k)

ULTIMATE CATEGORICAL INDEPENDENCE RATIO 293

H (K, U... U Kmp) (Kml U... U K,p)--1

(HK.uHKm2u...uHK.)x(Ku...uK)-*-I
(ml +". + mp)n x (K U... U K)--1,

and so by induction,

u... u +... +
for any E {0,..., k}. (We interpret the 0th power of a graph to be K1.)

Thus Ga has a decomposition into

Now as fl((Km U’" Km)) 5 (ml +-" + rap) we have

(k) ((:)(1 ...p)k--i()i) (1 ...p)k

+(ml +’’’ + rap) k.

Dividing through by (+ m +... + rap) k yields

(n + m2 ::- + mp)k (n + ml +".+rap)k + (+ ml --+rap)k"

Letting k we get A(G)
Suppose we hve coloring of G, the complement of G, and co Cl Cp

are the sizes of the color classes. Then we have a decomposition of the original graph
G into cliques:

G K K ... K.
Taking H K and applying the previous theorem, we deduce that A(G) l/co.
Of course the bound is improved when c0 is as large as possible. We summarize as
follows.

COROLLARY 2.7. For each coloring of G, let c() denote the minimum cardi-
nality of a color class in , and let c denote the maximum of c() over all colorings.
Then A(G) < .

3. Lower bounds for A(G). If one takes an independent set I in G, then the
subset I x Gk-1 is an independent set in Gk (this is inherent in Lemma 2.1), nd it
follows that A(G) Z(G)/]V(G)]. There re graphs (such as the complete graphs) for
which equMity holds (we will have more to say bout such graphs later). The following
lemm is often useful in showing when independent sets larger than Z(G)]V(G) exist
in the product of G and H.

294 J.I. BROWN, R. J. NOWAKOWSKI, AND D. PALL

LEMMA 3.1. Let G and H be graphs and let I be an independent set of G where
N[I]l k. Then (G H)

Proof. Let P be a maximum-sized independent set of H. Let Q (V(G)-
N[I]) P and R I V(H). Then Q

FIG. 1.

If G is the graph in Figure 1, then/(G)/5 3/5, but (G2)/25 16/25 > 3/5.
Moreover, let I {a, c} and H Gk. Then IG- N[I]l 2, and applying the lemma
to G H, we have A(G) >_ 2/3.

Yet for the graph G in Figure 1, what is A(G)? The next result provides the
answer as well as giving A(P2n+I) by proving the surprising fact that if the indepen-
dence number of any graph is more than half the number of vertices, then the ultimate
categorical independence ratio is 1.

THEOREM 3.2. Let G be a graph with n vertices. If(G)/n > 1/2 then A(G) 1.

Proof. Let I be an independent set of G with [I[3(G) > n/2. Note that
/(G) > n- (G).

In (k denote the factors as Gi, 1, 2,..., k with Ii as the copy of I in the ith
factor. Now form the set

P

where the union is taken over all P c_ {1, 2,..., k) with IPI > k/2. For any two vertices
x (Xl,... ,x),y (yl,..., yk) in J, as each has more than half its coordinates in
I, there is an such that xi, yi E I, and hence x and y are not adjacent. Thus J is
an independent set.

Counting gives us the following:

j>k/2

Completing the summation and taking it away again gives

k

j_k/2

and thus

(G) > (n- (G)), f(x)
/

[Z(a) \)x is an increasing function of x.Now since It
follows that for j <_ k/2,

Z(c)) <_ Z(c))

ULTIMATE CATEGORICAL INDEPENDENCE RATIO 295

Therefore we get

Dividing by nk gives

_
nk 2k(G)k/2(n- Z(G))k/.

ij[/n > l (4(G)(n (G))) a/:

n2

Now as 4/3(G)(n-/3(G)) < n2, the right side tends to 1 as k goes to infinity, and
since A(G) >_ [J[/n for all k, we are done. FI

We have seen that A(C2+1) n/(2n + 1) < 1/2. Thus the addition of a single
edge to a graph (here to P2n+I), while changing the ratio of independence number
to order by an arbitrarily small amount, may greatly affect the ultimate categorical
independence ratio.

We now consider a lower bound which is a companion result to Theorem 2.6.
THEOREM 3.3. Let I be an independent subset of G. Then A(G) >_ II]/Ig[I]l
Proof. Let H- N[I] and F G- H and put rn- IV(F)I and n IV(H)I. Let

J c_ Gk F (H U F)k F (that is, for 1, 2,..., k choose of the coordinates
and in these coordinates the entries will be taken from H and in the others the entries
will be taken from F), with the extra condition that in the first coordinate in which
the entries are taken from H they will be restricted to vertices from I. Then J is an
independent set of G. This follows since if x, y.. E J then let and j, respectively, be
the least indices such that xi I and yj I. If j then xi yi or xi _k yi; if < j
then yi F thus xi _[_ yi and so x _1_ y. In any event, x and y are nonadjacent. Now

’J’--i>o. () ’I’ni-lmk-i-- nI’i>o. () rimk-i-- ’IAn ((n-m)k--ink)"

Therefore,

Z(a) > ((n +

and dividing through by (n + m)k we get

(Gk) > I__ (1_(m)(n + m)k n + m
Thus as k --. x we finally obtain A(G) >_

This theorem shows in particular that if G has an isolated vertex x, then A(G)
1, since if I {x}, then A(G) >_ 1/1.

The previous two theorems can be combined to yield the following corollary.
COROLLARY 3.4. If G has an independent set I such that III > IN(I)I then

A(G) 1.

Proof. By the previous theorem A(G) >_ III/IN[I]l, but this latter term is greater
than 1/2 and thus by Theorem 3.2, A(G)= 1.

We know from Theorem 3.2 that if/3(G)/IV(G)I > 1/2 then A(G) 1. What
can we say if/(G)/IV(G)I 1/2?

296 J.I. BROWN, R. J. NOWAKOWSKI, AND D. RALL

COROLLARY 3.5. Suppose that G is a graph of order n with t(G) n/2. Then
A(G) 1/2 if G has a perfect matching, and A(G) 1 otherwise.

Proof. If G has a perfect matching then G has a 1-regular spanning subgraph and
so A(G) < 1/2. In fact, A(G)= 1/2 in this case as A(G) >_ (G)/n 1/2.

Now assume that G has no perfect matching. Let J be an independent set of size

n/2 in G. Then there is no matching of J into G- J, and hence by Hall’s theorem,
there is a subset I C_ J such that IN(I)I < III. Set H =N[I]. Then applying
Theorem 3.3,

[I[1
A(G) >

ii + IN(/)I > ’
and hence by Theorem 3.2, A(G) 1.

We remark that there are graphs G for which A(G) 1/2 and yet G has no
perfect matching. For example, we see in the next section that for any n > 1,
A(K2 U K2n+l) 1/2 while clearly neither this graph nor any power has a perfect
matching.

We can now determine quickly what the ultimate categorical independence ratio
is for any bipartite graph G. Let G have order n. We can find a 2-coloring of G in
polynomial time. Let the color classes be C1 and C2. Clearly

Z(a) > 1.A(G)
n -2

If]C1]]C2l, then (G) > n/2, and hence A(G) 1. Assume now that]C1[- ICl.
If there is a perfect matching in G (and this can be determined in polynomial time),
then A(G) 1/2. Otherwise, by Corollary &.5, A(G) 1. Thus we have the, following
corollary.

COROLLARY 3.6. If G is bipartite, then A(G) can be determined in polynomial
time.

Again, we contrast this result with that for the ultimate independence ratio, where
it is known [7] that I(G) 1/2 for any bipartite graph G.

4. The ultimate categorical independence ratio for disjoint unions. It
is of interest to see how the ultimate categorical independence ratio can change under
graph operations. The independence number of the union of graphs changes in an
obvious way, namely the sum of the independence numbers of its constituent parts.
It is not so clear as to how the ultimate categorical independence ratio changes under
disjoint union. For a graph G, it is clear that (G U G)k 2kG. It follows that
A(G U G) A(2G) A(G). The next result shows that A(G U H) is at least the
maximum of A(G) and A(H).

THEOREM 4.1. If G and H are any graphs, then A(GU H) >_ max{A(G), A(H)}.
Proof. Let na [V(G)I and nH IV(H)I. We show first that A(GU H) >_ A(G).

The other inequality follows similarly.
Note that

k

i--O

X Hk-i,

and hence

x Hk-).

ULTIMATE CATEGORICAL INDEPENDENCE RATIO 297

By dropping the 0 term, we obtain

k k-i

i=1
(rig + nil)k

[Lemma 2.1]

There are two cases. First, suppose A(G) -/3(G)/no. Then A(G) (Gi)/n
for all i. In this case

Thus

((G U H)) L () nO’nHi -(’ + ’/) >-
=1
(+)

A(G U H) lim
((G u H)k) (n) A(G)

-+oo (no + nil) k
> lim A(G) 1

(n + hi-i)
Now we may assume that A(G) >/3(G)/no. We choose e > 0 and we will show

that A(G U H) >_ A(G) e. Let

7- A(G) 2"
Since .(G)/nia is a nondecreasing sequence we can fix J >_ 1 so that

(GJ): > 7 for all j _> J (Gi): -< 7 for all < J.

Let

@
max{no, nil}
nG +nil

and

7-(G)/nG if J > 1,
0 if J- 1.

Note that for J > 1, it max{7-(G)/nGli < J}. Also, E (0, 1) and # > 0
constants. Thus, taking k > 2J, from (.) we get

ani-i (a) (,).= (no +nil)k n

298 J.I. BROWN, R. J. NOWAKOWSKI, AND D. RALL

Therefore,

((GUH)k) (A(G)) (1(n + n.)
>

(g-1) is a nonnegative constant.where C- (j-l)!
This shows that

Z((G H)k)A(G t2 H) lim- (na + n)

nkH) C]gJ-1

(Ha + nn)

> lim ((A(G)_) (nH
k-- - 1

(Ha + nil) k

>_ A(G)

o y > o A(G H) A(G).
In both cases we have that A(G H) A(G). Similarly, we also have that

A(G H) A(H), and, therefore, it follows that A(G H) max(A(G),
A(H)).

As a corollary to this theorem and Corollary 2.7, we can determine the ultimate
categorical independence ratio for the disjoint union of complete graphs.

COROLLARY 4.2.

A K min{mi’i-1,.., l}"
i=1

This corollary yields infinitely many graphs G for which A(G) is not 1, not 1/2,
nor (a)/l(a)l; in fact, the disjoint union of complete graphs of order at least 2
where not all the cliques have the same sie are such examples.

inally, we also derive that there are graphs G with arbitrarily small
for which A(G) climbs up to 1. or example,

(K1,2 Kn) 3

Y(KI, K)t +3’

while A(K1,2 K)= 1 as A(K1,2 K) A(K1,2)- 1.

5. Universal graphs and the distribution of A(G). Lemma 3.1 leads nat-
urMly to the next definition. A graph G is called categorical-universal if (G x H)
max{(G)]V(H)], (H)]V(G)]} for all graphs H. A related notion of universal graphs
was originMly introduced in the Shannon capacity.

Of course if G K, then G is categorical-universal since Kn x H contains no
edges and thus (K x H) nV(H)] max{(Kn)V(H)], (H)]V(K)]}. In fact,
it can be shown that these are the only categoricM-universal graphs.

A more restricted concept than a categorical-universM graph is the following:
graph G is self-universal if A(G) (G)/[V(G). om Lemma 2.5 it follows that
if graph G is of order n and G2 decomposes into riG, then G is self-universM. We
have also seen that regular bipartite graphs and cliques are in the class. The next
result greatly increases the known self-universal graphs by showing that it includes all
Cayley graphs on an Abelian group. (A similar result holds for ultimate independence
ratios [10].)

THEOREM 5.1. If G is the Cayley graph of an Abelian group then G is self-
universal.

ULTIMATE CATEGORICAL INDEPENDENCE RATIO 299

Proof. Let S be the generating set for G and IV(G)I n. In what follows we do
not distinguish between an element of the group and a vertex of the Cayley graph.
The proof is by induction. Suppose that (Gi)/n (G)/n for 1, 2,..., k 1.

CLAIM. Let a (al, a2,..., ak) be any vertex ofGk. Then {(Hal, Ha2,..., gak) g
V G) } is isomorphic to G.

Let T {(gal,ga2,...,gak)Ig V(G)}. Define " G -- T by (h) (hal,ha2,
ha). Now g h if and only if there exists s S such that gs h. Moreover,

since G is Abelian for any a G then gas gsa ha. Thus ga ha if and only if
g h. Since this holds in every coordinate, we have (g) (h) if and only if g h.
Thus the claim is proved.

For each x V(Gk) set Tx {gx g V(G)}. If c E Tx N T. then there exist
f, g G such that ci fxi gzi for 1, 2,..., k. Thus xi f-lgzi and it follows
that any vertex ofT is in T. and conversely. Therefore Tx T. and these decompose
Gk into [V((k-1)[many copies of G. From Lemma 2.5 the result now follows.

As a consequence we now know that both odd and even cycles are self-universal.
We can extend the class of known self-universal graphs even further.
THEOREM 5.2. Let G be a graph of order n with an automorphism f that has a

single orbit of size n. Then G is self-universal.
Proof. We define an equivalence relation on V(Gk+) by x _-- y if y ft(x)

for some (where f is applied coordinatewise). Now each class is of the form
{x, f(x), f2(x),..., fn-(x)}. We’ll show that the subgraph induced by each such
class is isomorphic to G.

Let x (Xl,X2,...,Xk+l) and y ft(x) (fl(xl),fl(x2),...,fl(xk+l)) (for
some 1 < < n- 1) be any two elements of a class. If Xl -[- Yl ft(xl) then x _1_ y.
If Xl Yl fl(xl), then x y, as if xi fJ(xl); then Yi ft(xi) fl+J(xl)
fJ (xl) xi. It follows that the subgraph of Gk+l induced by the class generated
by x is isomorphic to G, and thus Gk+l decomposes into copies of G, and again by
Lemma 2.5 we are done.

We now turn to the distribution of the ultimate categorical independence ratio.
From Theorem 3.2, we know that there is a gap between 1/2 and 1. Clearly 0 is not the
ultimate categorical independence ratio for any graph G, so {A(G)" G is a graph} C_
(0, 1/2] U { 1 }. While we do not know if A(G) can be irrational, we can show that the
closure of the set above is in fact [0, 1/2] 2 {1}.

THEOREM 5.3. For any rational number r (0, 1/2] t {1} there is a graph
with A(Gr) r.

If r 1, we may take G to be any graph with independence number greater than
half the number of vertices. Otherwise, let r- p/1 (p, positive integers) and G be
the Cayley graph Zt where x is joined to y if and only if x-y {p,p+ 1,... ,l-p}; it
can be easily seen that/3(G) p, and from Theorem 5.1, A(G) 3(Gr)/[V(G)[
p/1 r.

6. Open problems. There are a number of open problems concerning the ulti-
mate categorical independence ratio. While we have shown that every rational number
r e (0, 1/2] t_J {1} is the ultimate categorical independence ratio of a graph, we do not
know the following.

PROBLEM 6.1. Can A(G) be irrational?
There are also families of graphs (such as complete multipartite graphs) for which

the determination of A(G) is unknown. (Although, for many cases, the results here
will provide a solution.)

PROBLEM 6.2. What is A(G) for a random graph G ? Are almost all graphs G of
order n self-universal ?

300 J.I. BROWN, R. J. NOWAKOWSKI, AND D. RALL

In terms of algorithmic considerations, we have shown that one can determine in
polynomial time the ultimate categorical independence ratio of a bipartite graph.

PROBLEM 6.3. Is A(G) computable? If so, what is its complexity?
Finally, in many cases, equality does hold in Theorem 4.1, and we do not know

of any examples where equality does not hold.
PROBLEM 6.4. Is A(G U H) max{A(G),A(H)} ?

REFERENCES

[1] G. CHARTRAND AND L. LESNIAK, Graphs and Digraphs, Prindle, Weber z Schmidt International
Series, London, 1986.

[2] C. BERGE, Graphs and Hypergraphs, North Holland, New York, 1979.
[3] D. DUFFUS, B. SANDS, AND R. E. WOODROW, On the chromatic number of product of graphs,

J. Graph Theory, 9 (1986), pp. 487-495.
[4] M. EL-ZAHAR AND N. SAUER, The chromatic number of the product of two 4-chromatic graphs

is 4, Combinatorica, 5 (1985), pp. 121-126.
[5] D. GELLER AND S. STAHL, The chromatic number and other functions of the lexicographic

product, J. Combin. Theory Ser. B, 19 (1975), pp. 87-95.
[6] E. N. GILBERT, Technical memorandum, Bell Telephone Laboratories, Murray Hill, NJ, 1972,

manuscript.
[7] G. HAHN, P. HELL, AND S. POLJAK, On the Ultimate Independence Ratio of a Graph, Discrete

Math., 127 (1994), pp. 213-220.
[8] F. HARARY, Graph Theory, Addison-Wesley, London, 1972.
[9] P. HELL AND F. S. ROBERTS, Analogues of the Shannon capacity of a graph, in Theory and Prac-

tice of Combinatorics, North-Holland Math. Stud., Vol. 60, North-Holland, Amsterdam-
New York, 1982, pp. 155-168.

[10] P. HELL, X. Yu, AND H. Znov, Independence ratios of graph powers, Discrete Math.,.27 (1994),
pp. 213-220.

[11] A. J. W. HILTON, R. RADO, AND S. H. SCOTT, A (5)-coIour theorem for planar graphs, Bull.
London Math. Soc., 5 (1973), pp. 302-306.

[12] L. Lovsz, On the Shannon capacity of a graph, IEEE Trans. Inform. Theory, 25 (1979),
pp. 1-7.

[13] F. S. ROBERTS, Graph Theory and its Applications to Problems of Society, CBMS-NSF Mono-
graphs 29, Society for Industrial and Applied Mathematics, Philadelphia, 1978.

[14] ., On the mobile radio frequency assignment problem and the traJc light phasing problem,
Ann. New York Acad. Sci., 319 (1978), pp. 466-483.

[15] M. ROSENFELD, On a Problem of C.E. Shannon in Graph Theory, Proc. Amer. Math. Soc., 18
(96), ,. 1-9.

[16] C. E. SHANNON, The zero error capacity of a noisy channel, I.R.E., Trans. on Inform. Theory,
IT-2 (1956), pp. 8-19.

[17] P. M. WEICHSEL, The Kronecker product of graphs, Proc. Amer. Math. Soc., 13 (1962), pp. 47-
52.

SIAM J. DISCRETE MATH.
Vol. 9, No. 2, pp. 301-308, May 1996

1996 Society for Industrial and Applied Mathematics
012

RANDOM WALKS ON REGULAR AND IRREGULAR GRAPHS*

DON COPPERSMITHt, URIEL FEIGE$, AND JAMES SHEARERt

Abstract. For an undirected graph and an optimal cyclic list of all its vertices, the cyclic cover
time is the expected time it takes a simple random walk to travel from vertex to vertex along the list
until it completes a full cycle. The main result of this paper is a characterization of the cyclic cover
time in terms of simple and easy-to-compute graph properties. Namely, for any connected graph, the
cyclic cover time is ((n2dave(d-1)ave), where n is the number of vertices in the graph, dave is the
average degree of its vertices, and (d-1)ave is the average of the inverse of the degree of its vertices.
Other results obtained in the processes of proving the main theorem are a similar characterization of
minimum resistance spanning trees of graphs, improved bounds on the cover time of graphs, and a
simplified proof that the maximum commute time in any connected graph is at most 4n3/27+ o(n3).

Key words, random walks, graphs, electrical resistance

AMS subject classifications. 05C99, 60J15, 68R10

1. Introduction. Let G G(V, E) be a simple connected graph on n vertices
and m edges. For any vertex v E V, dv denotes the degree of v (the number of
edges incident with v). We consider random walks on G, where at each step the
random walk moves to a vertex chosen at random with uniform probability from the
neighbors of the current vertex. For two vertices u, v E V, the hitting time H[u, v]
is the expected number of steps it takes a walk that starts at u to reach v, and the
commute time C[u, v] is the expected number of steps that it takes a walk to go from
u to v and back to u (that is, C[u, v] H[u, v] + H[v, u]). The cover time of a graph
EC[G] is the expected number of steps it takes a random walk to visit all vertices of
the graph, starting at the worst possible vertex (that maximizes this value).

Aleliunas et al. [1] showed that for any connected graph, EC[G] < 2nrn. This
bound has been refined by Sahn et al. [13], who proved a bound of EC[G]

_
4n2dave/dmin, where dave is the average degree of the graph, and dmin is its mini-
mum degree. This bound takes into account the structure of the graph: for regular
graphs the bound is low, O(n2), whereas for irregular graphs, those which have a high
ratio dave/dmin, the bound is higher.

In this paper we further study the relation between "regularity" of a graph and
random walks. However, we use a different measure of regularity, namely dae(d-1)e,
where (d-1) is the average of the inverse of the degrees of the vertices. This measure
obtains its minimum 1 on regular graphs and its maximum Ft(n) on highly irregular
graphs that have a linear number of vertices of constant degree and a linear number
of vertices of degree f(n). It was argued in [11] that this measure is preferable
to dave/dmin, since it is more robust. Introduction of even a single vertex of small
degree can cause dave/dmin to increase by a multiplicative factor of O(n), whereas
dv(d-1) would increase by at most a constant factor.

Using our regularity measure, we provide an almost tight characterization of a
property that is closely related to the cover time. The cyclic cover time ECC[G] is

Received by the editors December 27, 1993; accepted for publication (in revised form) June 30,
1995.

IBM T. J. Watson Research Center, Yorktown Heights, NY 10598 (copper@watson.ibm.com
and shearer@watson.ibm.com).

Department of Applied Math and Computer Science, The Weizmann Institute, Rehovot, Israel
(feige@wisdom.weizmann.ac.il). The research of this author was supported by a Koret Foundation
fellowship.

301

302 D. COPPERSMITH, U. FEIGE, AND J. SHEARER

the expected number of steps it takes to visit all vertices of the graph in a prespecified
cyclic order for the best cyclic order (that minimizes this value). That is,

ECC[G] H[vi, vi.] + H[vi, vial +"" + H[vi,,_,

where (il, i2,..., in) is a permutation that minimizes the above sum. Clearly, ECC[G] >
EC[C].

Our main theorem states that for any graph G, ECC[G] is characterized up to a
constant factor by dave(d-1)ave.

THEOREM 1. For any connected graph G,

ft(d-1)ave. Thus theObserve that vevdv 2rn ndave and Yev d
features of the graph that characterize its cyclic cover time can be abstracted to
the single easily computable quantity dave(d-1)ave (in particular, it is computable in
deterministic logarithmic space), with loss of only a constant factor in the accuracy
of the value computed for the cyclic cover time.

A simple corollary of Theorem 1 is that for any connected graph, EC[G] <
!n2da(d-1). This is an improvement of the [13] bound on the cover time, since
for every graph, d(d-1)aw <_ dve/d,in. However, the bounds that we obtain on
the cover time are far from tight. Observe that the bounds that we derive are
whereas the cover time of a graph may be as low as O(nlogn) (for a clique or a

star). Better bounds on the cover time can sometimes be obtained from the relation
EC[G] <_ max,[H[u, vii ln n [14]. The maximum hitting time on a graph can be
computed in polynomial time. Alternatively, it can be bounded from above by the
maximum commute time, which in turn can be bounded by 2rnD, where D is the
diameter of the graph, or even characterized exactly by 2rnRe, where Re is the
maximum effective resistance in the graph (see [5], and also 3). We remark that it is
not known whether the diameter of a graph or its maximum effective resistance are
computable in deterministic logspace.

2. A travelling salesperson formulation of cyclic cover time. For any
undirected connected graph G G(V, E), we can construct the directed weighted
complete graph G G(V, W), where W is the sequence of weights associated with
the edges of G. The vertex set of G is identical to that of G. Any two vertices
u, v E V are connected by two antiparallel directed edges in G. The weight of edge
(u, v) is set to be identical to the hitting time H[u, v]. The problem of computing
the cyclic cover time of G is thus equivalent to solving travelling salesperson (TSP,
finding the Hamiltonian cycle of least weight) on the directed graph G. (One may
regard the problem of finding the optimal cyclic cover tour as a drunken salesperson
problem, where the salesperson wanders at random from town to town, searching for
the next town on his or her list. What is the optimal ordering of towns on the list?)

The directed graph G can be made into an undirected graph, which we also
denote by G (so as not to introduce additional notation). For any pair of vertices
u, v E V, the two antiparallel edges are replaced by a single edge with weight equal
to the commute time C[u, v]. Let TSP(G’)denote the weight of the minimum weight
Hamiltonian cycle in the undirected graph G. Then TSP(G) is equal to exactly
twice the cyclic cover time on G, by the well-known fact that along any cycle, the

RANDOM WALKS ON GRAPHS 303

sum of hitting times going along one direction is equal to the sum of hitting times
going along the opposite direction (see, e.g., [7]).

In order to obtain an upper bound on the cyclic cover time, we shall use the
following relation between spanning trees and Hamiltonian cycles. Let MST(G)
denote the weight of the minimum weight spanning tree of G. Clearly, MST(G) <_
TSP(G). Furthermore, if the weights satisfy the triangle ineq lality, then it is a
simple matter to show that TSP(G’) <_ 2MST(G’) (see, e.g., [12]). Thus, in our case
of cyclic cover time, it remains to bound MST(G).

Remark. We do not know if exact computation of the cyclic cover time is NP-
hard. The algorithm of Christofides [6, 12] approximates metric TSP within a factor
of 3/2 and can be applied to approximate the cyclic cover time, as the commute time
(weight of the edges in G) is computable in polynomial time, and satisfies the triangle
inequality (that is, C[u, w] <_ C[u, v] + C[v, w]). By [2], there is some constant such
that it is NP-hard to approximate metric TSP to within a ratio of 1 + . We do not
know whether the extra structure of our graph G can be exploited to improve over
the approximation ratio obtainable for metric TSP.

3. Random walks and electrical resistance. There is a well-known corre-
spondence between random walks and resistance of electrical networks [8, 5, 15]. View
each edge of G as a resistor of 1 ohm. The effective resistance between vertices u and
v, denoted by R[u, v], is the voltage that develops at u if a current of i amp is injected
into u and v is grounded. In [5] it is shown that the effective resistance captures the
commute time. Namely, for any connected graph with rn edges, and any two vertices
u and v,

v].

We shall use three properties about effective resistance:
1. Serial connection: resistors that are connected in series can be replaced by a

single resistor whose resistance is the sum of the resistances.
2. Parallel connection: resistors that are connected in parallel can be replaced

by a single resistor whose conductance (the inverse of resistance) is the sum of the
conductances.

3. Shortcut principle: the effective resistance between any two vertices in a
network does not increase if we "short cut" (connect by a resistor of resistance 0)
vertices in the network.

The above three properties imply the following proposition.
PROPOSITION 2. The effective resistance between any two vertices u, v E V

satisfies

1 1
R[u,v] >_

d + l d, + l

Proof. We first show that if u and v are not connected by an edge in G (that
Collapse all vertices of V \ {u, v} to a singleis, (u, v) E), then R[u, v] >_ + .

vertex w, obtaining a graph GS. By the shortcut principle, Rcs[u, v] <_ R[u, v]. By
Likewise, Rcs[w v]parallel connection, Ras[u, w] . . By serial connection,

+ +
We now consider the case that (u, v) E . Construct from G a graph GW by

removing the edge (u, v) and adding two new vertices Wl and w2, together with the
four edges (u, Wl), (Wl, v), (u, w), and (w, v). Observe that Rw[u, v] R[u, v],

304 D. COPPERSMITH, U. FEIGE, AND J. SHEARER

since the pair of edges [(u, wi), (wi, v)] (for 1 or for 2) can be replaced
by a single 2 ohm resistor (serial connection principle), and thereafter the two 2
ohm parallel resistors can be replaced by a single 1 ohm resistor (parallel connection
principle), giving back the original edge (u, v). In GW, there is no edge (u, v), and
the degree of each of the vertices u and v is increased by 1. Continue as above.

As a corollary we obtain the easy direction of Theorem 1.
COROLLARY 3. For any connected graph, the cyclic cover time satisfies

Proof. Consider n arbitrary cyclic ordering of the vertices of G. The sum
Hence the sum ofof resistances along this cyclic order is at least 2vey dr+l"

and the cyclic cover time is at leastcommute times is at least 2m 2vy dr-t-1’
2mvV dr+l"

The above bound is tight for complete graphs.
In order to obtain an upper bound on the cyclic cover time, or TSP(G), we shall

bound MST(G). For reasons of convenience, the weights assigned to edges of G are
the effective resistances R[u, v] (rather than the commute times Gin, v]). It will turn
out that for the proof of Theorem 1, there is no need to consider edges of G that
were not edges in the original graph G, and they are assigned "infinite weight." Our
goal is to upper bound Rspan, the weight of the spanning tree of minimum weight
(resistance). By previous discussion it follows that the cyclic cover time of G is at
most 2mRspan.

The approach of using Rspan in order to bound the cover time originates from
[1, 13]. Our current work was motivated by the conjecture in [11] that Rspan

4. The excess resistance lemma.
DEFINITION. The excess resistance 5[(u, v)] of edge (u, v) E E is defined by

(15[(u, v)]= R[u, v]
d +----- + d + 1

Observe that by Proposition 2, 5[(u, v)] > 0, with equality if and only if d d and
there are d- 1 intermediate vertices that are adjacent both to u and v (in addition
to the one edge (u, v)).

The following identity (the excess resistance lemma) plays a fundamental role in
our paper.

LEMMA 4. For any graph G G(V, E) with c connected components, the sum of
excess resistances along its edges satisfies

1E 5[(u,v)] E d,+l
c.

(u,v)E vV

Proof. We present without proof an identity due to Foster [11, 15].
LEMMA 5. Let G G(V, E) be a graph with n vertices and c connected compo-

nents. The sum of effective resistances along the edges of G satisfies

R[u,v] n-c.
(u,v)E

RANDOM WALKS ON GRAPHS 305

We return to the proof of Lemma 4. By definition of the excess resistance,

[,]- + + [(, v)]
(,v)E (,v)E

d3=Ed+l + E 5[(u,v)].
(u,v)E

The excess resistance identity follows from Foster’s identity, rl

5. Bounds on the commute time. The following theorem improves the lead-
ing constant (by a factor of 3) over a similar theorem proved in [11]. This results
in improved time estimates for deciding undirected s-t-connectivity by space-efficient
randomized algorithms [11].

THEOREM 6. For any pair of vertices s and t in a connected graph, the commute
time satisfies

1

d + 1"
vV

Proof. Consider any simple path p s, Vl, v.,..., ve, t, connecting s and t (not
necessarily the shortest path). We use the excess resistance lemma to bound the
resistance along this path.

R[] [,] + [,] +... + R[e, t]

1 1 1 1

ds + l d1+1
+ 5[(s’ vl)] + +

dv + l +dt+l +5[(ve’t)]

1 1
<++ [(,)] < d+l"ey (u,v)E vV

The sum of commute times along path p is an upper bound on C[s, t], and it
satisfies

1
c] n[] < 6n +.

vV

The above bound on the maximum commute time in a graph is the best of what
is possible (up to a low-order term). This can be verified by considering specific
examples, such as a path of n edges (and n + 1 vertices), for which the commute time
between the two endpoints is 2n2. A more striking demonstration of the tightness of
Theorem 6 is provided by the following corollary.

COROLLARY 7. For any two vertices s and t in a connected graph of n vertices,
the commute time satisfies

c[, t] + o().

Proof. We first transform G into a new graph G, for which almost all vertices
have degree at least 2 by repeatedly deleting vertices of degree 1 (except for s and t),

306 D. COPPERSMITH, U. FEIGE, AND J. SHEARER

and re-appending them as a path leading out of t. This does not change the number
of edges in G nor the effective resistance between s and t. Hence Ca, [s, t] C[s, t].
Note that in G’ at most two vertices have degree 1 (s and the vertex at the end of
the path leading out of t).

Assume now that G has k vertices of degree at least v and n- k vertices of
kdegree less than v. Then the number of edges in G is at most V+(n-k)v/-, and the

kis at most - + + 1. The product of these two expressionsexpression vev dv +1
is maximized when k

_
2n/3, and the bound on the commute time follows.

The above corollary is not new. Brightwell and Winkler [4] show that the max-
imum hitting time in a graph is at most 4na/27 + o(na) and, in fact, they find the
graph for which the hitting time is maximized (the lollipop graph). A similar bound
on the commute time is implicit in [7]. The same upper bound also holds for the
cyclic cover time, as proven in [10].

6. Regular graphs. We now turn to bound Rspan, the resistance of the span-
ning tree of minimum resistance. We start with the case of ®ular graphs. For
®ular graphs, Kahn et al. [13] prove that the cover time is bounded by 4n:. Their
proof actually shows that Rspan

_
4n/d, and hence the cyclic cover time is bounded

by 4n. We improve upon the bounds of [13].
THEOREM 8. Irt connected d-regular graphs, the resistance of any spanning tree

T satisfies

3(n- 1)< <
d+l d+l

Proof. The lower bound on R[T] is a trivial consequence of Proposition 2. The
upper bound is by application of Lemma 4.

Thus all spanning trees in a regular graph have roughly the same resistance. The
clique demonstrates that there are d-regular graphs for which all spanning trees have
the minimum possible value. The necklace (a cycle of cliques, where an edge is removed
from each clique so as to allow the connection of adjacent cliques without violating
regularity) demonstrates that there are d-regular graphs for which all spanning trees
have nearly the maximum possible value. The following graph demonstrates that
it is possible to obtain a ratio of nearly 3/2 between the minimum and maximum
resistance spanning trees (for large d, and n >> d). Consider disjoint cliques,
each of size d + 1. In each clique, remove a cycle (of (d + 1) edges). Now create
cycle of cliques, where each clique is connected to each neighboring clique by (d + 1)
connecting edges. It can be verified that the resistance of clique edges is roughly 2/d,
whereas the resistance of connecting edges is roughly 3/d. Hence a spanning tree
that is based mainly on connecting edges will have resistance 3/2 times as high as
spanning tree that is based mostly on clique edges.

7. Proof of the main theorem. Theorem 8 can be generalized to arbitrary
graphs, showing that the resistance of any spanning tree satisfies

n-1 1n-2 1 < R[T] < +2Edmax + 1 + E dv + 1 dmin + 1 dv + 1
V V

For the purpose of proving Theorem 1, we need an upper bound on Rspan that
n--1does not depend on drain. Our problems would be solved if we could replace in

However, the resulting proposition would be false.Theorem 8 with ’ey dv +1

RANDOM WALKS ON GRAPHS 307

The lower bound of Theorem 8 on R[T] would be off by a factor of roughly 2, as can
be seen by considering a bipartite graph Ga,b, with a left-hand-side vertices, b right-
hand-side vertices, and b >> a. The effective resistance along any edge is a+b-lab (by
symmetry, and Foster’s identity), and hence all spanning trees have resistance roughly
b/a (assuming b >> a). For Ga,b, --vV d+ll

__
b/a. Hence R[T] EvV dv---bl’l

The upper bound of Theorem 8 on R[T] is violated to a more dramatic extent.
Consider the graph composed of a clique on k vertices, with v/ additional vertices,
each connected via connecting edges to distinct vertices in the clique. For this_

2 whereas the maximal resistance spanning tree (using allgraph, vey d+l
connecting edges) has resistance roughly x/-.

Hence, unlike the case for regular graphs, it is not true in general that for any
spanning tree T, R[T] O(-vey dr+l)" However, the following theorem shows that
for any connected graph, the average resistance of a spanning tree (when the spanning
tree is chosen at random) is 0(-:y d.+l)"

THEOREM 9. For any connected graph G, the expected resistance of the spanning
trees of G satisfies

1_: 1gT[R[T]] <_
d + 1

Proof. The fraction of spanning trees that use edge (u, v) is exactly R[(u, v)] [3].
Hence,

1 1)2gT[R[T]]= E (R[(u,v)])2= E d+l d+l
-5[(u’v)]

(u,v)E (u,v)E

To bound the above sum we use the following technical lemma.
LEMMA 10. For any edge (u, v),

(1 1)2 2 2

d + 1 d + 1 - 5[(u, v)] <- d(d + 1) + dv(d + 1) + 5[(u, v)].

Proof. For any integer positive values of d and d, the above inequality holds
for the minimum possible value 5 0 and maximum value 5 1 d+l d.+l
(calculations omitted). Since the left-hand side of the inequality is quadratic in 5, and
the right-hand side is linear in 5, the inequality must also hold for all intermediate
values of 5. [:]

Hence

2 2 45[(u, v)])$T[R[T]] <_ E d(d + 1) + d(d + 1) +
(u,v)E

dv 4<-2Ed(d+l) + E
vV (u,v)E

5[(u,v)] <_
d+l

This completes the proof of Theorem 1. Observe that if we could improve the
leading constant in Theorem 1 from 10/3 to 3, this would imply an alternative proof
to ECC <_ 4n3/27 + o(n3) [10], along the lines of Corollary 7. One might hope
to achieve this by bounding the minimum spanning tree, or Rspan, rather than the

308 D. COPPERSMITH, U. FEIGE, AND J. SHEARER

average resistance of random spanning trees. However, it is not true that for any
Consider a full binary tree of depth D (having 2D+I 1graph Rspan

_
3 EvEV dv+l

vertices). Replace every leaf by a k-clique, with k >> d. It can be easily verified
that vEy 5.2O, and that for any spanning tree T, R[T] 4.2 Hencedv+l 4.

Rspan - 16 E5 vv dv +1"

Acknowledgments. We gratefully acknowledge helpful conversations with Prab-
hakar Raghavan, Madhu Sudan, and Prasad Tetali.

REFERENCES

[1] R. ALELIUNAS, R. M. KARP, R. J. LIPTON, L. Lovisz, AND C. RACKOFF, Random walks,
universal traversal sequences, and the complexity of maze problems, in Proc. of 20th Annual
Symposium on Foundations of Computer Science, San Juan, Puerto Rico, 1979, pp. 218-
223.

[2] S. ARORA, C. LUND, R. MOTWANI, M. SUDAN, AND M. SZEGEDY, Proof verification and hard-
ness of approximation problems, in Proc. of 33rd Annual Symposium on Foundations of
Computer Science, Pittsburgh, PA, 1992, pp. 14-23.

[3] B. BOLLOBAS, Graph Theory: An Introductory Course, Springer, New York, 1979.
[4] G. BRIGHTWELL AND P. WINKLER, Maximum hitting times for random walks on graphs, Ran-

dom Structures Algorithms, 1 (1990), pp. 263-276.
[5] A. CHANDRA, P. RAGHAVAN, W. Ruzzo, R. SMOLENSKY, AND P. TIWARI, The electrical re-

sistance of a graph captures its commute and cover times, in Proc. 21st Annual ACM
Symposium on Theory of Computing, Seattle, WA, 1989, pp. 574-586.

[6] N. CHRISTOFIDES, Worst-Case Analysis of a New Heuristic for the Travelling Salesman Prob-
lem, Technical report, Graduate School of Industrial Administration, Carnegie-Mellon Uni-
versity, Pittsburgh, PA, 1976.

[7] D. COPPERSMITH, P. TETALI, AND P. WINKLER, Collisions among random walks on a graph,
SIAM J. Discrete Math., 6 (1993), pp. 363-374.

[8] P. G. DOYLE AND J. L. SNELL, Random Walks and Electrical Networks, The Mathematical
Association of America, Washington, DC, 1984.

[9] U. FEIGE, A tight upper bound on the cover time for random walks on graphs, Random Struc-
tures Algorithms, 6 (1995), pp. 51-54.

[10] , A randomized time-space tradeoff of O(m) for USTCON, in Proc. of 34th Annual
Symposium on Foundations of Computer Science, Palo Alto, CA, 1993, pp. 238-246.

[11] R. FOSTER, The Average Impedance of an Electrical Network, Contributions to Applied Me-
chanics (Reissner anniversary volume), Edwards Brothers, Inc., Ann Arbor, MI, 1949,
pp. 333-340.

[12] M. GAREY AND D. JOHNSON, Computers and Intractability. A Guide to the Theory of NP-
Completeness, Freeman, San Francisco, CA, 1979.

[13] J. D. KAHN, N. LINIAL, N. NISAN, AND M. E. SAKS, On the cover time of random walks on
graphs, J. Theoret. Probab., 2 (1989), pp. 121-128.

[14] P. C. MATTHEWS, Covering problems for Brownian motion on spheres, Ann. Probab., 16
(1988), pp. 189-199.

[15] P. TETALI, Random walks and the effective resistance of networks, J. Theoret. Probab., 4
(1991), pp. 101-109.

SIAM J. DISCRETE MATH.
Vol. 9, No. 2, pp. 309-316, May 1996

() 1996 Society for Industrial and Applied Mathematics
013

THE L(2, 1)-LABELING PROBLEM ON GRAPHS*

GERARD J. CHANGe AND DAVID KUO

Abstract. An L(2, 1)-labeling of a graph G is a function f from the vertex set V(G) to the
set of all nonnegative integers such that If(x)- f(Y)l -> 2 if d(x, y) 1 and If(x) f(Y)l -> i if
d(x,y) 2. The 5(2, 1)-labeling number /k(G) of G is the smallest number k such that G has an

5(2, 1)-labeling with max{f(v):v E V(G)} k. In this paper, we give exact formulas of A(G 2 H)
and A(G + H). We also prove that A(G)

_
A2 + A for any graph G of maximum degree A. For

odd-sun-free (OSF)-chordal graphs, the upper bound can be reduced to A(G)

_
2A + 1. For sun-free

(SF)-chordal graphs, the upper bound can be reduced to A(G)

_
A + 2X(G 2. Finally, we present

a polynomial time algorithm to determine A(T) for a tree T.

Key words. L(2, 1)-labeling, T-coloring, union, join, chordal graph, perfect graph, tree, bipar-
tite matching, algorithm

AMS subject classifications. 05C15, 05C78

1. Introduction. The channel assignment problem is to assign a channel (non-
negative integer) to each radio transmitter so that interfering transmitters are assigned
channels whose separation is not in a set of disallowed separations. Hale [11] formu-
lated this problem into the notion of the T-coloring of a graph, and the T-coloring
problem has been extensively studied over the past decade (see [4, 5, 7, 13, 14, 16,
17, 19]).

Roberts [15] proposed a variation of the channel assignment problem in which
"close" transmitters must receive different channels and "very close" transmitters
must receive channels that are at least two channels apart. To formulate the problem
in graphs, the transmitters are represented by the vertices of a graph; two vertices
are "very close" if they are adjacent in the graph and "close" if they are of distance
two in the graph. More precisely, an L(2, 1)-labeling of a graph G is a function f from
the vertex set V(G) to the set of all nonnegative integers such that If(x)- f(Y)l >- 2
if d(x, y) 1 and If(x) f(Y)l -> 1 if d(x, y) 2. A k-L(2, 1)-labeling is an L(2, 1)-
labeling such that no label is greater than k. The L(2, 1)-labeling number of G, denoted
by A(G), is the smallest number k such that G has a k-L(2, 1)-labeling.

Griggs and Yeh [10] and Yeh [21] determined the exact values of A(P), A(C),
and A(W), where P is a path of n vertices, Cn is a cycle of n vertices, and Wn
is an n-wheel obtained from Cn by adding a new vertex adjacent to all vertices in
C. For the n-cube Q, Jonas [12] showed that n + 3 _< A(Q). Griggs and Yeh [10]
showed that i(Qn) _< 2n + 1 for n _> 5. They also determined A(Q) for n _< 5 and
conjectured that the lower bound n + 3 is the actual value of A(Q) for n _> 3. Using
a coding theory method, Whittlesey, Georges, and Mauro [20] proved that

/(Qn)

_
2k + 2k-q+1 2, where n _< 2k -q and 1 _< q _< k + 1.

In particular, A(Q2k-k-1) _< 2} 1. As a consequence, A(Qn) _< 2n for n _> 3.

Received by the editors March 10, 1993; accepted for publication (in revised form) August 1,
1995.

Department of Applied Mathematics, National Chiao Tung University, Hsinchu 30050, Taiwan,
Republic of China (gjchang@math.nctu.edu.tw). This research was supported in part by the National
Science Council under grant NSC82-0208-M009-050. The research of the first author was supported
in part by DIMACS.

309

310 GERARD J. CHANG AND DAVID KUO

For a tree T with maximum degree A > 1, Griggs and Yeh [10] showed that A(T)
is either A+ 1 or A+ 2. They proved that the L(2, 1)-labeling problem is NP-complete
for general graphs and conjectured that the problem is also NP-complete for trees.

For a general graph G of maximum degree A, Griggs and Yeh [10] proved that
A(G) < A2+2A. The upper bound was improved to be A(G) < A2+2A-3 when G is
3-connected and A(G) < A2 when G is of diameter two. Griggs and Yeh conjectured
that A(G) < A2 in general. To study this conjecture, Sakai [18] considered the class
of chordal graphs. She showed that A(G) < (A + 3)2/4 for any chordal graph G. For
a unit interval graph G, which is a very special chordal graph, she also proved that
2x(G)- 2 _< A(G) _< 2x(G).

The purpose of this paper is to study Griggs and Yeh’s conjectures. We also study
L(2, 1)-labeling numbers of the union and the join of two graphs to generalize results
on the n-wheel that is the join of Cn and K1. For this purpose and a further reason
that will become clear in 3, we introduce a related problem, which we call the U(2, 1)-
labeling problem. The definitions of an L’(2, 1)-labelin9 f, a k-L’(2, 1)-labelin9 f, and
the L’(2, 1)-labelin9 number A’(G) are the same as those of an L(2, 1)-labeling f, a

k-L(2, 1)-labeling f, and the L(2, 1)-labeling number A(G), respectively, except that
the function f is required to be one-to-one. There is a natural connection between
A’(G) and the path partition number p(G) of the complement G of G. For any
graph G, the path partition number p(G) is the minimum number k such that V(G)
can be partitioned into k paths.

The rest of this paper is organized as follows. Section 2 gives general properties
of A(G) and A’(G). Section 3 studies A(GtOH), A(G+H), A’(GUH), and A’(G+H).
Section 4 proves that A(G) _< A2 + A for a general graph G of maximum degree
A. This result improves on Griggs and Yeh’s result A(G) < A2 + 2A. However,
there is still a gap in the conjecture A(G) < A2. Section 5 studies the upper bounds
for subclasses of chordal graphs. Section 6 presents a polynomial time algorithm to
determine A(T) of a tree T.

A referee points out that Georges, Mauro, and Whittlesey [8] also solved A(G+H)
and pv(G + H) by a different approach. They actually gave the solutions without
introducing the notion of A’; see the remarks after Lemmas 2.3 and 3.4.

2. Basic properties of A and A’.
<_ <_ for of a

H.
LEMMA 2.2. A(G) _< A’(G) for any graph G. A(G) A’(G) if G is of diameter

at most two.
LEMMA 2.3. pv(G) A’(Gc) -IV(G)I + 2 for any graph G.
Proof. Suppose f is a A’(GC)-L’(2, 1)-labeling of G. Note that for any two vertices

x and y in V(G), if f(x) f(y) + 1, then (x,y) E(G) and so (x,y) e E(G).
Consequently, a subset of vertices whose labels form a consecutive segment of integers
form a path in G. However, there are at most A’(G) -IV(G)I + 2 such consecutive
segments of integers. Thus p(G) < A’(G) IV(G)] + 2.

On the other hand, suppose V(G) can be partitioned into k p(G) paths in G,
say, (v,l, v,2,..., v,ni) for 1 < < k. Consider a dummy path (v0,1) and define f by

f(v,j) f(v-.,n,_) + 2,
f(v,j_) + 1,

if 0 and j 1;
if 1 < < k and j 1;
if 1 < i < k and 2 < j < ni.

THE L(2,1)-LABELING PROBLEM ON GRAPHS 311

It is straightforward to check that f is a (k+IV(G)I-2)-L’(2, 1)-labeling of Gc. Hence
A’(G) < k + IV(G)I 2; i.e., pv(G) >_ i’(G) -IV(G)I + 2. [3

Remark. Georges, Mauro, and Whittlesey [8, Thm. 1.1] proved that for any graph
G of n vertices the following two statements hold.

(i)/(G) < n- 1 if and only if pv(G) 1.
(ii) Suppose r is an integer greater than 1. A(G) n+r-2 if and only if

Note that an L(2, 1)-labeling is precisely a proper vertex coloring with some extra
conditions on all vertex pairs of distance at most two. So, A(G) has a natural relation
with the chromatic number x(G).

For any fixed positive integer k, the kth power of a graph G is the graph G whose
vertex set V(G) V(G) and edge set E(Gk) {(x, y)" 1 da(x, y) k}.

LEMMA 2.4. x(G) 1 A(G) 2x(G2) 2 for any graph G.
Proof. x(G)- 1 A(G) follows from definitions. A(G) 2x(G2) 2 follows

from the fact that for any proper vertex coloring f of G, 2f- 2 is an L(2, 1)-labeling
of G.

The neighborhood N(x) of a vertex x is the set of all vertices y adjacent to x. The
closed neighborhood Nix] of x is {x} N(x).

LEMMA 2.5 (see [10]). A(G) A + 1 for any graph G of maximum degree . If
A(G) A + 1, then f(v) 0 or A + 1 for any A(G)-L(2, 1)-labeling f and any vertex
v of maximum degree A. In this case, Nix] contains at most two vertices of degree A
for any x V(G).

LEMMA 2.6. ’(C3)= ’(C4) 4 and A’(C) -n- 1 for n 5.
Proo The cases of C3 and C are easy to verify. For n 5, A(G) n- 1 by

definition. Let v0, Vl,..., vn-1 be vertices of C such that v is adjacent to V+l for
0 n- 1, where v v0. Consider the folIowing labeling:

f(v) { i/2, if 0 n- 1 and is even;
[n/2 + [i/2 -1, if0in-landiisodd.

It is straightforward to check that f is an (n- 1)-L’(2, 1)-labeling of Cn. So A’(C)
n-1. H

LEMMA 2.7. A’(P) 0, A’(P2) 2, A’(P3) 3, and A’(Pn) -n- 1 for n 4.

Proof. The cases of P1, P2, P3, and P4 are easy to verify. For n 5, A(P) n- 1
by definition. Last, A’(P) A’(C) n- 1 by Lemmas 2.1 and 2.6. H

3. Union and join of graphs. Suppose G and H are two graphs with disjoint
vertex sets. The union of G and H, denoted by G H, is the graph whose vertex
set is V(G) V(H) and edge set is E(G) E(H). The join of G and H, denoted
by G + H, is the graph obtained from G H by adding all edges between vertices in
V(G) and vertices in V(H).

LEMMA 3.1. A(G H) max{A(G), A(H)} for any two graphs G and H.
Proof. A(G H) max{A(G), A(H)} follows from Lemma 2.1 and the fact that

G and H are subgraphs of G H. On the other hand, an L(2, 1)-labeling of G
together with an L(2, 1)-labeling of H makes an L(2, 1)-labeling of G H. Hence

H)
LEMMA 3.2. A’(G H) max{A’(G), A’(H),]V(G)[+]V(H)]- 1} for any two

graphs G and H.
Proo A’(G H) max{A’(G), A’(H)} follows from Lemma 2.1 and the fact that

G and H are subgraphs of G H. A’(G H) V(G)I + V(H)- 1 follows from the
definition of .

312 GERARD J. CHANG AND DAVID KUO

Assume f is a A’(G)-L’(2, 1)-labeling of G. There are no two consecutive integers
x < y in [0, A’(G)] that are not labels of vertices of G; otherwise we can "compact"
the function f to get a (A’(G)- 1)-L’(2, 1)-labeling f’ of G defined by

f’(v) { f(v)’ if f (v) < x;
f(v) l, iff(v)>x.

For the case where A’(G) > IV/)I / IVIH)I- 1, here are at least IVIH)I pairwise
nonconsecutive integers in [0, A’(G)] that are not labels of vertices of G. We can use
them to label the vertices of H. This yields a A’(G)-L’(2, 1)-labeling of G U H. For
the case where A’(H) > IVIGDI / IVIHDI- 1, similarly, there exists a A’(H)-L’(2, 1)-
labeling of G U H. For the case where max{A’(G),A’(H)} <
without loss of generality, we may assume that]V(G)I > IV(H)]. Let f be a k-L’(2, 1)-
labeling of G such that k < IV/)I / IV(H)I- and there are no two consecutive
integers in [0, k] that are not labels of vertices of G. Such an f exists for k A’(G).
If < IV()l / IV(H)I- 3, then k < 21v(G)l- 3 and so there exist two consecutive
labels x < y. In this case, we can "separate" f to get a (k + 1)-L’(2, 1)-labeling f’
defined by

f’ (v) { f(v), if f(v) < x;
f(v) + l, iff(v)>y.

Continuing this process, we obtain a k-L’(2, 1)-labeling such that IV(G)]+IV(H)I-2 <
k <]V(G)I + IV(H)I- 1 and there are no two consecutive integers in [0, k] that are
not labels of vertices of G. Using IV(H)] nonlabels in [0,]V(G)I + IV(H)I- 1] to
label the vertices in H, we get a (IV(G)] + IV(H)]- 1)-L’(2, 1)-labeling of G U H.
By the conclusions of the above three cases, A’(GU H) < max{A’(G), A’(H),]V(G)I +
IV(H)I 1}. n

LEMMA 3.3. pv(G U H) pv(G) + pv(H) for any two graphs G and H.
Proof. The proof is obvious.
LEMMA 3.4. A(G + H) A’(G + H) A’(G) + A’(H) + 2 for any two graphs G

and H.
Proof. A(G + H) A’(G + H) follows from Lemma 2.2 and the fact that G + H

is of diameter at most two. Also,

pv((G + H)c) + IV(G + H)I- 2 (by Lemma 2.3)
p(G U H) + IV(G)I + IV(H)I-
p(G) + ,(H) + IV(G)I + IV(H)I- (by Lmm 3.3)
A’(G)+ A’(H)+ 2 (by Lemma 2.3). El

Remark. Georges, Mauro, and Whittlesey [8, Cor. 4.6] proved that A(G + H)
max{IV(G)l- 1, A(G)} + max{IV(H)l- 1,/(H)} + 2.

LEMMA 3.5. p(G + H) max{p(G) -IV(H)I,p(H) -IV(G)I, 1} for any two
graphs G and H.

Proof.
p,(C+H)

A’((G + H)) -IV(G + H)I + 2 (by Lemma 2.3)
,’(G u H) -IV(a)l- IV(g)l + 2
max{A’(G),A’(H), IV(G)I / IV(H)I- 1} -Iv(G)I- IV(H)I + 2 (by Lemma

3.2)
max{)’(G) -IV(a)l-4- 2- IV(H)I,V(H) -IV(H)I + 2- IV(a)l, 1}
max{pv(G)- IV(H)I,p(H)- Iv(G)I, x) (by Lemma 2.3). El

THE L(2, 1)-LABELING PROBLEM ON GRAPHS 313

Cographs are defined recursively by the following rules.
(1) A vertex is a cograph.
(2) If G is a cograph, then so is its complement Gc.
(3) If G and H are cographs, then so is their union G U H.

Note that the above definition is the same as one with (2) replaced by the following.
(4) If G and H are cographs, then so is their join G + H.

There is a linear time algorithm to identify whether a graph is a cograph (see [3]). In
the case of a positive answer, the algorithm also gives a parsing tree. Therefore, we
have the following consequences.

THEOREM 3.6. There is a linear time algorithm to compute A(G), IV(G), and
pv (G) for a cograph G.

4. Upper bound of A in terms of maximum degree. For any fixed positive
integer k, a k-stable set of a graph G is a subset S of V(G) such that every two distinct
vertices in S are of distance greater than k. Note that 1-stability is the usual stability.

THEOREM 4.1. A(G) _< A2 + A for any graph G with maximum degree A.
Proof. Consider the following labeling scheme on V(G). Initially, all vertices are

unlabeled. Let S-1 . When Si-1 is determined and not all vertices in G are
labeled, let

F {x e V(G)’x is unlabeled and d(x, y) _> 2 for all y e i-1}.

Choose a maximal 2-stable subset S of Fi; i.e., S is a 2-stable subset of F but S is
not a proper subset of any 2-stable subset of F. Note that in the case where Fi ,
i.e., for any unlabeled vertex x there exists some vertex y E S-1 such that d(x, y) < 2,
S . In any case, label all vertices in S by i. Then increase by one and continue
the above process until all vertices are labeled. Assume k is the maximum label used,
and choose a vertex x whose label is k. Let

II-{i’0ik-landd(x,y)=l for someyS},
I2={i’0ik-landd(x,y)2forsomeyS},
5 {i" 0 k- 1 and d(x,y) 3 for all y S}.

It is clear that I2] +]I3] k. Since the total number of vertices y with 1 d(x, y) 2
is at most deg(x)+ E{deg(y)- (y,x) E(G)} A + A(A-) A:, we have
]I2[A2. Also, there exist only deg(x) A vertices adjacent to x, so I[A. For
any I3, x Fi; otherwise Si {x} is a 2-stable subset of Fi, which contradicts
the choice of Si. That is, d(x,y) 1 for some vertex y in Si-1; i.e., i- 1 I. So,
5]]21]. Then,

A(G) k- [I2[+ [5[[I2[+]I1[2 + .
Jonas [12] proved that A(G) A2 + 2A- 4 if A(G) k 2. For the case of A 3,

this bound improves the bound in Theorem 4.1 from 12 to 11.

5. Subclasses of chordal graphs. A graph is chordal (or triangulated) if every
cycle of length greater than three has a chord, which is an edge joining two non-
consecutive vertices of the cycle. Chordal graphs have been extensively studied as a
subclass of perfect graphs (see [9]). For any graph G, x(G) denotes the chromatic
number of G and w(G) the maximum size of a clique in G. It is easy to see that
w(G) x(G) for any graph G. A graph G is perfect if w(H) x(H) for any vertex-
induced subgraph H of G. In conjunction with the domination theory in graphs, the
following subclasses of chordal graphs have been studied (see [1, 2, 6]). An n-sun is a
chordal graph with a Hamiltonian cycle (Xl, Yl, x2, Y2,... ,Xn, y,, Xl) in which each

314 GERARD J. CHANG AND DAVID KUO

xi is of degree exactly two. An SF-chordal (resp., OSF-chordal, 3SF-chordal) graph
is a chordal which contains no n-sun with n >_ 3 (resp. odd n _> 3, n 3) as an
induced subgraph. SF-chordal graphs are also called strongly chordal graphs by Far-
ber (see [6]). Strongly chordal graphs include directed path graphs, interval graphs,
unit interval graphs, block graphs, and trees. A vertex x is simple if N[y] C_ N[z] or

N[z] C_ N[y] for any two vertices y, z E Nix]. Consequently, for any simple vertex x,
Nix] is a clique and x has a maximum neighbor rn Nix]; i.e., N[y] C_ N[m] for any
y Nix]. Farber [6] proved that G is a strongly chordal graph if and only if every
vertex-induced subgraph of G has a simple vertex.

THEOREM 5.1. /(G) <_ 2A for any OSF-chordal graph G with maximum de-
gree A.

Proof. First, A(G) <_ 2x(G2) 2 by Lemma 2.4. By Corollary 3.11 of [2], G2

is perfect and so x(G2) w(G2). Since G is OSF-chordal, it is 3SF-chordal. By
Theorem 3.8 of [1], w(G2) A + 1. The above inequality and equalities imply that

_<
THEOREM 5.2. /(G) _< /k-4-2X(G)- 2 for any strongly chordal graph G with

maximum degree A.
Proof. We shall prove the theorem by induction on]V(G)I. The theorem is

obvious when IV(G)] 1. Suppose]V(G)I > 1. Choose a simple vertex v of G. Since
G- v is also strongly chordal, by the induction hypothesis,

Let f be a i(G- v)-L(2, 1)-labeling of G- v. Note that v is adjacent to deg(v)
vertices, which form a clique in G. Let rn be the maximum neighbor of v. Since every
vertex of distance two from v is adjacent to m, there are deg(m) deg(v) vertices
that are of distance two from v. Therefore, there are at most 3 deg(v) + deg(m)
deg(v) _< A + 2w(G) 2 A + 2x(G) 2 numbers used by f to be avoided by v.
Hence there is still at least one number in [0, A + 2x(G) 2] that can be assigned to
v in order to extend f into a (A + 2X(G)- 2)-L(2, 1)-labeling. D

Although a strongly chordal graph is OSF-chordal, the upper bounds in Theorems
5.1 and 5.2 are incomparable. Theorem 5.2 is a generalization of the result that
A(T) <_ A + 2 for any nontrivial tree of maximum degree A. We conjecture that
/(G) _< A + x(G) for any strongly chordal graph G with maximum degree A.

6. A polynomial algorithm for A on trees. For a tree T with maximum
degree A, Griggs and Yeh [10] proved that A(T) A + 1 or A + 2. They also
conjectured that it is NP-complete to determine if A(T) A + 1. On the contrary,
this section gives a polynomial time algorithm to determine if A(T) A/ 1. Although
not necessary, the following two preprocessing steps reduce the size of a tree before
we apply the algorithm.

First, check if there is a vertex x whose closed neighborhood Nix] contains three
or more vertices of degree A. If the answer is positive, then A(T) A + 2 by Lemma
2.5.

Next, check if there is a leaf x whose unique neighbor y has degree less than A.
If there is such a vertex x, then T x also has maximum degree A. By Lemma 2.1
and precisely the same arguments as in the proof of Theorem 4.1 of [10], A(T x) _<
(T) _< max{(T-x), deg(x)+ 2} <_ (T-x)and so (T)= (T-x). Determining
A(T) is then the same as determining A(T- x). Continue this process until any leaf
of the tree is adjacent to a vertex of degree A.

THE L(2, 1)-LABELING PROBLEM ON GRAPHS 315

Regardless of whether we apply the above two steps to reduce the tree size or not,
from now on we assume that T is a tree of at least two vertices and whose maximum
degree is A. For any fixed positive integer k, the following algorithm determines if
T has a k-L(2, 1)-labeling or not. We in fact only need to apply the algorithm for
k=A+l.

For technical reasons, we may assume that T is rooted at a leaf r, which is
adjacent to r. Let T T- r be rooted at r. We can consider T as the tree resulting
from T by adding a new vertex r that is adjacent to r only. For any vertex v in T,
let T(v) be the subtree of T rooted at v and T’(v’) be the tree resulting from T(v) by
adding a new vertex v that is adjacent to v only. T(v) is considered to be rooted at
the leaf v’. Note that T(r) T and T’(r’) T’. Denote

S(T(v)) {(a, b)" there is a k-L(2, 1)-labeling f on T’(v’) with f(v’) a and

f(v) =b}.
Note that A(T) 5 k if and only if S(T(r)) = O. Now suppose T(v)- v contains s
trees T(vl), T(v2),... ,T(vs) rooted at Vl, v2,..., vs, respectively, where each v is
adjacent to v in T(v). Note that T(v) can be considered as identifying v, v,..., v,
to a vertex v on the disjoint union of T’(v{), T’(v),..., T’(v’,).

For a system of sets (A)=I (A, A2,..., A,), a system of distinct representa-
tives (SDR) is an s-tuple (a) * (a ,..i=1 a2 as) of s distinct elements such that

aEAforlhi<s.
THEOREM 6.1. S(T(v)) {(a,b)" 0 <_ a <_ k, 0 < b <_ k, la-bl >_ 2, and (A)=

has an SDR, where A {c c 7 a and (b, c) S(T(v))}}.
Proof. Denote by S the set on the right-hand side of the equality in the theorem.
Suppose (a,b) S(T(v)). There is a k-(2, 1)-labeling f of T’(v’) such that

f(v’) a and f(v) b. Of course, 0 < a_< k, 0 _< b_< k, and la-b] _> 2. Let
the same asv. Thenf isaf be the function f restricted on T’(v) by viewing v

k-L(2, 1)-labeling of T’(v) with f(v) f(v) b and f(v) f(v) = f(v’) a,
i.e., (b, f(v)) e S(T(v)) and f(v) e A. Thus (f(v))= is an SDR of (A)*__. This
proves c_ s.

On the other hand, suppose (a,b) S. Then 0 < a <_ k, 0 < b <_ k, la-b >_ 2,
and (A)%1 has an SDR (c)=. Let f be a k-L(2, 1)-labeling of T’(v) such that
f(v) b and f(v) c. Consider the labeling f of T’ defined by f(x) f(x) for
x V(T(v)) and f(v’) a. It is straightforward to confirm that f is a k-L(2, 1)-
labeling of T’(v’) with f(v’) a and f(v) b; i.e., (a, b) S(T(v)). [:]

Our algorithm for determining if a tree has a k-L(2, 1)-labeling recursively applies
the above theorem with the initial condition that for any leaf v of T,

S(T(v)) {(a,b)" 0 _< a _< k, 0 _< b _< k, [a- b >_ 2}.
To decide if the tree T’ has a k-L(2, 1)-labeling, we calculate S(T(v)) for all vertices
v of the tree T. The algorithm starts from the leaves and works toward r. For any
vertex v, whose children are v, v2,..., v, we use S(T(vl)),... ,S(T(v)) to calculate
S(T(v)) by Theorem 6.1. More precisely, for any (a,b) with 0 < a < k, 0 _< b _< k,
la-bl >_ 2, we check if (a, b) S(T(v)) by the following method. Construct a bipartite
graph G (X, Y, E) with

X {Xl,X2,...,Xs}, Y= {0, 1,...,k},

E {(x,c)’c a and (b,c) e S(T(v))}.

316 GERARD J. CHANG AND DAVID KUO

We can use any well-known algorithm to find a maximum matching of the bipartite
graph G. Then (a,b) E S(T(v)) if and only if G has a matching of size s. Note
that for any vertex v we need to solve the bipartite matching problem O(k2) times.
Therefore, the complexity of the above algorithm is O(IV(T)lk2g(2k)), where g(n)
is the complexity of solving the bipartite matching problem of n vertices. The well-
known flow algorithm gives g(n) O(n2"5).

Acknowledgments. The authors wish to extend their gratitude to the referee
and to Jerry Griggs for many constructive suggestions for the revision of this paper.

REFERENCES

[1] G. J. CHANG AND (. L. NEMHAUSER (1984), The k-domination and k-stability problems on

sun-free chordal graphs, SIAM J. Alg. Disc. Meth., 5, pp. 332-345.
[2] (1985), Covering, packing and generalized perfection, SIAM J. Alg. Disc. Meth., 6,

pp. 109-132.
[3] D. G. CORNEIL, Y. PERL, AND L. K. STEWART (1985), A linear recognition algorithm for

cographs, SIAM J. Comput., 14, pp. 926-934.
[4] M. B. COZZENS AND F. S. ROBERTS (1982), T-Colorings of graphs and the channel assignment

problem, Congr. Numer., 35, pp. 191-208.
[5] M. B. COZZENS AND D. I. WANG (1984), The general channel assignment problem, Congr.

Numer., 41, pp. 115-129.
[6] M. FARBER (1983), Characterization of strongly chordal graphs, Discrete Math., 43, pp. 173-

189.
[7] Z. FOREDI, J. R. GRIGGS, AND D. J. KLEITMAN (1989), Pair labelings with given distance,

SIAM J. Discrete Math., 2, pp. 491-499.
[8] J. GEORGES, D. MACRO, AND M. WHITTLESEY (1994), Relating path covering to vertex labellings

with a condition at distance two, Discrete Math., 135, pp. 103-111.
[9] M. C. GOLUMBIC (1980), Algorithmic Graph Theory and Perfect Graphs, Academic Press, New

York.
[10] J. R. GRIGGS AND R. K. YEH (1992), Labeling graphs with a condition at distance 2, SIAM J.

Discrete Math., 5, pp. 586-595.
[11] W. K. HALE (1980), Frequency assignment: Theory and applications, in Proc. IEEE, 68,

pp. 1497-1514.
[12] K. JONAS (1993), Graph Coloring Analogues With a Condition at Distance Two: L(2,1)-

Labelings and List)-Labelings, Ph.D. thesis, Dept. of Math., University of South Carolina,
Columbia, SC.

[13] A. RAYCHAUDHURI (1985), Intersection Assignment, T-Coloring and Powers of Graphs, Ph.D.
thesis, Dept. of Math., Rutgers University, New Brunswick, NJ.

[14] , Further results on T-coloring and frequency assignment problems, submitted.
[15] F. S. ROBERTS (1988), private communication to J. R. Griggs.
[16] (1990), From garbage to rainbows: Generalizations of graph colorings and their appli-

cations, in Proc. of the Sixth International Conference on the Theory and Applications of
Graphs, Y. Alavi, G. Chartrand, O. R. Oellermann, and A. J. Schwenk, eds., John Wiley,
New York.

[17] (1991), T-colorings of graphs: Recent results and open problems, Discrete Math., 93,
pp. 229-245.

[18] D. SAKAI (1994), Labeling chordal graphs: Distance two condition, SIAM J. Discrete Math., 7,
pp. 133-140.

[19] B. TESMAN (1989), T-Colorings, List T-Colorings, and Set T-Colorings of Graphs, Ph.D.
thesis, Dept. of Math., Rutgers University, New Brunswick, NJ.

[20] M. A. WHITTLESEY, J. P. GEORGES, AND D. W. MACRO (1995), On the)-number of Qn and
related graphs, SIAM J. Discrete Math., 8, pp. 499-506.

[21] R. K. YEH (1990), Labeling Graphs with a Condition at Distance Two, Ph.D. thesis, Dept. of
Math., University of South Carolina, Columbia, SC.

SIAM J. DISCRETE MATH.
Vol. 9, No. 2, pp. 317-338, May 1996

1996 Society for Industrial and Applied Mathematics
014

REALIZING DEGREE SEQUENCES IN PARALLEL*

SRINIVASA R. ARIKATIt AND ANIL MAHESHWARI$

Abstract. A sequence d of integers is a degree sequence if there exists a (simple) graph G such
that the components of d are equal to the degrees of the vertices of G. The graph G is said to be a
realization of d. We provide an efficient parallel algorithm to realize d; the algorithm runs in O(log n)
time using O(n m) CRCW PRAM processors, where n and m are the number of vertices and edges
in G. Before our result, it was not known if the problem of realizing d is in NC.

Key words, design and analysis of algorithms, parallel computation, graph algorithms, degree
sequence, majorization, PRAM

AMS subject classifications. 68Q22, 68R10

1. Introduction.

1.1. Problem definition. An important problem in graph algorithms is to com-
pute a (simple undirected) graph satisfying the given degree constraints. An integer
sequence d of length n is called a degree sequence if there exists a graph G on n vertices
such that the degrees of its vertices are equal to the components of the sequence d. The
graph G is said to be a realization of the sequence d. A pair (r, s) of integer sequences
is called a bipartite sequence if there exists a bipartite graph H (X U Y, E) such
that the components of r (respectively, s) are equal to the degrees of the vertices in
X (respectively, Y). Degree sequences and bipartite sequences have been extensively
studied in graph theory [6, 15, 21, 26]. Becauseof the strong connections between the
structural properties of a graph and the degrees of its vertices, these sequences find
significant applications in the areas of communication networks, structural reliability,
and stereochemistry (cf. [7, 26]).

1.2. Previous results. Given an integer sequence d, there are two problems
of interest: the decision problem is to test if d is realizable; the search problem is
to compute a realization of d. A characterization of degree sequences known as the
Erdbs-Gallai inequalities [10] results in an efficient sequential algorithm for the de-
cision problem. Another characterization called the Havel-Hakimi characterization
(cf. [15]) leads to an efficient sequential algorithm for the search problem. In the
case of bipartite sequences, a characterization known as the Gale-Ryser theorem [13,
22, 24] leads to efficient sequential algorithms for the decision as well as the search
problems. Recently, degree sequence problems have gained a lot of attention; see for
example [2-4, 9, 21, 23, 25, 26].

The Erdbs-Gallai inequalities and the Gale-Ryser theorem imply efficient parallel
algorithms for the decision problems on degree sequences and bipartite sequences,
respectively. Recently, a parallel algorithm for a special case of the search problem, in
which the maximum degree is bounded by the square-root of the sum of the degrees,
is presented in [9]; it runs in O(log4 n) time using O(n1) EREW PRAM processors.

Received by the editors May 18, 1994; accepted for publication (in revised form) August 11,
1995. This work was partially supported by the EEC ESPRIT Basic Research Action No. 7141
(ALCOM II). A part of this paper appeared in 5th International Symposium on Algorithms and
Computation, China, 1994.

MPI Informatik, Im Stadtwald, 66123 Saarbriicken, Germany (arikati@mpi-sb.mpg.de).
MPI Informatik, Germany. Current address: School of Computer Science, Carleton University,

Ottawa, Ontario K1S 5B6, Canada (maheshwa@chaos.scs.carleton.ca).
317

318 S.R. ARIKATI AND A. MAHESHWARI

Network-flow based proofs [11, 12] give rise to randomized parallel algorithms for the
search problems on degree sequences and bipartite sequences.

1.3. Our results. The main contributions of this paper are deterministic par-
allel algorithms for the search problems on degree sequences and bipartite sequences.
Our results are as follows:

an efficient parallel algorithm for realizing bipartite sequences that runs in
O(log n) time using O(n) EREW PRAM processors, where n is the number
of vertices in the realization;
a new proof of a relation between degree sequences and bipartite sequences;
an efficient parallel algorithm for realizing degree sequences that runs in
O(logn) time using O(n + m) CRCW PRAM processors, where n and rn
denote the number of vertices and edges in the realization.

The complexity results of this paper are with respect to the PRAM computational
model. For details on the PRAM and NC, see [18, 19]. The work, i.e., time processor
product, of our parallel algorithm for realizing bipartite sequences is o(n2), whereas
there are bipartite graphs that have (n2) edges (e.g., a complete bipartite graph on n
vertices). The complexity results of this paper are feasible since the graphs computed
by our algorithms possess implicit representations; i.e., the graphs can be stored in
O(n) space, and the adjacency information between any two vertices can be reported
in constant time [27].

Our result for realizing bipartite sequences is based on a nontrivial parallelization
of the techniques from the theory of majorization [16, 22]. Our algorithm for realizing
a degree sequence d is based on a new proof of a relation between degree sequences and
bipartite sequences and it proceeds as follows. From d, we compute an appropriate
bipartite sequence (c, c), and then compute a realization H of (c, c). Using the graph
H, we compute a symmetric bipartite graph that leads to a realization of d. The
computation of the symmetric bipartite graph from H is the crucial step, for which
we provide two alternate parallel algorithms: the first one has higher complexity than
the second. The latter algorithm exploits the implicit structure of the bipartite graph
H computed by our algorithm and thus is efficient. The former algorithm does not
assume any structural knowledge of H and can work with any realization of (c, c). It
is based on several interesting lemmas, which may be of independent interest in their
own right.

1.4. Organization of the paper. The rest of the paper is organized as follows.
In 2 we introduce notation and state preliminaries. In 3 we state some of the classical
characterizations of degree sequences and present simple algorithms for realizing the
degree sequences corresponding to multigraphs and trees. In 4 we prove a relation
between degree sequences and bipartite sequences. In 5 we present the required
results from the theory of majorization, including an algorithm for computing unit
transformations. In 6 we present a parallel algorithm for realizing bipartite sequences.
In 7 we provide parallel algorithms for realizing degree sequences.

2. Preliminaries.

2.1. Basic definitions. In a multigraph G (V, E), V is a set of vertices and E
is a multiset of edges (multiple edges may exist between two vertices but no self-loops).
By a graph G (V, E), we mean a simple graph--without multiple edges and self-
loops. A bipartite graph H with the bipartition X U Y is denoted by H (X U Y, E).
In a multigraph G (V, E), dc(v) denotes the degree of a vertex v and Nc(v)
denotes the multiset of the neighbors of v (we omit the subscript, if no confusion

REALIZING DEGREE SEQUENCES IN PARALLEL 319

arises). Similarly, NG(U) is defined as the union of the neighbors of the vertices of
U C_ V. By definition, G is a graph if and only if the following hold for all v E V:
(i) v NG(v) and (ii) N(v) is a set. If (u, v) is an edge of a graph G, we say that
(u, v) E G. Throughout, by a sequence we mean a sequence of nonnegative integers.

2.2. Graph matching. A matching M in a graph G- (V, E) is a collection of
edges such that no two edges of M are incident at a common vertex. The size of M,
denoted by IMI, is the number of edges in it. M is called a perfect matching if it
matches all vertices of G. M is called a maximum matching if it has maximum size
among all matchings. M is called a maximal matching if no other matching properly
contains M. We will need the following theorem due to Hall (cf. [21]).

THEOREM 2.1 (the Hall theorem). Let H (XY, E) be a bipartite graph. Then
H has a matching that matches all vertices of X, if and only iflN(A)l >_ IAI for every
ACX.

We need the following two lemmas the first lemma can be proved easily.
LEMMA 2.2. Let M (respectively, M’) be a maximal (respectively, maximum)

matching in a graph G. Then IMI >_ IM’I.
LEMMA 2.3. Let H (X U Y, E) be a bipartite graph such that (i) d(x) >_ 1 for

all x X and (ii) the inequality d(x) >_ d(y) holds for every edge (x, y) of H. Then
H has a matching that matches all vertices of X.

Proof. We show that H satisfies the sufficiency part of the Hall theorem. We
use induction on IAI, where A C_ X. Since d(x) _> 1 for all x X, the basis case,
IAI 1, follows. Consider now the case that IAI k, where k >_ 2. We need
to prove that IN(A)I >_ k. Assume the contrary, namely that IN(A)I < k. Pick
any vertex z A and put A’ A-z. By induction, IN(A’)I _> k- 1. Since
N(A N(A), it follows (A’) N(A) and IN(A’)I IN(A),I- k- 1 Consider now
the subraph H’ (A’U N(A’), E’) of H. By induction, H satisfies the sufficiency
condition of the Hall theorem and hence has a perfect matching. Let the edges of
the perfect matching be (xl,Yl),(x2, Y2),...,(Xk-l,Yk-1). Using condition (ii) of

Ei--1 d(x) >_ Ei--1 d(y) EyeN(A’)d(y).the lemma, we obtain Y]xeA’ d(x) k-1 -1

Since d(z) _> 1 and N(A) N(A’), we have xeA d(x) > -N(A)d(y), which
contradicts eA d(x) <_ yeg(A)d(y); the latter inequality holds for any bipartite
graph because every edge incident to a vertex in A contributes a 1 to both sides of
the inequality. This completes the induction step and hence the lemma.

2.3. Digraphs. In a digraph D (V, E), E is the set of arcs (directed edges);
the arc from u to v will be denoted by the ordered pair (u, v). The indegree (respec-
tively, outdegree) of a vertex v, denoted by d9(v (respectively, d+D(V)), is the number
of arcs into (respectively, from) v. Call D symmetric if it has only symmetric arcs:
(u, v) is an arc if and only if (v, u) is an arc._ We will require the following lemma.

LEMMA 2.4 (see [12]). Let D (V, E) be a digraph such that indegree of each
+ + (v) isvertex v equals its outdegree, i.e., d:D(V df(v) d(v), and that Zev dD

even. Then there exists a symmetric digraph D (V, E) such that d(v) d+D(V)
d(v)

Proof. If/ is symmetric, then take D "-/. Assume that/ is not symmetric and
let D (V,/) be the "asymmetric part" of/: (u, v) e/ iff (u, v) e/ and (v, u) /.

+Observe that d(v) d/ (v) for all v e Y. Define a trail to be a sequence of (not neces-

sarily distinct) vertices Vl,..., vk, vl such that (Vl, v2), (v2, v3),..., (vk-, vk), (v, Vl)
are distinct arcs of/. Call a trail even if it consists of an even number of edges,
otherwise it is an odd trail.

320 S.R. ARIKATI AND A. MAHESHWARI

Assume that / has an even trail, say Vl, V2,..., V2k, Vl. Change / as follows"
delete the arcs (v2, v3), (va, vs), (v2-2, v2-l), (v2k, v) and add the arcs (v2, v),
(va, v3), (v2-2, v2-3), (v2, v2-l). Notice that this process does not create any
multiple arcs or self-loops in D. Further, the hypothesis of the lemma is maintained.
We repeat the above-mentioned process until D contains no even trails. Then, it

+follows that Eev dD (v) is even as -]evd(v) is even. Further, using d(v) d(v)
for v V, we can decompose the arcs of/ into odd directed cycles. There are an
even number of such cycles. Moreover, any two such cycles must be vertex-disjoint,
otherwise they create an even trail. Let uo, u,..., u2, uo and vo, Vl,..., v2, vo be
any two odd cycles in (. The fact that (uo, vo)/ implies that either both (Uo, vo)
and (vo, uo) are arcs in/ or none is an arc in D. We distinguish between these two
cases.

Cas I. Both (o, o) and (o, Uo) are arcs in . Change as follows" delete
the arcs (u0, v0), (v0, u0), (ltl, it2), (it3, it4), (lt2k-1, t2k) and (Vl, V2), (V3, V4),
(v2-, v2); add the arcs (u2, u), (u4, u3), (u2, u2-) and (v2, v), (v4, v3),

Case 2. None of (uo, vo) and (vo, uo) is an arc in D. Change D as follows: delete
the arcs (uo, u), (u2, u3), (u2, uo), and (vo, Vl), (v2, v3), (v2, vo); add the
arcs (uo, vo), (vo, uo), (u2, u), (u4, u3), (U2k, U2k-1) and (v2, Vl), (v4, v3),
(V2t, V2t-).

In each case no multiple arcs or self-loops are created, and the number of odd
cycles in D decreases. Eventually, D contains no odd cycles and, hence, it becomes
symmetric. The proof is completed by taking D D.

2.4. Parallel techniques. The complexity results of this paper are with respect
to the PRAM. This is the synchronous parallel model in which all processors share a
common memory. In this paper, we need the following techniques previously devel-
oped in parallel computing: Euler tour in a graph [5], merging and cross-ranking [14],
sorting [8], and maximal mtching in a graph [17]. For other techniques such as
parallel prefix and list ranking, see [18, 19].

Consider a sequence of n elements {xl, x2,..., x} drawn from a set S with a
binary associative operation .. The prefix sums of this sequence are the n partial
sums (or products) defined by s X * x2 *... x, 1 _< _< n. Consider a linked list
L of n nodes whose order is specified by an array S such that S(i) contains a pointer
to the node following node i on L for 1 <_ i <_ n. We assume S(i) 0 when i is the
end of the list. The list ranking problem is to determine the distance of each node
from the end of the list. The rank of an element x in a given sequence X is the

number of elements of X that are less than or equal to x. Let A and B be two sorted
sequences. The cross-ranking problem is to find the rank of each element of A in B
and vice-versa.

3. Characterizations and algorithmic aspects.

3.1. Multigraphs. Realizability problems, in general, tend to be simpler if mul-
tiple edges are allowed. We show that this is the case in parallel computation too. We
first discuss realizing degree sequences of bipartite multigraphs and then show how to
reduce the general case to the bipartite case. Recall that in a multigraph, multiple
edges may exist between a pair of vertices but self-loops are not allowed.

Let (r, s) be a pair of sequences where r (r,..., r,) and s (s,..., s). Our
problem is to compute a bipartite multigraph H (X Y, E) satisfying the degree
constraints r and s. It is easy to prove that H exists iff Ei=I’ r Ej=ln sj. To

REALIZING DEGREE SEQUENCES IN PARALLEL 321

realize (r,s)in parallel, test if ’im__l ri -nj=l sj and stop if the test fails. Then,
compute the prefix sums of r and s and store them in the arrays R and S, respectively.
Cross-rank S in R using the algorithm of [14]. Connect y to all the corresponding
xi’s using the required number of multiple edges.

We now discuss the general case. Given a sequence d, the problem is to compute
a multigraph with degree sequence d. The following lemma characterizes d [6, 15, 21].
The proof given below results in a simple parallel algorithm.

LEMMA 3.1. The sequence d (dl,...,d), where dl max(d), is the degree
sequence of a multigraph if and only if in=l di is even and dl <_ --i2 di.

Proof. We prove the sufficiency part, the other part being trivial. Sort the
sequence d into nonincreasing order; i.e., let dl _> d2

_ _
dn. Let Vl, v2,..., Vn be

the vertices of the multigraph G to be computed. Put rn 1/2 --i=1 di and let p be
the index such that Pi= di <_ rn < i=p+ di. We distinguish between two cases.

Case 1 P di m. Define sequences r and s by r (d d2, dp) andi=1
s (dp+l,..., dn). Then r and s have the same component sum and thus (r, s) can
be realized, using the procedure given above, as a bipartite multigraph G (XUY, E),
where X {Vl,...,Vp} and Y {vp+l,...,vn}.

Case 2. P n=1 d < rn. Put k =p+l di m and define sequences r and s as
follows: r (41- k, d2,..., dp, dp+l- k) and s (dp+2,..., dn). Then r and s have
the same component sum (= m-k) and thus (r, s) can be realized, using the procedure
given above, as a bipartite multigraph H (X t2 Y, E), where X {vl,..., Vp+l}
and Y {Vp+2,..., Vn}. By adding k multiple edges between Vl and Vp+l in H we
get the required multigraph G. []

3.2. Trees. We now discuss the degree sequences of trees. The following char-
acterization of such sequences is well known [6, 15, 21]. We will present a proof that
leads to a simple parallel algorithm to realize these sequences.

LEMMA 3.2. The sequence d (dl,..., dn) is the degree sequence of a tree iff all
di’s are positive and n di 2n- 2i--1

Proof. The necessity part is trivial and we prove the other part. Sort the sequence
d into nonincreasing order; denote the resulting sequence also by d. Let vl, v2,..., vn
be the vertices of the tree G to be computed. If dl 2 then G is a path and we are
done. So assume that dl

_
3 and let k be the largest index such that dk _> 3. Put

rn i=1 (di 2). Let A be the set of di’s that are equal to 1. The following claim
will be proved after we describe the computation of G.

Claim. AI rn + 2.
First we compute a path consisting of vertices v-l, vl, v2,..., Vn-,-2, v. Delete

Vn and v-i from A. Then we compute "stars" using A and vl, v2,..., vk as follows:
connect the first dl 2 vertices of A to Vl, connect the next d2 2 vertices of A to
v2, and connect the remaining da 2 vertices of A to va. This completes the
computation of G.

kWe now prove the above claim. Observe that i=l di m+2k and that there are

n-k-lA d’s that are equal to 2. So 2n-2
The claim follows by rearranging the terms.

3.3. Graphs. We now discuss degree sequences of graphs. Let d be an integer
sequence of length n, where n > dl

_
d2 >_ >_ d, >_ 0. The proofs of the following

results may be found, e.g., in [6, 15, 21].

Observe that dn-1 dn 1.

322 S.R. ARIKATI AND A. MAHESHWARI

The Erdhs-Gallai inequalities (EGI). The sequence d is realizable if and only if
n-i=1 di is even and -ki=l di _< k(k- 1)+ -i=k+l min(di, k) for k 1, 2,..., n.
The Havel-Hakimi characterization. The sequence d is realizable iff the numbers

d2- 1, d3- 1,...,ddl+- 1, dd+.,...,dn are realizable.
Using EGI, we can test in linear time if d is realizable. We can use the second

characterization to derive an efficient sequential algorithm to compute a realization
of d.

In parallel computation, the inequalities of EGI can be tested optimally, and this
implies an optimal parallel algorithm to test if d is a degree sequence. As for the
problem of computing a realization of d, a proof of the EGI using network flows is
given in [12] and this proof results in a randomized parallel algorithm. The proof
consists of two steps.

Step 1. Define a network with edge capacities in unary and solve the maximum
flow problem on this network; then, construct a digraph D.

Step 2. Obtain a symmetric digraph from D.
Results of [20] imply a randomized parallel algorithm for Step 1. Based on the

proof of Lemma 2.4, Step 2 can be performed in NC.

4. Degree sequences and bipartite sequences. We study in this section a
relation between degree sequences and bipartite sequences. The main result of this
section is a new proof of a theorem given in [25]. The proof presented in [25] is
via a cycle of eight implications and results in an inherently sequential algorithm to
compute realizations of degree sequences, whereas our proof is simple and helps us to
design a parallel algorithm.

Throughout this section, d denotes an integer sequence of length n, where n >
d >_ d2

_ _
dn

_
O. Let # max(k" dk

_
k. Define a new sequence

c (Cl, cn), where

di/l if i_<#,
ci di otherwise.

Observe thatci-di/l>_#/lfor l_i_<#andcj-dj <_# for #/ l <_j <_n.
THEOREM 4.1. The sequence d is a degree sequence iff (c, c) is a bipartite se-

quence.
Before we prove this theorem, we remark that the "/1" is required in the definition

of c, since there are sequences d such that (d, d) is a bipartite sequence but d is not a
degree sequence; for example, take d (4, 2, 2, 2). The proof is based on the following
lemmas.

LEMMA 4.2. If d is a degree sequence then (c, c) is a bipartite degree sequence.
Proof. Let G (V, E) be a realization of d. We obtain a bipartite realization

H (X U Y, E’) of (c, c) as follows: X and Y are two copies of V; if (vi, vj) E G then
(xi, yj), (xj, yi) H; further, (xi, yi) H for all 1

We need a few definitions before presenting the next lemmas. Let H (X (2 Y, E)
be a realization of (c, c). A vertex x (or y) is called a high-degree vertex if 1 _< _< #,
otherwise it is a low-degree vertex. An edge (xi,yi) is called a high-degree edge if
1 _< _< #. Similarly, an edge (xj, yj) is called a low-degree edge if # + 1 _< j _< n.
Edges of the form (xi, yj), where :fi j, are neither high-degree edges nor low-degree
edges. High-degree and low-degree edges play a very important role in our algorithms.

A pair of edges (x,, y) and (x, y) form an exchange pairif (x,, y), (x, y) U
(see Figure 1). An exchange on the edges (x,, yz) and (x, yh) consists of deleting
(x,, yz) and (x, Yh) and inserting (x,, yh) and (x, yz). The following two lemmas

REALIZING DEGREE SEQUENCES IN PARALLEL 323

imply that, given any realization H of (c, c), we can always obtain another realization
H’ such that H’ contains all high-degree edges and no low-degree edges.

\ /
\ /

/ \
/ \

FIG. 1. An exchange operation. A solid line indicates the presence of an edge and a dashed
line its absence.

LEMMA 4.3. Let H be a realization of (c,c) such that (xi, y) H for some
1

_
i

_
#. Then there exist k and such that (xi, Yk) and (x, y) form an exchange

pair, where k > it and k .
Proof. Since c _> it + 1 there exists a k such that k > # and (x, yk) E H. Further,

ck <_ # and c _> # + 1 imply that there exists an g k such that (x, y) E H and
(x,yk) g.

LEMMA 4.4. Let H be any realization of (c,c) such that (xj,yj) H for some
j > it. Then there exist k and such that (xj, yj) and (xt, Yk) form an exchange pair,
where k <_ # and k .

Proof. Since cj <_ # there exists a k such that k _< # and (xj,yk) H. Fur-
ther, ck >_ # + 1 implies that there exists an t - k such that (x,yk) H and
(x,yj) H.

LEMMA 4.5. If (C, C) i8 a bipartite degree sequence, thend is a degree sequence.
Proof. Let H be any realization of (c,c). Assume that (xi, yi) H for some

1 _< _< #. Let k and g be as defined in Lemma 4.3. Perform an exchange, by deleting
the edges (xi,y) and (x,yi) and adding the edges (xi,yi) and (x,yk). Observe
that this process does not destroy any existing high-degree edges in H. We repeat
this process until H contains all high-degree edges. Assume now that H contains a
low-degree edge, say (xj, yj) for some j > #. Let k and g be as defined in Lemma 4.4.
Delete the edges (xj, yj) and (x, y) and add the edges (xj, y) and (x, yj). Observe
that this process does not destroy any existing high-degree edges and does not create
any new low-degree edges in H. We repeat this process until H contains no low-degree
edges.

Define a digraph/ (V,/) on the vertex set Y {Vl,..., Vn}, where (v, vj) e
+/ iff (x, yj) H and (xj, y)

_
H. Then d:D(V dD(v) d for all 1 _< i <_ n. By

Lemma 2.4, we obtain a symmetric digraph D (V, E) such that d)(v) d+D(V)
d for all i. Obtain an undirected graph G from D by replacing the two symmetric
arcs (vi, vy) and (vj, v) with the edge (v, v). Then G is a realization of d. [:]

Lemmas 4.2 and 4.5 imply Theorem 4.1. It is fairly easy to see that the proof of
Lemma 4.5 implies a simple sequential algorithm to realize d from any realization of
(c, c). In 7, parallel algorithms to achieve the same objective will be presented.

324 S.R. ARIKATI AND A. MAHESHWARI

5. Majorization and unit transformations. Throughout this section, let a
(al,...,an) and b (bl,...,bn) be sequences of length n, where al >_ a2 >_ >_
an>_0andbl >_ b2 >_ >_ bn >_ O.

5.1. Majorization. Majorization has been studied, over several decades, in the
theory of inequalities [22, 16]. It captures the intuitive notion that the components of
a vector are "less nearly equal" than are the components of another vector. Formally,

k kwe say that a majorizes b, denoted by a b, if=a >_ =1 b for k 1, n,
with equality for k n. For example, (4, 2, 1, 0) (2, 2, 2, 1).

Majorization was used by economists in measuring inequality of incomes and in
studying the principle of transfers (cf. [22]). If a _> aj + 2 for some and j, we say
that the sequence c= (Cl,...,cn), defined by c a 1, cj aj - 1, and ck ak
for k : i, j, is obtained from a by a unit transformation from i to j. Clearly, a c.
A classical result, known as the Muirhead lemma (cf. [22]), states that the converse
is also true: if a b then a can be transformed to b by performing a finite number of
(successive) unit transformations on a. The following lemma presents the details.

LEMMA 5.1. Suppose that a

_
b. Define a sequence (,..., n by 5

nmax{0, (a- b)}, and define A(a,b) E=I 5. Then a can be transformed to b
by performing A(a,b) unit transformations. Further, A(a,b) equals the minimum
number of unit transformations required to transform a to b.

Proof. If a b then A(a, b) 0. Assume that a : b and let be the smallest
index such that a b. Observe that a > b, since a

_
b. Let j > be the smallest

index such that a < bj. Define c to be the sequence obtained from a by performing
a unit transformation from to j. Clearly, a c

_
b. By repeating this process on

the sequence c, we can obtain b.
To prove the second part of the lemma, observe that if c is any sequence obtained

from a by a unit transformation, then A(c, b) _> A(a, b)- 1.

5.2. An algorithm for computing unit transformations. In this subsec-
tion, we discuss the computation of unit transformations that are required to trans-
form a to b. The basic idea is to compute the numbers t(i,j), for 1 _< i,j <_ n, so that
a can be transformed to b by performing t(i,j) unit transformations from position
to position j. We give an example to illustrate the idea.

Example 1. Let a (15,12,9,8,5,4,4,0) and b (11,10,9,9,9,3,3,3). Put
c a- b (4, 2, 0,-1,-4, 1, 1,-3) and define an array P (respectively, M) whose
components are given by Pi max{0, ci} (respectively, Mi max{0,-ci}) for
1 _< _< 8; i.e., P= (4,2,0,0,0,1,1,0) and M- (0,0,0,1,4,0,0,3). Now, P and M4
are the left-most positive components of P and M, respectively. As M4 1 < P1, we
subtract 1 from P1 and Ma and add 1 to t(1, 4). Then P and M become (3,2,0,0,0,1,1)
and (0,0,0,0,4,0,0,3), respectively. Now P1 and M5 are the left-most positive compo-
nents of P and M and, as P1 3 < Mh, we subtract 3 from P1 and M5 and add 3 to
t(1, 5). Then P and M become (0,2,0,0,0,1,1) and (0,0,0,0,1,0,0,3), respectively. We
continue this process until all the components of P and M become O’s, and we get
t(1, 4) 1, t(1, 5) 3, t(2, 5) t(2, 8) t(6, 8) t(7, 8) 1.

A simple linear-time sequential algorithm, based on the procedure explained in
the above example, for computing unit transformations is as follows. Compute the
arrays P and M and then scan both the arrays from left to right, starting at the
position i 1 in P and j 1 in M. In each step compute the appropriate t(i,j) and
either increment or j. Since the arrays P and M are scanned only once and the
number of reported t(i,j)’s is linear, the algorithm runs in linear time.

REALIZING DEGREE SEQUENCES IN PARALLEL 325

A parallel implementation of this algorithm is presented in Algorithm 1. In step
2 of the algorithm, P1[i] k=l P[i] for 1 _< i _< n. Moreover, the arrays P’ and
M are obtained in the sorted order. After cross-ranking the elements of P in M
and vice-versa, we know precisely the appropriate t(i,j)’s for each value of and j.
For each value of we can store the t(i,j)’s in an array, with respect to increasing
j. Alternatively, we can store the t(i, j)’s in an n n matrix, without initializing the
matrix, by a standard method (see [1]).

1. Compute ci := a -b for 1 _< _< n and the arrays P and M.
2. Compute prefix sums of P and M and store them in the arrays P and M,

respectively.
3. Cross-rank the arrays PI and M by the algorithm of [14] and then compute

t(i,j)’s.
ALGORITHM 1. An algorithm for computing unit transformations.

THEOREM 5.2. Let a and b be sequences of length n such that a - b. Algorithm 1
computes the numbers t(i,j), for I <_ i,j <_ n, such that a can be transformed to b by
performing t(i,j) unit transformations from the position to j in a. The algorithm

n) EREW PRAM
Proof. The proof of correctness is straightforward. To analyze the complexity,

note that the prefix sums and the cross-ranking of two sorted arrays can be computed
in O(log n) time using O(n/log n) processors.

5.3. Properties of unit transformations. In this subsection we present prop-
erties of the numbers t(i, j) computed by Algorithm 1. These properties will be used
to design a parallel algorithm for realizing bipartite sequences.

Observe t(i, j) 0 whenever _> j or aj

_
by. We need a few definitions to state

additional properties of t(i, j)’s. For 1 _< _< n, define A(i) to be the set of all j such
that Algorithm 1 reports a unit transformation from to j; i.e., A(i) {j "t(i, j) 0}
(see Example 2). Observe that A(i) if and only if a _< b. Similarly, define
B(j) {i t(i,j) 0}, and note that B(j) iff aj

_
by. Furthermore, if k E A(i)

(respectively, B(j)), then k > (respectively, k < j) and ak < bk (respectively,
ak > bk). The elements of A(i) and B(j) will always be listed in the increasing order.

Example 2. In Example 1,
A(1) {4,5}, A(2)= {5,8}, A(6)= A(7)- {8};
B(4) {1}, B(5)= {1,2}, B(8)- {2,6, 7};
all other A(i)’s and B(j)’s are 0. D

LEMMA 5.3.
1. If A(i) O, then ai b + EjeA() t(i, j).
2. If B(j) O, then by aj + EieB(y) t(i, j).

Proof. The proof follows from the definition of t(i,j)’s in Algorithm 1. [:]

Let a(i) min{A(i)}.2 For 1 _< i,j <_ n, define (see Example 3)

{ 0
aj - EkB(j),k_i+l t(k,j)

if > j or ay

_
by,

otherwise.

For 1 <_ <_ n, define

+
0

if A(i) ,
otherwise.

2 By definition, max(0) 0 and min(0) cx.

326 S.R. ARIKATI AND A. MAHESHWARI

Example 3. In Example 2,
a(1) 4, a(2) 5, a(6) a(7) S;
(3, 5) =/(4, 5) =/(5, 5) a5 5,/(1, 5) a5 + t(2, 5) 5 + 1 6;
/(1) (2, a(1)) =/(2, 4) (3, 4) (4, 4) aa 8. [:1

LEMMA 5.4. Let j be an integer such that the elements of B(j) are il, i2,..., ik,
where k >_ 2. Then A(iq) {j} for all 2 <_ q <_ k 1, and a(ip) j for all 2 <_ p <_ k.

Proof. The proof follows from definitions.
LEMMA 5.5. Let j be an integer such that the elements of B(j) are il, i2,..., ik,

where k >_ 2. Then 7(ik) aj and (ip) aj + -.. q=p+l t(iq, j) for all 2 _< p _< k 1.
Furthermore, if a(il) j, then (il) /(i2) + t(i2,j).

Proof. By Lemma 5.4, (ik) j. So (ik) /(ik + 1,j)) aj; the second
equality follows from the fact that t(g, j) 0 for t _> ik + 1. Consider now any p such
that2_<p<_k-1. We have

/(ip) --/(ip+l + 1, ((ip))
--/(ip+l -- l, j) (by Lemma 5.4)

k

=aj+ E t(iq,j).
q--ip+l

The proof of the remaining part is similar.

6. Realizing bipartite sequences. We present in this section a parallel al-
gorithm for computing a bipartite graph that realizes a given pair of sequences.
Throughout this section, X {Xl,X2,... ,x,}, Y {Yl,Y2,... ,Yn}, and r and s
denote two nonnegative integer sequences, where n >_ rl >_ r2

_ _
rm >_ 0 and

m >_ s >_ s2 >_... >_ Sn >_ O. Given the pair (r,s), the problem is to compute a
bipartite graph H (Z, Y, E), if it exists, such that d(xi) -ri and d(yj) sj.

6.1. The characterization. The following theorem, known as the Gale-Ryser
theorem, characterizes bipartite sequences [13, 24, 11, 22]. Before stating the theorem,

* iswe require a definition. The conjugate sequence of r, denoted by r* (r,..., rn)
defined as rk I{i’ri >_ k}l for k- 1 n. Both r and r* may be visualized by
means of a (0,1)-matrix of size m n in which the ith row contains ri l’s left-justified;
then r is the number of l’s in the kth column.

THEOREM 6.1 (the Gale-Ryser theorem). The pair (r, s) is a bipartite sequence
iff r*

_
s.

Theorem 6.1 suggests a simple parallel algorithm to decide if (r, s) is a bipartite
sequence. Moreover, a network-flow based proof of this theorem (cf. [11]), combined
with the results of [20], leads to a randomized parallel algorithm to realize (r, s).

6.2. An algorithm. We present in this section a parallel algorithm for comput-
ing a bipartite graph H (X U Y, E) that realizes the pair (r, s). It follows from the
Gale-Ryser theorem that the pair (r, r*) is a bipartite sequence. In the corresponding

* RepresentrealizationF (X,Y,E), the neighbors of yj arex,...,Xp, wherep rj.
NF(Yj) by the interval [1,..., p] of integers. Our algorithm is based on the following
lemma.

LEMMA 6.2. Suppose that (r, s) is a bipartite sequence. If the sequence t is
obtained from s by a unit transformation, then (r, t) is also a bipartite sequence.

Proof. Let H (X, Y, E) be a realization of (r, s) and t be obtained from s by
a unit transformation from i to j. Since si >_ sj + 2, there exists a neighbor, say x,

REALIZING DEGREE SEQUENCES IN PARALLEL 327

of y that is not a neighbor of yy. Let H’ be obtained from H by deleting the edge
(xk, y) and adding the edge (xk, yj). Then H’ is a realization of (r, t). [:]

We say that the graph H’ constructed in the above proof is obtained from H
by a transfer of a neighbor between x and xj. The main steps in our algorithm for
computing a realization of (r, s) are the following steps.

Step 1. Compute r*. Test if r*

_
s. If not, declare that (r,s) is not a bipartite

sequence and STOP.

Step 2. Obtain the realization F- (X, Y,E’) of (r,r*) by computing NF(yj)

Step 3. Transfer appropriate neighbors among the vertices of Y in F to obtain H.
The parallel implementation of Step 3, which is the difficult step, is based on the

properties of the unit transformations (5.3) required to transform the sequence r*
to s. For convenience of notation, we use the sequences a and b in place of r* and
s, respectively. Apply Algorithm 1 to the pair (a, b) and let t(i,j), 1 <_ i,j <_ n, be
the unit transformations computed by the algorithm. Recall from 5.3 the definitions
of A(i), B(j), c(i), (i,j), and (i). Consider an such that A(i) O. We define
intervals T(i, j), where j E A(i), as follows. In the realization F of (r, a), all vertices Xp
such that p T(i, j) will be "transferred" from y to yj to obtain the required bipartite
graph H. Let the elements of A(i) (in the increasing order) be jl c(i),j2,..., jk.
See Figure 2 and define

T(i, jl) [(i) -- 1,..., 7(i) + t(i, jl)] and

T(i, jp) ai E t(i, jq) + 1,..., ai t(i, jq)
q=2 q=2

for 2_<p_< k.

Observe that IT(i, jp) t(i,jp) for all 1 _< p _< k.
procedure for realizing (r, s).

We state in Algorithm 2 the

Input" A pair (r, s) of sequences.
Output" A bipartite graph H (X, Y, E), if it exists. H is specified implicitly by
the neighborhoods of vertices in Y.

1. Compute r*. Test if r*

__
s. If the test fails, then declare that (r,s) is not a

bipartite sequence and STOP.
2. Set (a, b) := (r*, s) and apply Algorithm 1 to compute the unit transforma-

tions t(i, j) for 1 _< i, j

_
n.

3. Compute the bipartite graph F which realizes (r, a). F is represented im-
plicitly: for each 1 _< j _< n, compute the set of neighbors of yy, namely
NF(Yj) [1,..., aj].

4. Compute A(i) and B(j) for 1 <_ i,j <_ n.
5. Compute (i,j) for all and j such that t(i,j) 0; compute /(i) for
l<i<n.

6. Compute the intervals T(i, j) for 1 _< _< n and j A(i).
7. For all such that ai > bi, compute NH(yi):= NF(yi)- [-JyeA(i)T(i,j).
8. For all j such that ay < by, compute NH(yy):= NF(yy) U ([.JieB(y)T(i,j)).
9. For all/such that ai bi, set NH(yi):= Ng(yi).

ALGORITHM 2. Algorithm for computing a bipartite graph.

328 S.R. ARIKATI AND A. MAHESttWARI

7(i) + 1

(i) + t(i, j

k
ai- q=2 t(i, jq) + 1

a- -.k-1 t(i jq)q=2

P,
ai- Eq=2 t(i, jq)+ 1

ai- EPq- t(i, jq)

ai t(i, j2) + 1

ai

jl)

jk)

jp)

j2)

PFIG. 2. Defining T(i, j). For example, T(i, jp) is the set of elements ai q=2 t(i, jq) + 1, ai
p p--1q=2 t(i, jq) + 2,..., ai q=2 t(i, jq).

Example 4. Let r (4, 3, 3, 2, 2, 2, 1) and b s (4, 3, 3, 3, 2, 2). Then
X {Xl,...,XT}, Y {Yl,...,Y6}, and a r* (7,6,3, 1,0,0).

Applying Algorithm 1 to the pair (a, b) we get
t(1, 4)= 2, t(1, 5)= 1, t(2, 5)= 1, t(2, 6)= 2;
A(1) {4, 5}, A(2) {5, 6};
B(4) {1}, B(5)= {1,2}, B(6)= {2};
a(1) 4, a(2) 5, 7(2) a5 0, 7(1) a4 1.

The realization F of (r, a) has the following implicit representation. Recall that
(xk, yi) E F if[k NF(yi), and NF(yi) [1, ai] is represented by its endpoints. We
set

NF(yl) [1, 7], NF(Y2)= [1, 6], NF(Y3)= [1,3],
NF(Y4) [1, 1], NF(Y5) NF(Y6) O,
T(1, 4) [7(1) + 1,7(1) + t(1, 4)] [2, 3],
T(1, 5) [al t(1, 5) + 1, all [7, 7],

REALIZING DEGREE SEQUENCES IN PARALLEL 329

T(2, 5) [’y(2) + 1,-y(2) + t(2, 5)] [1, 1],
T(2, 6) [a2 t(2, 6) + 1, a2] [5, 6].

The desired realization H of (r, s) has the following implicit representation:
NH(yl) NF(Yl) (T(1, 4) tO T(1, 5)) [1, 1] tO [4, 6],
NH(Y2) NF(y2) (T(2, 5) tO T(2, 6)) [2, 4],
NH(Y3) NF(Y3)- [1, 3],
NH(Y4) NF(Y4) tO T(1, 4) [1, 3],
NH(Ys) NF(y5) U (T(1, 5) tO T(2, 5)) [1, 1] t2 [7, 7],
NH(Y6) Ug(y6) tO T(2, 6) [5, 6]. [:]

LEMMA 6.3. The bipartite multigraph H- (X tO Y, E) computed in A19orithm 2
is a simple bipartite 9raph.

Proof. It suffices to show that there are no multiple edges in H that are incident
to any vertex yy. This is equivalent to proving that NH(yy) is a set (i.e., it has no
duplicate elements). If ay >_ bj, NH(Yj) is a set as NF(yj) is one. Consider now
the case that aj < bj. Then NH(Yj) NF(yj)J J, where J [-JieB(j)T(i,j). We
prove that NH(yy) has no duplicates by showing that J has no duplicates and that
NF(yj) N J O. Recall that NF(yj) [1,... ,aj].

Let the elements of B(j) (in the increasing order) be i1,..., ik. Since j E A(i),
we have a(i) _< j. First consider the case c(il) j.

Case 1. k 1. Then J T(i,j) [-y(i) + 1,...,/(il) + t(il,j)] [aj +
1,... ,aj + t(i,j)]. Thus J is a set and NF(yy) gl J 0.

Case 2. k >_ 2. By Lemma 5.4, a(iq) j for 2 _< q _< k. By definition, T(iq, j)
[(iq) + 1,..., /(iq) + t(iq, j)] for 1 <_ q _< k. Then, by Lemma 5.5, T(iq, j) [7(iq) +
1,... ,3’(iq-)] for 2 _< q _< k and T(i,j) [/(il) + 1,... ,3’(il) + t(il,j)]. Hence, for
distinct p and q such that 1 _< p, q _< k, we obtain T(ip, j) C T(iq, j) 0 and thus J

T(ip, j) [/(ia khas no duplicates. Further, g- [--Jp-1)+ 1 ’(k) -+- Ep--1 t(ip,j)],
and so min(J) "y(ik). We now obtain NF(yj)fl J 0, as max(NF(j)) aj

/(ik) min(J)- 1 (the second equality follows from Lemma 5.5).
Now consider the other case, namely a(il) < j. Let jl og(il),j2,..-,jp j be

the elements of A(il) that are _< j. By definition

T(il, j) all t(il, jq) + 1,..., ai
q=2

Case 1. k 1. Then J- T(il,j) and

max(NF(j)) aj

Et(i’jq)
q--2

< bj
<__ bil

ail

(as il _< j and b is nonincreasing)

E t(il, u) (by Lemma 5.3)
ueA(i)
P

< ail Et(il’jq)
q=2

min(J)- 1.

Hence, NH(yy) C J O.
kCase 2. k _> 2. Put I Up=2T(ip, j); then J T(il,j)tO I. We claim that

Iis aset. By Lemma 5.4, a(ip) =j for all2_<p_<k. ByLemma5.5, T(ip, j)

330 S.R. ARIKATI AND A. MAHESHWARI

[7(ip) + 1,..., 7(ip-1)] for 3 _< p _< k, and T(i2,j) [(i2) + 1,..., y(i2) + t(i2,j)].
Using 7(ik) ay, we obtain I Icy + 1,... ,7(i2)+ t(i2,j)], completing the claim.
Now,

max(I) "(i2) + t(i2, j)
k

aj + E t(iq, j)+ t(i2, j)
q-3

<aj+ E t(u,j)
u6B(j)

bj
<_ bl

ail

(by Lemma 5.5)

(by Lemma 5.3)
(as _< j and b is nonincreasing)

E t(il,u) (by Lemma 5.3)
uen(il)
P

< hi1 E t(il,jq)
q-2

min(T(il,j))- 1.

Hence T(il,j)C I 0, implying that J has no duplicates. Finally, max(NF(Yj))
aj min(I) 1 min(J) 1 and, hence, NF(Yj) N J . D

LEMMA 6.4. In the graph H (X U Y, E) computed by Algorithm 2, dH(xi) ri
and dH(Yj) bj (= sj).

Proof. Clearly, dH(xi) dF(x) r. If aj by then dH(Yj) by, since
NH(Yj) NF(Yj) and dF(Yj) aj. Suppose next that aj < by. Then

dH(yy)-]NF(yy)]

]NF(Yj)] + E
ieB(y)

=aj+ E t(i,j)

by.

Now consider the remaining case: aj > by. Let j for convenience and put
I eA(i)T(i, u). Then NH(yi) NF(yi)- I. Let the elements of A(i) be
ji j, j2,...,jk. Now

/(i) + t(i, jl

_
ajl + E t(q, jl

qB(jl)

by1
<_ b

k

q=l

k

< ai t(i, jq).
q=2

REALIZING DEGREE SEQUENCES IN PARALLEL 331

kThus I [’(i) + 1,..., 7(i) + t(i, jl)] LJ [ai- 1;..., ai- --q=2 t(i, jq)] and, hence,
I C_ NF(y). Now

k

III t(i, jl + E t(i, jq)
q--2

E t(i, u)

Finally, dH(yi) INH(yi)I INF(yi)I III= ai (ai bi) bi. D
We now outline the parallel complexity of Algorithm 2. As mentioned in 1, the

graphs computed by our algorithms possess implicit representations: the graphs can
be stored in O(n) space. For ease of notation, we assume that n denotes the total
number of components of r and s (i.e., n := n + m). To analyze step 1, we first
sort the sequences r and s using the algorithm of [8] and store the sorted sequences
in the arrays R and S, respectively. Sorting can be performed in O(logn) time
using O(n) EREW PRAM processors. We show how to perform all other steps in
O(logn) time using O(n/logn) EREW PRAM processors, r* can be computed by
cross-ranking [14] the array R with the array (1, 2,..., n). Step 2 can be performed by
using Algorithm 1. It reports t(i,j)’s in a lexicographic order. Steps 4, 5, and 6 can
be implemented by performing the appropriate prefix sums. In step 7, observe that
JjeA(i) T(i, j) is union of at most three intervals, and hence can be computed within
the same resource bounds. Therefore, Algorithm 2 can be implemented in O(log n)
time using O(n) EREW PRAM processors. We summarize the result in the following.

THEOREM 6.5. Given a pair (r, s) of notnegative integer sequences, a bipartite
graph that realizes (r, s) can be computed in O(logn) time using O(n) EREW PRAM
processors, where n is the total number of components of r and s. Moreover, if the
sequences r and s are given as sorted sequences, then the graph can be computed in
O(log n) time using O(n/ log n) EREW PRAM processors.

7. Realizing degree sequences. Let d (dl,..., dn) be a nonnegative integer
sequence, where n > dl _> d2

_ _
dn _> 0. In this section we present parallel

algorithms to compute a graph G (V, E) on the vertex set Y {vl,..., Vn} that
realizes d. Our parallel algorithms are based on the proof of Theorem 4.1 and these
are the main steps.

(X,Y,EStep 1. From d, compute the sequence (c, c/ and a realization H / of
(c,c). From H compute another realization H of (c,c) such that (x,y) E H iff
l_<i_<#.

Step 2. Compute from H’ a symmetric digraph D (V, E) such that d(v)
d+D (v) d. Then compute (7.

We first discuss the parallel implementation of Step 2; the essential ideas are
described in the proof of Lemma 2.4. Compute the digraph/ (V,/) on the vertex

..., H’set V {v, v}, where (v, vj) J iff (x,yj) and (xj,y)

_
H’. Then, the

indegree of each vertex in is same as its outdegree. Compute Eulerian tours in
using the algorithm of [5]; this algorithm computes an Eulerian tour for each connected
component of D. Each trail is stored in an array. Using parallel list ranking, compute
the number of edges in each trail. Consider first the even trails. Using the array
representation of the trails, delete alternate arcs and insert the appropriate arcs as
stated in the proof of Lemma 2.4. After this step, we are left with an even number of

332 S.R. ARIKATI AND A. MAHESHWARI

odd trails and we group them in pairs. For each pair, determine if it belongs to Case 1
or Case 2 in the proof of Lemma 2.4. In either case, delete and insert appropriate arcs.
We now have the required symmetric digraph D (V, E). Compute an undirected
graph G from D by replacing the two symmetric arcs (v, Vj) and (Vj, Vi) with the
edge (v, vj). Then G is the desired realization of d.

We now analyze the complexity of step 2. The graph H’ is represented in terms
of adjacency lists: for each y E Y, we maintain NH,(y as a list. Let m denote
the number of edges of G. The digraph D can be computed in O(log n) time using
O(m) CRCW processors as follows. For each vertex, sort the vertices adjacent to
it by the algorithm of [8] and test in O(logn) time if (xj, y) H. The algorithm
of [5] computes Eulerian tours in in O(logn) time using O(m) CRCW PRAM
processors. Parallel list ranking requires O(logn) time using O(m) processors and
the lists can be represented as consecutive elements in an array. Once we have the
array representation, all other steps can be performed within the claimed complexity
bounds. Hence the overall complexity of performing step 2 is O(logn) time using
O(m) CRCW PRAM processors.

In the remainder of this section, we discuss the parallel implementation of step 1.
Recall from 4 the definitions of high-degree and low-degree edges. In step 1, we wish
to compute a realization of (c, c) which has all high-degree edges and no low-degree
edges. The main steps involved in obtaining such a realization are (i) compute a bipar-
tite realization H of (c, c) using, for example, Algorithm 2; (ii) compute appropriate
exchange pairs in H to obtain all high-degree edges; and (iii) compute appropriate
exchange pairs in the resulting graph to remove the low-degree edges.

We provide two alternate parallel algorithms for implementing step 1. The first
algorithm is simple and intuitive and is based on several interesting lemmas. It has
high complexity, since it proceeds by reducing the computation to that of recursively
computing maximal matchings. On the other hand, the second algorithm is efficient,
though involved: it is based on the implicit structure of H computed by Algorithm 2.
We present the first algorithm in 7.1 and the second one in 7.2.

7.1. The first algorithm. Recall that H is a realization of (c, c). If there are
missing high-degree edges in H, then we execute the procedure described in 7.1.1.
This is followed by executing the procedure for low-degree edges, as described in

7.1.2. After performing these two steps, we are left with a bipartite realization H
of H, which has all high-degree edges and no low-degree edges. This gives the outline
of the first algorithm and we summarize the result in the following.

THEOREM 7.1. Given an integer sequence d, a realization of d can be computed
in O(log4 n) time using O(n3) CRCW PRAM processors.

Proof. The proof and the complexity analysis follow from Lemmas 2.4, 7.4,
and 7.5. [:]

7.1.1. Procedure for high-degree edges. In this subsection, we present a
parallel algorithm to compute appropriate exchange pairs in the realization H, so
that by performing the corresponding exchanges (see Figure 1) we obtain another
realization of (c, c) having all high-degree edges. The procedure has two phases.

In the first phase, we restrict ourselves to the subgraph of H induced by the high-
degree vertices. Compute a maximal number of exchange pairs in this subgraph as
follows. Define a graph G on the vertex set {1, 2,..., #}. There is an edge between
and j in G’ iff (x, y), (xj, yj) H, and the edges (x, yj) and (x, y) form an exchange
pair. Compute a maximal matching M in G and then perform the corresponding

REALIZING DEGREE SEQUENCES IN PARALLEL 333

exchanges in H. For notational simplicity, let H be the resulting bipartite graph after
performing these exchanges.

In the second phase, we obtain the rest of the missing high-degree edges in H.
Define as follows a bipartite graph T/= (P, Q, $) over the missing high-degree edges
and the corresponding exchange pairs in H. P {pi (x, y) H, 1

_
_< #} and

Q= {qlk (xl,yk) H, k andn_> k > #}. Further, (P,qk) E $ ifftheedges
(x, Yk) and (xt, y) form an exchange pair in H. The following lemma establishes an
important property of the bipartite graph

LEMMA 7.2. Suppose that there is at least one high-degree edge missing in H and
let the bipartite graph 7-I (P, Q, $) be as defined above. Then (i) d(p) >_ 1 for all
and (ii) if (p, qk) $, then d(p) >_ d(q), where d(z) is the degree of vertex z in

Proof. Part (i) follows from Lemma 4.3. We say a vertex xi is a high-degree
neighbor of y, if (xi, y) H and 1 <_ _< #. Let A be the set of high-degree
neighbors of Yk, which are not neighbors of yi in H. Let A2 be the set of high-degree
neighbors of Yk which are also neighbors of y in H. Observe that d(qlk)

_
IAII+

To prove part (ii) of the lemma, we show that d(pi) >_ IAII + IA21. This is achieved
by proving that N(pi)

_
B U B2, where IBll >_ IAI, IB21 _> IA21, and Bi N B2

Recall that ci is the degree of yi in H and that ci > # _> ck (as i _< it and k > it).
This implies that IA’ll _> IAll, where A’ {a: x, NH(yi)- Nu(yk);a k}.
The edges (xi, yk) and (x,,yi) form an exchange pair for every a A and we
define B1 {q,k c A’I}. Observe that B c_ in(pi). We define B2 now. If
(xj, Yi) U for some 1

_
j

_
it and (xj, yj) H, then (xi, yj) H by the fact that

a maximal matching is found in Phase 1 of Algorithm 3. Hence IA21 _> IA21, where
A2 {/" (xi, yz) H,/ > it, k}. For every A2, there exists a vertex, say

xz,, such that/’ :/ and (xi, yz) and (xz,, yi) form an exchange pair in H. Define

B2 {qz, z / A2} and note that B2 C_ Nn(p). To complete the proof, observe
that B1 CI B2- 0.

COROLLARY 7.3. In 7-/ (P, Q,$), there exists a matching that matches all
vertices of P.

Proof. The proof follows from Lemmas 2.3 and 7.2.
We discuss some algorithmic aspects of Lemma 7.2. We compute the bipartite

graph 7-/ (P, Q,$) from H. From Corollary 7.3, we know that any maximum
matching in 7-/matches all vertices in P. By finding a maximum matching in 7-/, we
can compute the corresponding exchange pairs in H and hence obtain all the missing
high-degree edges. Unfortunately, only randomized parallel algorithms are known for
computing a maximum matching [19]. In order to solve our problem deterministically,
we resort to the special structure of 7-/stated in Lemma 7.2 and Corollary 7.3. The
solution is presented in Algorithm 3.

LEMMA 7.4. Algorithm 3 computes a bipartite realization of (c,c) having all
high-degree edges. It runs in O(log4 n) time using O(n3) CRCW PRAM processors.

Proof. We first show the correctness of the algorithm. In every step, observe
that (c, c) is the degree sequence of the bipartite graph H. Consider an iteration of
the while loop. The correctness of Phase 1 is obvious. Assume that H has some
high-degree edges missing after Phase 1 and let 7-/be as defined in Phase 2. Then
is not empty by condition (i) of Lemma 7.2. Thus H has more high-degree edges at
the end of Phase 2 than it had in the beginning.

We now discuss the complexity of the algorithm. By Lemma 2.2 and Corollary 7.3,
1[0[. Thusthe maximal matching computed in step 2 of Phase 2 has size at least

in each iteration of the while loop, the number of missing high-degree edges in H

334 S.R. ARIKATI AND A. MAHESHWARI

While there are missing high-degree edges in H do
begin
Phase 1"

1. Compute a graph G’ on the vertex set {1, 2, #}; there is an edge between
and j if and only if (x, yj) and (xj, y) form an exchange pair.

2. Compute a maximal matching M in G’ using the algorithm of [17].
3. From M, compute the exchange pairs in H and perform exchanges to obtain

the corresponding high-degree edges; let the resulting graph be H.
Phase 2:

1. Compute a bipartite graph ?-/= (P, , $) from H, where P {p (x, y)
H, 1 <_ <_ #}, Q {qzk (xz,yk) H, # k and n _> k > #}, and
(P,qtk) E if and only if the edges (x,yk) and (xt,y) form an exchange
pair in H.

2. Compute a maximal matching M in 7-/using the algorithm of [17].
3. From M, compute the exchange pairs in H and perform exchanges to obtain

the corresponding high-degree edges; let the resulting graph be H.
end.

ALGORITHM 3. A parallel algorithm to obtain the missing high-degree edges in H.

drops down by at least a factor of 2, which implies that the while loop is executed
for at most O(log n) times. In each iteration, the graph G’ can be computed in O(1)
time using O(n2) processors and the graph ?-/in O(1) time using O(n3) processors.
Computing maximal matchings in G’ and /takes O(log3 n) time using O(n3) CRCW
PRAM processors. Hence the overall complexity is as stated in the lemma.

7.1.2. Procedure for low-degree edges. Let H be the bipartite graph com-
puted by Algorithm 3; H has all high-degree edges and possibly some low-degree
edges. Our aim in this subsection is to transform H into another bipartite realization
H’ of (c, c) such that H’ has all high-degree edges and no low-degree edges. Our algo-
rithm for achieving this is similar to Algorithm 3, and we present below the necessary
modifications.

As before, there are two phases. In the first phase, we restrict ourselves to the
subgraph of H induced by the low-degree vertices. Define a graph G’ on the vertex
set {# + 1,..., n}. There is an edge between and j in G’ iff the edges (x, y) and
(xy, y) form an exchange pair. In the second phase, define as follows a bipartite graph
7-/- (P, Q, $) over the low-degree edges and the corresponding exchange pairs in H.
:P {p" (x, y) E H,# < i _< n}, and Q {qk" (x, Yk) H, k and 1 _< k _< #}.
Further, (p, qzk) $ iff the edges (x, y) and (xt, Yk) form an exchange pair in H. The
results of Lemma 7.4 hold with this definition of T/also. The rest of the discussion is
similar to that of previous subsection. We conclude with the following.

LEMMA 7.5. A bipartite realization of (c,c) having all high-degree edges and
no low-degree edges can be computed in O(log4 n) time using O(n3) CRCW PRAM
processors.

7.2. An efficient algorithm. We present an efficient computation of the bipar-
tite graph H’ introduced at the beginning of this section. The computation is based
on the structure of the bipartite graph computed by Algorithm 2.

The main result of this section is the following.
THEOREM 7.6. Given an integer sequence d of length n, a graph that realizes d

can be computed in O(log n) time using O(n + m) CRCW PRAM processors, where

REALIZING DEGREE SEQUENCES IN PARALLEL 335

rn is the number of edges in the realization.

7.2.1. The structure. We present in this section the structure of the bipartite
graphs F and H computed by Algorithm 2.

Both graphs F and H (defined on the vertex set XUY) are specified by giving the
neighbors of the vertices in Y. For Yi E Y, NF(yi) is an interval of vertices, namely
NF(y/) {xk 1 <_ k

_
a/}, and we denote NF(yi) by the interval [1,..., ai]. NH(yi)

is a union of at most two disjoint intervals of vertices (cf. the proof of Lemma 6.3)"
Ntt(yi) {xk" k (LiUMi)}, where L/and Mi are defined below; we denote Ni-i(yi)
by Li U Mi. Recall the definitions of t(i, j), A(i), B(j), a(i), (i, j), /(i), and T(i, j)
from 6. To define Li and M/, we distinguish between the following cases.

Case 1. a bi. Then Li [1,..., a/] and M/- 0.
Case 2. ai > bi. Let the elements of A(i) be jl,... ,j. Then Li [1,..., (i)],

and M -[7(i) + t(i, j) + 1,..., ai Eq=2 t(i, jq)].
Case 3. ai < bi. Put j and let the elements of B(j) be il,..., i.

kCase 3.1. oz(il) j. Then Lj [1,... ,aj + --q=l t(iq,j)] and Mj .
Case 3.2. ct(il) < j. Let jl c(il),j2,...,jp j be the elements of A(il)

k Eq=2 t(il,jq)+that are _< j Then Lj [1,.. aj + q=e t(iq,j)] and Mi [ai P

p--11,..., a q=e t(il,j)].
Example 5. In Example 4, L [1, 1], M1 [4, 6]; L2 , M2 [2, 4]; L3 [1, 3],

M3 -; L4- [1, 3], Ma- ; L -[1,1], M -[7, 7]; L 0, M6 [5, 6]. [:1

LEMMA 7.7. For all 1 <_ <_ n, max(L/) < min(Mi).
Proof. The neighborhoods NH(yi) are defined in the proof of Lemma 6.3. It is

routine to verify that max(Li) < min(Mi) holds in all the cases considered in that
proof, rl

7.2.2. The algorithm. Our algorithm computes four bipartite graphs, namely
Ho, H1 H2 Ha H’, on the same vertex set X kJ Y. These graphs are represented
implicitly using the neighborhoods of vertices in Y. Throughout, N/(y) denotes the
set of neighbors of y Y in Hi, where {0, 1, 2, 3}.

Algorithm 4 has three steps. In the first step, we compute H0 and H1; they are
the realizations of (c, c*) and (c, c), respectively.

In the second step, we compute H2 that has all high-degree edges, i.e., (xi, Yi)
H for all 1 _< _< #; no new low-degree edges are created in this step. Suppose the
high-degree edge (x/, yi) is absent in HI. To create the edge (xi, yi) by performing
an exchange, we need to find vertices xt,y such that (xi,y) and (xt,yi) form an
exchange pair. To make sure that no multiple edges are created when parallel ex-
changes are done, we select k a(i) (see Lemma 7.11). Further, we impose the
condition - k in order to avoid creating any low-degree edges. More precisely, we
choose O(i) min{g f c(i), xe N1 (yi)-N1 (Ya(i))}. See step 2 of Algorithm 4.

In the last step, we compute Ha by deleting from H all low-degree edges without
destroying the high-degree edges. Suppose the low-degree edge (xj, yj) is present in

H. To destroy the edge (xj, yj) by performing an exchange, we need to find vertices

Xl,Yk such that (xj,yj) and (Xl,Yk) form an exchange pair. To make sure that no
multiple edges are created when parallel exchanges are done, we select k T(j) i,
where j T(i,j) (see Lemma 7.14). Further, we impose the condition k in order
to avoid destroying the high-degree edges. More precisely, we choose (j)
min{t" t "r(j),xe e N2(y-(j)) N2(yj)}. See step 3 of Algorithm 4.

The rest of this section is devoted to proving the following important result.

336 S.R. ARIKATI AND A. MAHESHWARI

1. Let H0 and HI, respectively, be the realizations of (c, c*) and (c, c) computed
by Algorithm 2.

2. Compute I {i:i _< #, (x, y) HI}. Compute a new bipartite graph H2
from H1 by doing in parallel the following for all E I: Delete the edges
(x, y()) and (x(), y) and add the edges (x, y) and (x(), y()).

3. Compute J {j j > #, (xy, yj) H2}. Compute a new bipartite graph
H3 from H2 by doing in parallel the following for all j J: Delete the edges
(xj, yy) and (x(j), y(j)) and add the edges (x(j), yy) and (xj, y(j)).

4. Output H3.
ALGORITHM 4. An efficient algorithm.

LEMMA 7.8. Algorithm 4 computes a realization of (c, c) that has all high-degree
edges and no low-degree edges. It runs in O(log n) time using O(n) gREW gRAM
processors.

For ease of notation, we let a c* and b c. Recall from 6 that the condition
k T(i,j) means: "yj gets xk from y in H0;" i.e., (xk,y) H0 H1 and (xk,yy)
HI H0.

The following two lemmas are used to prove the correctness of step 2 of Algo-
rithm 4.

LEMMA 7.9. Let <_ # be such that (x,y) HI. Then there exists a unique j
such that T(i,j). Furthermore, j a(i) and j > #.

Proof. The condition i _< # implies that a _> #, and thus (x, y) H0. Further,
the condition (x, y) Hi implies that a > b as NI(y) C_ No(y) otherwise. Let
the elements of A(i) be jl,...,jk. The condition (x,y) HI implies that there
exists a jt such that i T(i, jt). From the definition of T(i,j) it follows that j
is unique. We now show that j satisfies the other properties of j stated in the
lemma. Suppose for contradiction that j/ a(i), i.e., j > a(i). Then T(i, jt)
ai

-1Eq=2 t(i, jq) + 1,..., a -:=2 t(i, j)], and

ILI + IMI
_< max(M) (by Lemma 7.7)

k

ai E t(i, jq)
q--2

<_ ai E t(i, jq)
q-=2

< min(T(i, je))
_< (as T(i,j))

which contradicts b _> # + 1. To prove the remaining part, observe that /(i) _> aj,
and that belongs to T(i, jt) only if -(i) < i; the last inequality is possible only if
jt > # (as aj >_ # + 1 if jt <_ #). r]

LEMMA 7.10. Let # < j <_ n. There exists at most one such that T(i,j). In
that case, <_ it and a(i) j.

Proof. That there exists at most one is clear from the definition of T(i,j)

REALIZING DEGREE SEQUENCES IN PARALLEL 337

(cf. Figure 2). Observe that belongs to T(i,j) only if _< #. Then a(i) j by
Lemma 7.9.

LEMMA 7.11. The bipartite multigraph H2 computed in step 2 of Algorithm 4 is
a simple bipartite graph that realizes (c, c). Moreover, (xi, yi) E H2 if 1 <_ <_ #.

Proof. Let the set I be as defined in step 2 of the algorithm. Then, for distinct
and i’ in I we obtain a(i) a(i’) using Lemmas 7.9 and 7.10. Thus no multiple edges
are created when new edges are added in step 2, and hence H2 is a simple graph. The
proof of the remaining part of the lemma is obvious. [:l

The following two laminas are needed to prove the correctness of step 3 of Algo-
rithm 4.

LEMMA 7.12. Suppose (xj,yj) H2 for some j > #. Then (xj,yj) H1.
Further, there exists a unique such that j T(i, j), ((i) < j, and

_
#.

Proof. Recall that 0(i) ((i) in step 2 of Algorithm 4. So no new "low-degree
edges" are created in H2; i.e., no edge of the form (xk,Yk), where k >_ # + 1, is
introduced into H2. Thus (xj, yj) HI. The rest of the proof is similar to the proof
of Lemma 7.9. [:]

LEMMA 7.13. Let

_
#. There exists at most one j such that j T(i,j). In

that case, j > a(i) and j > #.
Proof. The proof is similar to the proof of Lemma 7.10. [:]

LEMMA 7.14. The bipartite multigraph H3 computed in step 3 of Algorithm 4 is
a simple bipartite graph that realizes (c, c). Moreover, (x, y) H3 iff 1 <_ <_ #.

3 of the algorithm. For distinct j and jProof. Let J, T(j) and (j) be as in step
in J we obtain -(j) : (j’) using Lemmas 7.12 and 7.13. Thus no multiple edges are
created when new edges are added in step 3 and hence H3 is a simple graph. Clearly,
H3 is a realization of (c,c) and (xj,yj)

_
H3 for all # + 1 _< j _< n. By Lemma 7.11,

(xi, y) H2 for all 1 <_ <_ #. The fact that (j) :/- -(j) implies that no such edge
(high-degree edge) of H is destroyed when some edges are deleted in step 3.

Proof of Lamina 7.8. The correctness of the algorithm follows from Lemma 7.14.
Recall that the graphs H0, H1, H, H3 are represented implicitly using the neighbor-
hoods of vertices in Y. The complexity bounds for step 1 follow from Theorem 6.5.

Suppose the neighborhood of some vertex yk changes in step 2. Then one of the
following must hold: k I or k ((i) for some i I. The following claim states
that the neighborhood of y changes by exactly one vertex.

Claim 1. IN(y)- NI(y)I- 1.
Consider first the case k I. Lemm 7.9 implies that a(i) >_ # + 1 for all i E I.

Since k _< #, k : a(i) for any I. Consider now the case k a(i) for some I.
Then is unique by Lemmas 7.9 and 7.10, completing the proof of the claim. Since
N(y) is a union of at most two disjoint intervals of vertices for all y Y, we can
compute all 0(i)’s in constant time using O(n) processors. Further, the graph H2 in
step 2 can be computed in constant time using O(n) processors.

Suppose the neighborhood of some vertex Yk changes in step 3. Then one of the
following must hold: k J or k -(j) for some j E J. The following claim states
that the neighborhood of Yk changes by exactly one vertex.

Claim 2. [N3(y)- N2(y)I- 1.
Consider first the case k J. Lemma 7.12 implies that 7(j)

_
p for all j J.

Since k _> # + 1, k -(j) for any j J. Consider now the case k -(j) for some
j J. Then j is unique by Lemmas 7.12 and 7.13, completing the proof of the claim.
All -(j)’s can be computed in constant time using O(n) processors. Claim 1 implies
that N2(y) is a union of at most three disjoint intervals of vertices for all y E Y.

338 S.R. ARIKATI AND A. MAHESHWARI

Hence all (j)’s can be computed in constant time using O(n) processors. Further,
the graph H3 in step 3 can be computed in constant time using O(n) processors.

Acknowledgments. We thank the referees for their comments and suggestions
for improving the presentation of this paper. We also thank Shiva Chaudhuri for
useful discussions.

REFERENCES

[10]

[11]

[12]

[13]

[15]

[17]

[18]

[2o]

[21]

[23]

[24]

[25]

[26]

[27]

[1] A. AHO, J. HOPCROFT, AND J. ULLMAN, Design and Analysis of Computer Algorithms,
Addison-Wesley, Reading, MA, 1974, Exercises, pp. 71-72.

[2] S. R. ARIKATI, New Results in Algorithmic Graph Theory, Ph.D. thesis, Department of Math-
ematics, University of Illinois, Chicago, 1993.

[3] S. R. ARIKATI AND U. N. PELED, Degree sequences and majorization, Linear Algebra Appl.,
199 (1994), pp. 179-211.

[4] T. ASANO, Graphical degree sequence problems with connectivity requirements, Lecture Notes
in Computer Science 762, Springer-Verlag, New York, Berlin, 1993, pp. 38-47.

[5] B. AWERBUCH, A. ISRAELI, AND Y. SHILOACH, Finding Euler circuits in logarithmic parallel
time, in Proc. ACM Symposium on Theory of Computing, ACM Press, New York, 1984,
pp. 249-257.

[6] C. BERGE, Graphs and Hypergraphs, North-Holland, Amsterdam, 1973.
[7] F.T. BOESCH, ED., Large-Scale Networks: Theory and Design, IEEE Press, New York, 1976.
[8] R. COLE, Parallel merge sort, SIAM J. Comput., 17 (1988), pp. 770-785.
[9] A. DESSMARK, A. LINGAS, AND O. GARRIDO, On the parallel complexity of maximum f-

matching and the degree sequence problem, Lecture Notes in Computer Science 841,
Springer-Verlag, New York, Berlin, 1994, pp. 316-325.

P. ERD(S AND W. GALLAI, Graphs with prescribed degrees of vertices, Mat. Lapok, II (1960),
pp. 264-272. (In Hungarian.)

L. R. FORD, JR. AND D. R. FULKERSON, Flows in Networks, Princeton University Press, Prince-
ton, NJ, 1962.

D. R. FULKERSON, A. J. HOFFMAN, AND M. -I. MCANDREW, Some properties of graphs with
multiple edges, Canad. J. Math., 17 (1965), pp. 166-177.

D. GALE, A theorem on flows in networks, Pacific J. Math., 7 (1957), pp. 1073-1082.
T. HAGERUP AND C. R)B, Optimal merging and sorting on the EREW PRAM, Infor. Proc.

Letters, 33 (1989), pp. 181-185.
F. HARARY, Graph Theory, Addison-Wesley, New York, 1969.
G. H. HARDY,]. E. LITTLEWOOD, AND G. P(LYA, Inequalities, Cambridge University Press,

New York, 1952.
A. ISRAELI AND Y. SHILOACH, An improved parallel algorithm for maximal matching, Inform.

Process. Lett., 22 (1986), pp. 57-60.
J. J.J, An Introduction to Parallel Algorithms, Addison-Wesley, New York, 1992.
R. M. KARP AND V. RAMACHANDRAN, Parallel algorithms for shared-memory machines, in

Handbook of Theoretical Computer Science, Vol. A, J. van Leeuwen, ed., Elsevier, Ams-
terdam, 1990, pp. 869-942.

R. M. KARP, E. UPFAL, AND A. WIGDERSON, Constructing a maximum matching in random
NC, Combinatorica, 6 (1986), pp. 35-48.

L. LOV/SZ AND M. PLUMMER, Matching Theory, Academic Press, Budapest, Hungary, 1986.
A. W. MARSHALL AND I. OLKIN, Inequalities: Theory of Majorization and its Applications,

Academic Press, New York, 1979.
U. N. PELED AND M. K. SRINIVASAN, The polytope of degree sequences, Linear Algebra Appl.,

114 (1989), pp. 349-377.
H. J. RYSER, Combinatorial properties of matrices of zeros and ones, Canad. J. Math., 9
(), .-.

G. SIERKSMA AND H. HOOGEVEEN, Seven criteria for integer sequences being graphic, J. Graph
Theory, 15 (1991), pp. 223-231.

R. I. TYSHKEVICH, n. n. CHERNYAK, AND Zg. A. CHERNYAK, Graphs and degree sequences I,
Cybernetics, 23 (1987), pp. 734-745.

J. VAN LEEUWEN, Graph algorithms, in Handbook of Theoretical Computer Science, Vol. A,
J. van Leeuwen, ed., Elsevier, Amsterdam, 1990, pp. 525-631.

SIAM J. DISCRETE MATH.
Vol. 9, No. 2, pp. 339-348, May 1996

() 1996 Society for Industrial and Applied Mathematics

015

THE TOTAL INTERVAL NUMBER OF A GRAPH II: TREES AND
COMPLEXITY*

THOMAS M. KRATZKE AND DOUGLAS B. WEST$

Abstract. A multiple-interval representation of a simple graph G assigns each vertex a union of
disjoint real intervals so that vertices are adjacent if and only if their assigned sets intersect. The total
interval number I(G) is the minimum of the total number of intervals used in such a representation
of G. For triangle-free graphs, I(G) IE(G)I + t(G), where t(G) is the minimum number of pairwise
edge-disjoint trails that together contain an endpoint of each edge. This yields the NP-completeness
of testing I(G) IE(G)I + 1 (even for triangle-free 3-regular planar graphs) and an alternative proof
that HAMILTONIAN CYCLE is NP-complete for line graphs. It also yields a linear-time algorithm
to compute I(G) for trees and a characterization of the trees requiring IE(G)I + intervals for fixed
t. Further corollaries include the Aigner-Andreae bound of I(G)

_
[(5n- 3)/4J for n-vertex trees

(achieved by subdividing every edge of a star), a characterization of the extremal trees, and a shorter
proof of the extremal bound [(5m + 2)/4J for connected graphs.

Key words, interval representation, complexity, tree, trail

AMS subject classifications. 05C35, 05C05, 05C38, 05C45, 05C85, 68Q25

1. Introduction. An intersection representation of a graph G assigns each ver-
tex v a set f(v) such that u, v are adjacent if and only if f(u)n f(v)). Conversely,
the graph is the intersection graph of the sets in the representation. The most well-
studied class of intersection graphs are the interval graphs, which are the intersection
graphs obtainable by assigning each vertex a single interval on the real line. More
generally, an intersection representation f that assigns each vertex a union of inter-
vals on the real line is a multiple-interval representation of G. Let If(v)l denote the
number of (pairwise disjoint) intervals whose union is f(v). If If(v)l k, then we say
that f(v) consists of k intervals or that v is assigned k intervals.

In two natural ways, multiple-interval representations can measure how far
a graph is from being an interval graph. The interval number of G is i(G)
minI maxvev(c)If(v)l, where the minimum is taken over all multiple-interval rep-
resentations of G. The total interval number of G is I(G) minI
which can be viewed as minimizing the average number of intervals assigned per ver-
tex instead of the maximum number. Always I(G) <_ hi(G) for n-vertex graphs; the
interval graphs without isolated vertices have interval number 1 and total interval
number n.

Interval number has been studied for many years, beginning with [10] and [4].
Although introduced in [4], total interval number was not studied until Aigner and
Andreae [1] obtained the maximum value of I(G) for several classes of graphs on n
vertices, including trees ([(5n 3)/4J), 2-connected outerplanar graphs ([3n/2 lJ),
triangle-free planar graphs (2n- 3), and triangle-free graphs ([(n2 + 1)/4). For the
latter three classes, they conjectured that the upper bounds would still hold when the
"2-connected" or "triangle-free" restrictions were removed. In [7], we proved these
conjectures for outerplanar and general graphs on n vertices, and we also proved the
Aigner-Andreae conjecture that maxI(G) (5m + 2)/4J if G is a connected graph

*Received by the editors February 25, 1993; accepted for publication (in revised form) August
11, 1995. This research was supported in part by ONR grant N00014-85K0570.

Metron, Inc., Reston, VA 22091 (kratzke@metsci.com).
:University of Illinois, Urbana, IL 61801 (west@math.uiuc.edu).

339

340 THOMAS M. KRATZKE AND DOUGLAS B. WEST

with rn edges. The proof of their conjecture for planar graphs is quite lengthy and
will appear in a later paper in this series. Other papers will study the maximum
total interval number for cacti or Husimi trees on n vertices and for connected graphs
with m edges having lower bounds on minimum vertex degree, connectivity, or edge-
connectivity. Most of this work appeared in the dissertation of the first author, which
was accepted in 1987 [6].

In this paper, we present a linear-time algorithm to compute the total interval
number of a tree (3). This is based on the equality I(G) rn + t for a triangle-free
graph with rn edges, where t is the minimum number of edge-disjoint trails needed
to touch every edge of the graph (2). From this characterization, we also obtain the
NP-completeness of testing I(G) rn+ 1 even for triangle-free 3-regular planar graphs
and an alternative proof of the NP-completeness of HAMILTONIAN CYCLE for line
graphs. A closer examination of the algorithm for trees yields a characterization of
the trees requiring m + t intervals for fixed t (4). This in turn yields short proofs
of the Aigner-Andreae extremal bound for trees and the extremal bound in [7] for
connected graphs (5).

2. Trail covers and complexity. We use n for the number of vertices of a
graph G, rn for the number of edges, N(v) for the set of neighbors of v, and x y
for "x is adjacent to y."

In studying I(G), we allow f(v) , so that isolated vertices contribute nothing
to the count of intervals. As in the study of i(G), it is natural to define the depth
of a representation to be the maximum number of vertices to which a single point is
assigned; the depth-r total interval number It(G) is the minimum of E If(v)l over all
representations of G with depth at most r. An interval in f(v) is displayed if some
portion of it intersects no other interval of f.

A vertex cover of G is a set of vertices that contains an endpoint of every edge of
G. A collection of pairwise edge-disjoint trails whose vertices together form a vertex
cover is a trail cover. The trail cover number t(G) is the minimum number of trails in
a trail cover of G. Traversed from left to right, a depth-2 representation can establish
at most one edge for each interval after the first, so I2(G) >_ rn + 1, and this bound
can be achieved only if there are no "gaps" in the representation. Lemma 2.1 extends
this observation. This lemma appears in [7], but we repeat its proof here because
the transformation to trail cover number is essential for computing I(G) for trees.
Algorithm 3.1 constructs a minimum trail cover.

LEMMA 2.1. For a graph G with m edges, I2(G) rn + t(G), and hence I(G)
m + t(G) if G is triangle-flee.

Proof. For triangle-free graphs, I(G) I2(G). First we prove I2(G) <_ rn + t(G).
Let {Zj} be an optimal trail cover. For each trail Zj (Vl,..., vr), choose r intervals
in (j 1, j) such that the ith interval intersects only the i- lth and + lth intervals
(for 2 _< _< r- 1), and add the ith of these intervals to f(v). Vertices may appear
repeatedly in trails, and all these intervals are displayed. For each edge not in these
trails, assign an interval for one endpoint within the displayed portion of its neighbor
in UV(Zj). For each trail, the number of intervals used is one more than the number
of intervals represented, so we have represented G with rn + t(G} intervals.

Conversely, given an optimal depth-2 representation, we obtain a trail cover con-

sisting of I2(G) rn edge-disjoint trails. Because no more than two intervals intersect
at any point, we can eliminate any intersection of intervals by shortening or deleting
one interval without affecting any other intersection. Therefore, we may assume that
every edge is represented exactly once. Removal of each nondisplayed interval from
an optimal representation leaves a representation of edge-disjoint trails as described

TOTAL INTERVAL NUMBER II 341

FIG. 1. Transformation at each vertex.

above, having deleted one edge for each interval deleted. Furthermore, the vertices of
the resulting trails touch all edges of the original graph. If we now shrink each trail
to a single vertex by deleting one interval and edge at a time, we have deleted every
edge of G and one interval for each edge. There remain I2(G) -m intervals, one from
each trail in the trail cover. [1

COROLLARY 2.2. The decision problem I(G) E m+ 1 is NP-complete, even when
restricted to the class of planar, 3-regular, triangle-free graphs.

Proof. The problem is in NP, because it is easy to check whether an assignment of
m + 1 intervals is a representation. For triangle-free graphs, the problem is equivalent
to testing whether G has a single covering trail. It is well known that testing for a
Hamiltonian path in a 3-regular planar graph is NP-complete [3]. Given an arbitrary
3-regular planar graph G, we replace each vertex by a 7-vertex subgraph as indicated
in Figure 1. The resulting graph G is 3-regular, planar, and triangle-free. It suffices
to show that G has a Hamiltonian path if and only if G has a covering trail. (This
transformation was used in [9] to prove the NP-completeness of testing i(G) <_ 2.)

Given v E V(G), let H(v) be the subgraph induced by the seven vertices that
replace v in G. Because H(v) contains edge not incident to vertices of any other
H(w), a covering trail must enter every H(v). Since only three edges enter each H(v),
a trail can enter and/or exit H(v) only once. Therefore, contracting each H(v) to a
single vertex v turns G into G and a covering trail of G into a Hamiltonian path or
cycle in G.

Conversely, if G has a Hamiltonian path P, then we can replace each internal
vertex v of the path by a Hamiltonian path in H(v) between the two-valent vertices
of H(v) that correspond to the edges incident to v in P. If v is an end of P, we use
a Hamiltonian path in H(v) ending at the central vertex of H(v). The result is a
Hamiltonian path of G, which is certainly a covering trail. D

From HAMILTONIAN CYCLE in 3-regular planar graphs, the same transforma-
tion proves that it is NP-hard to test whether a graph has a single closed covering trail.
By combining this with known results about line graphs, we obtain a short alternative
proof of the known result that testing for Hamiltonian cycles is NP-hard even when
the input is restricted to line graphs. The existence of a Hamiltonian cycle in a line
graph L(H) is not equivalent to the existence of an Eulerian circuit in H.

COROLLARY 2.3 (see Bertossi [2]). HAMILTONIAN CYCLE is NP-hard on line
graphs.

Proof. Given a line graph G with at least four vertices, we can retrieve the unique
graph H such that G L(H) in linear time (Lehot [8]). We also know that G is
Hamiltonian if and only if H has a closed covering trail (Harary and Nash-Williams
[5]). As observed above, this is NP-hard. D

3. Trail covers of trees. Our recursive algorithm for computing the trail cover
number of a tree computes additional information about the tree. We use (T, x) to
denote a tree T with a vertex x distinguished as its root. Suppose v V(T) and C is
a trail cover of T. We say that C visits v if v is a vertex of a trail in C, that C ends at

342 THOMAS M. KRATZKE AND DOUGLAS B. WEST

v if v is an endpoint of a trail in C, and that C isolates v if v is a trail of length 0 in
C (a degenerate trail). Isolating v implies ending at v, which in turn implies visiting
v. Given a tree T rooted at x, the code c(T, x) indicates the most restrictive of these
conditions at the root that can be satisfied by a minimum trail cover. See Table 1.

TABLE 1.

Condition

no minimum cover visits x

some minimum cover visits x but none ends at x

some minimum cover ends at x but none isolates x

some minimum cover isolates x

We will prove that the following recursive algorithm computes the trail cover
number and code of a rooted tree.

ALGORITHM 3.1. Input (T,x). Output trail cover number t, code c, and trail
cover C establishing t and c.

Ifn(T) 1, set t 0, c- 0, and C . Otherwise, let Xl,...,xk be the
neighbors of x, designated as roots of the components T1,..., Tk of T-x. Let t, c,
be the output of the algorithm for Ti rooted at x. For 0 <_ j <_ 3, let kj [{i: c
Note that k k > 0.

Ifk2+k3=0andkl-k, thenset C-2C,t=ti, andc-0.
If k2 + k3 0 and kl < k, then set C ([2C) [2 {(x)}, t- 1 + t, and c 3.
If k2 + k3 > 0, then form C by beginning with t2C and iteratively joining pairs

of trails that end in {x" c _> 2} by edges from those roots to x. Set t- t-
[(k. + kn)/2J, and set c 1 if k2 + k3 is even and c- 2 if k2 + k3 is odd.

Since the computation of c and t uses only {c} and {t}, the algorithm can be
used to compute the trail cover number without storing trails. It can be implemented
to build the computation up from leaves and thus run in linear time and space.

The intuition behind the algorithm is that deleting a vertex from a minimum trail
cover should leave minimum trail covers of the resulting subtrees. The code c(T, x)
computed in the algorithm takes care of the fact that this is not true for arbitrary
minimum trail covers. This is illustrated by the tree T on the left in Figure 2.

There are several ways to cover the edges of this tree with three trails; Figure 2
shows one of them in solid edges. Deleting x leaves two subtrees that can be covered
with one trail each. The only minimum covering of T that turns into minimum cov-
erings of the subtrees when x is deleted is the one in which x is a degenerate trail. In
the algorithm, this corresponds to the case k k2 k3 0. This example suggests
that a minimum covering in which the root is a degenerate trail is desirable if one
exists. We say that a minimum trail cover C of a tree T with root x is weakly optimal
if C ends at x or no minimum cover ends at x. Furthermore, C is strongly optimal if
(a) C is weakly optimal and (b) C isolates x or no minimum cover isolates x. The
statements "no minimum cover ends at x" and "no minimum cover isolates x" are
equivalent to c(T,x) _< 1 and c(T, x) <_ 2, respectively. The empty trail cover is
strongly optimal trail cover of the 1-vertex tree. The next theorem is a precise version
of the intuition suggested above and is the main result needed to prove the correctness
of the algorithm.

THEOREM 3.2. If C is a strongly optimal trail cover of (T,x), then the trails in
T- x obtained by deleting x from any trail containing it in C form weakly optimal
trail covers of the components of T- x rooted at the neighbors of x.

TOTAL INTERVAL NUMBER II 343

FIG. 2. Insufficient variants of optimality.

Proof. Let {x} be the neighbors of x, {T} the subtrees, and {C} the resulting
sets of trails. Suppose C is not weakly optimal, and let D be a weakly optimal trail
cover of (T, x). In all cases, we construct a trail cover of (T, x) that contradicts the
strong optimality of C.

Case 1. C does not use the edge xx. In this case, all the trails of C are trails of
C. If IDol < ICI, let D’ C C + D. Since ID’I < ICI and C is strongly optimal,
D is not a trail cover, so it fails to touch some edge. The only edge that D can miss
is xx; if D’ misses xx, then C does not visit x. If this happens, then D D’U {(x)}
is a trail cover with IDI _< ICI that isolates x. This contradicts the strong optimality
of C, because C does not visit x.

Hence we may assume that IDol ICI. Since we assumed that C is not weakly
optimal, the weak optimality of D implies that D ends at x and Ci does not. Let
D be the trail in D that ends at x, and let D be the collection of trails obtained
from Di by extending D to include xx. Let D C C + D; note that IDI- ICI.
If C ends at x, then D has two trails ending at x that can be concatenated to obtain
a trail cover smaller than C. If C does not end at x, then D is a trail cover of the
same size that ends at x. Each possibility contradicts the strong optimality of C.

Case 2. C uses the edge xx on some trail C. In this case C ends at x. Since
C is not weakly optimal, this implies IDol < ICI. Let D be the collection of trails
obtained from C by deleting xx from C and replacing the resulting C by D. Note
that D ends at x, that IDI

_
ICI, and that D is a trail cover of T.

If C ends at x, then D isolates x but C does not, which contradicts the strong
optimality of C. If C does not end at x, then we consider two possibilities, as in the
second half of Case 1. If C ends at x, then D has two trails ending at x that can be
concatenated to obtain a smaller trail cover than C. If C does not end at x, then D
is a trail cover of at most the same size that ends at x. Each possibility contradicts
the strong optimality of C.

The trees in Figure 2 show that both types of optimality are needed. The trail
cover given by solid edges for the tree on the left shows that deletion of the root from
a weakly optimal trail cover need not leave minimum trail covers for the subtrees.
The trail cover given for the tree on the right shows that deletion of the root from a
strongly optimal trail cover need not leave strongly optimal covers for the subtrees.

If C is a strongly optimal trail cover of (T, x), then applying Algorithm 3.1 to the
resulting covers {C} of the subtrees reconstructs C or constructs another trail cover
with the same number and placement of trail ends as C. To prove the correctness of
the algorithm, we will show that applying the algorithm to arbitrary weakly optimal
trail covers of the rooted subtrees generates a strongly optimal trail cover of (T, x).

LEMMA 3.3. If some weakly optimal trail cover C of a rooted tree (T, x) visits x
but does not end at x, then every minimum trail cover of (T,x) is strongly optimal.

Proof. In this situation the definition of weakly optimal implies that c(T, x) 1
and that no minimum trail cover ends at x. Hence every weakly optimal trail cover
is strongly optimal. A minimum trail cover C can fail to be strongly optimal only if
it does not visit x. Since x does not appear, C’ consists of IC’I--ICI trails covering
T- x. If we delete x from C, we obtain at least CI + 1 trails, since C does not end
at x. This implies that at least one of the components of T- x does not receive a

344 THOMAS M. KRATZKE AND DOUGLAS B. WEST

minimum trail cover, which contradicts Theorem 3.2. [:]

In the application of the recursive step, Algorithm 3.1 treats subtrees with code 2
or 3 exactly the same. Hence it will behave the same and produce the same code and
size of trail cover for the root as long as the trail covers of the subtrees are any weakly
optimal trail covers. Phrasing the recursive step of the algorithm in terms of the trail
cover alone, it (1) forms the union of {C}, (2) extends to x any trail ending at a
neighbor x, (3) concatenates pairs of trails extended to x until at most one remains,
and (4) adds (x) as a trail of length 0 if no trail extended to x and some neighbor
x is not visited by its weakly optimal C. To complete the proof that the algorithm
works, it suffices to show that the resulting C is strongly optimal.

THEOREM 3.4. If (T,x) is a rooted tree with neighbors {x} of the root, and {C}
are weakly optimal trail covers of the rooted subtrees {(T,x)} of T- x, then appli-
cation of the recursive step of Algorithm 3.1 to {C} produces a strongly optimal trail
cover C of (T, x).

Proof. Suppose that D is a strongly optimal trail cover of (T,x) and that {D}
for { (T, x)} are obtained from D by deleting all appearances of x. By Theorem 3.2,
D is a weakly optimal trail cover of (T, x). By the definition of weak optimality, D
ends at x if and only if C ends at x. Hence applying the algorithm to {C} produces
the same number of extensions to x as applying the algorithm to {D} to obtain D.
As a result, C and D have the same size and associated code, except possibly when
there are no extensions to x.

In this final case, for each neither D nor C ends at x. We still have identical
size and code for C and D unless one of them visits all {x} and the other does not.
This possibility is forbidden by Lemma 3.3.

4. Critical trees. To characterize the trees with interval number rn / t, we
characterize the trees that just barely require t trails in a trail cover. The graph
obtained by contracting an edge e of G is denoted G.e. An edge e is contractible
if t(G. e) t(G), and a tree is critical if it has no contractible edge. We seek to
characterize the k-critical trees, which are the critical trees with trail cover number k.

By applying Algorithm 3.1 to (G,x) for arbitrary x E V(G), we obtain a unique
code for any vertex of a tree G. We say that a tree vertex v is essential if c(G, v) 3,
useful if c(G, v) 2, not useful if c(G, v) < 2, and at least useful if c(G, v) _> 2. The
terminology is chosen to suggest that the critical trees are those in which every vertex
is at least useful. A penultimate vertex of a tree is a nonleaf vertex that has at most
one nonleaf neighbor. We refer to a vertex of degree 2 as a bivalent vertex and an
edge incident to a leaf as a pendant edge.

LEMMA 4.1. In a tree G, (1) every penultimate vertex is at least useful, (2) the
nonleaf neighbor of a penultimate vertex is not essential, and (3) if G is critical, then
every penultimate vertex is bivalent.

Proof. Let u be a penultimate vertex, and let v be its nonleaf neighbor. (1) We
can modify any minimum trail cover so that it touches the pendant edges incident to
u via a trail ending at u by moving a degenerate trail from a leaf to u or deleting
the leaf from a trail containing u. (2) If C is a minimum trail cover isolating v, then
some other trail must touch the edges from u to its leaf neighbors. As above, we may
assume this trail ends at u. Extending this trail to v produces a smaller trail cover.

(3) If u is not bivalent, let G be the tree obtained by contracting all but one pendant
edge incident to u. Since u is penultimate in G, G has a minimum trail cover that
ends at u. This is also a trail cover of G, so G was not critical. [:!

Next we describe how to grow the critical trees. Suppose that G is a tree with a
vertex partition into two sets U and W. Let P be a 5-vertex path with central vertex

TOTAL INTERVAL NUMBER II 345

FIc,. 3. The sets H1, H2, and H3.

u partitioned so that U {u} and W V(P) {u}. Then the augmentation of G
at v is the tree G’ obtained from G U P by (1) adding the edge uv if v E W or (2)
identifying u, v if v E U (the combined vertex remains in U). Let H1 {K2} with
both vertices in W, and let Hk be the collection of all augmentations of trees in Hk-1.
The graphs in H1, H2, and H3 appear in Figure 3, with the vertices of U indicated
by open dots and those of W by closed dots. The graph in H2 is the unique forbidden
subtree for trees that are interval graphs [10]. The three graphs of H3 correspond to
augmentations at the three isomorphism classes of vertices of the graph in H2.

We need one more concept describing the relationship between vertices and trail
covers: we say that a trail cover C swallows v if v is an internal vertex of some trail
in C. Note that a minimum trail cover may end at v and swallow v, but it cannot
isolate v and swallow v.

THEOREM 4.2. If G Hk, with V(G) U U W as described in the construction

of Hk, then G is k-critical, the set of essential vertices in G is W, and the set of
useful vertices in G is U. Furthermore, every minimum trail cover of G swallows
every vertex of U.

Proof. This is proved by induction on k. The claim holds by inspection for k 1.
Suppose that k > 1 and that G is the augmentation of G Hk- at v. We will apply
Algorithm 3.1 to (G, u), where u v if v U and u is the new neighbor of v (on P)
ifvW.

Case 1. v W. In this case, u has exactly three neighbors. The subtrees for the
algorithm are (G, v) and two copies of K2. By the induction hypothesis, v is essential
in G, so c(G, v) 3. The code for any vertex of K2 is also 3. The algorithm therefore
yields t(G) 1 + t(G’) k and c(G, u) 2. Hence u U, and trails in the subtrees
can be extended or shifted in such a way that a degenerate trail is left at any other
vertex of P to prove V(P) {u} C W. Furthermore, if some minimum trail cover
does not swallow u, then the pendant edges of P require two trails wholly contained
in P, forcing .an impossible trail cover of G with size k- 2.

The induction hypothesis guarantees that vertices of U in G are at least useful
in G and vertices of W in G are essential in GI. A minimum trail cover establishing
this for a particular vertex of G can be combined with P to obtain a minimum trail
cover establishing the same condition for this vertex in G. Similarly, for any edge e
in G, we can combine a minimum trail cover of G. e with P to show that e is not
contractible in G. If we contract any edge of P, then the algorithm applied at u will
use only k 1 trails, since one of the subtrees becomes K. If we contract the edge
uv, then we can replace the degenerate trail (v) by the trail P in some minimum trail
cover of G to obtain k- 1 disjoint trails covering G. uv.

346 THOMAS M. KRATZKE AND DOUGLAS B. WEST

We have shown that G is k-critical; it remains only to show that a vertex w
U A V(Gt) is not essential in G and is swallowed by any minimum trail cover. By the
induction hypothesis, a trail cover C of G that isolates w or does not swallow w has
at least k trails. If C is a minimum trail cover of G that isolates w or does not swallow
w, then restricting these trails to G creates such a trail cover C of G. However, the
pendant edges of P require C to have a trail that contains no vertex of Gt. Hence
IC _> k + 1, and the assumption on C and w was impossible.

Case 2. v U. In this case u v. The subtrees for applying the algorithm to
(G, u) are the same as for applying it to (G’, v), plus two copies of K2. If/ is the
value of k2 + k3 for (G, u) and/’ is its value for (G’, u), then -/’ + 2, since vertices
of K2 have code 3. By the induction hypothesis, v is useful in G, so c(G, v) 2. The
algorithm therefore yields t(G) 1 + t(G’) k and c(G, u) 2. Hence u U, and
again trails in the subtrees can be extended or shifted in such a way that a degenerate
trail is left at any other vertex of P to prove V(P) {u} c W. Furthermore, if some
minimum trail cover does not swallow u, then the pendant edges of P require two
trails wholly contained in P. This leaves a trail cover of G of size k- 2 unless one of
the trails in P ends at u, in which case we have a trail cover of G of size k 1 that
isolates v; both cases are forbidden by the induction hypothesis.

The remainder of the proof for this case is identical to the last two paragraphs of
the proof for Case 1, except that the last sentence of the first paragraph (on contract-
ing the edge uv) is unnecessary and should be deleted, the second paragraph applies
only to w (V V(G’) {v}, and the last two sentences of the second paragraph
should be replaced by the following: "However, the pendant edges of P require C to
have a trail that contains no vertex of G’ except possibly v. This forces IC[
unless v is a degenerate trail in C’I, in which case C’I >_ k because c(G’, v) 2. In
either case we have IC > k, and the assumption on C and w was impossible."

To complete the characterization of the critical trees, we need only show that
every critical tree arises in this way.

THEOREM 4.3. For each k >_ 1, the set of k-critical trees is

Proof. We need only show that every k-critical tree is in Hk; we use induction on
k. The claim is immediate for k 1; suppose k > 1 and G is k-critical. Let P be a
longest path in G. Since penultimate vertices in critical trees are bivalent, a critical
tree with longest path having fewer than five vertices is only a path. Hence we may
assume P (u, v, w, x,..., z). We have d(v) 2. If d(w) 2, then uv is contractible.
If w is incident to a pendant edge e (not in P), then e is contractible. Hence d(w) >_ 3
and every neighbor of w except (possibly) x is penultimate (since P is a longest path).

Let r d(w) 1, let Vl,...,vr be the neighbors of w other than x, and let
Ul,..., ur be the leaves adjacent to them. When using Algorithm 3.1 on (G,x), we
build a minimum covering of the subtree rooted at w by concatenating trails from the
v in pairs. In particular, the path Q (Vl, w, v2) is a trail in some minimum covering
C of G. Let G’ G {Ul, vx, u2, v2} if r > 2, and let G’ G {ul, Vl, u2, v2, w} if
r 2. Since Q does not extend to x when the algorithm is applied to x, C- {Q}
is a minimum covering of Gt. The k-criticality of G then implies that G is (k- 1)-
critical, which by the induction hypothesis implies G H_I. To show that G is an
augmentation of G and thus that G H, we consider three cases for the value of r.

First, r cannot be odd. In this case, the algorithm for (G, x) builds a trail rising
from w to x. In (G. wx, xt), where x’ denotes the combined vertex, the same trail
results, with the edge wx contracted. Hence the trail cover number computed by the
algorithm is the same for G and G.wx, contradicting the criticality of G.

If r 2, we show that x V(G) is in W in the canonical partition of G, and
hence G is the augmentation of G at x. If x U, then by Theorem 4.2, G has no

TOTAL INTERVAL NUMBER II 347

FIc 4. Trees with f=l.

trail cover of size k- 1 that isolates x. This means that the trail ending at x in a
minimum trail cover of G cannot be extended to touch both UlVl and u2v2 in G. wx.
As a result, t(G. wx) k and wx is contractible, contradicting the criticality of G.

If r is even and r > 2, then w has penultimate neighbors in G. By Lemma 4.1,
w cannot be essential in G. By Theorem 4.2, this implies w E U in the canonical
partition of G, and hence G is the augmentation of G

5. Applications. We close this paper by using our results for trees to give al-
ternative proofs of two results that appeared earlier. These are the maximum value
of I(G) when G is an n-vertex tree (Aigner and Andreae [1]) and the maximum value
of I(G) when G is a connected graph with rn edges (Kratzke and West [7]). We use
the notation and concepts of the earlier sections together with the auxiliary function

f(G) n(G) 4t(G) + 1.
COROLLARY 5.1. If G is a tree with n >_ 3 vertices, then I(G) <_ (5n- 3)/4.
Proof. It suffices to show that f(G) >_ 0 for every tree G. If not, let G be a

smallest tree such that f(G) < 0. If the contraction of some edge does not decrease
the trail cover number, then it decreases f by one. Hence G must be critical, which
implies G E UHk. Each such graph is obtained by a sequence of augmentations from
K2. An augmentation at a vertex of U increases f by one, and an augmentation at a
vertex of W leaves f unchanged. Although f(K2) -1, the tree K2 has no vertex in
W, so the first augmentation changes f to 0, and thereafter f _> 0 for each graph in

t2Hk. []

A closer look at this yields a "procedure" for computing f and a description of
the n-vertex trees with maximum total interval number equal to (5n 3)/4]. Aigner
and Andreae [1] presented trees achieving the bound. A tree G achieves this value
if and only if f(G) _< 3. For G H, the size of U in the canonical partition of G
is the number of augmentations at black vertices in the construction of G from K.
Hence we can determine f(G) for an arbitrary tree G as follows: (0) Initialize f -1.
(1) While the remaining graph has a contractible edge, contract it and increase f by
1. (2) When the remaining graph has no contractible edge, determine its canonical
partition, increase f by IUI, and terminate.

Reworded, this means that the trees with f(G) k are (1) the trees having a
contractible edge e such that f(G. e) k- 1 and (2) the critical trees having a
canonical partition U, W with k + 1 vertices in U. Using this and the fact that K2
is the only tree with f(G) -1, it is not hard to describe explicitly the trees with

f _< 1. The trees F with f 0 are obtained by subdividing every edge of a star that
has an odd number of edges. (The first of these is P3 and is not critical.) The trees
with f 1 consist of those obtained by adding a pendant (contractible) edge to a tree
with f 0 and those in the three families in Figure 4, where the dashed central edge
on the left is contractible and the open circles indicate vertices of U.

In [7], we proved by ad hoe inductive methods that I(G) <_ (5m + 2)/4 for every
connected graph with m edges. Our results for trees yield the bound more cleanly.
Since n(G) re(G)/ 1 when G is a tree, we have I(G) (hm + 2)/4 when G is
a tree with f(G) O. Here we prove that all other connected graphs with at least
two edges have a smaller total interval number. In fact, we bound the depth-2 total

348 THOMAS M. KRATZKE AND DOUGLAS B. WEST

interval number, again by using trail covers.
THEOREM 5.2. The extremal trees are the unique connected graphs having the

maximum total interval number in terms of size. In particular, if G is a connected
graph with m >_ 2 edges and G F, then I(G) <_ I2 (G) < (5m + 2)/4.

Proof. We use induction on the number of cycles in G. If G is a tree, then the
result follows from the characterization of the trees with f 0. If G has a cycle, we
alter G in a way that reduces the number of cycles without changing the number of
edges or reducing the trail cover number.

Given distinct edges uv and vw in G, define snipping uv to mean deleting uv and
subdividing vw. To see that snipping uv does not reduce the trail cover number, let
x be the new vertex in the resulting graph G/. A trail cover of G can be turned into
a trail cover of G with the same size by contracting vx.

If G has an edge e that belongs to a cycle of G but not to every cycle of G, then
snipping e leaves a graph G that still has a cycle, and the induction hypothesis yields
the result. Otherwise, G has exactly one cycle, and snipping any edge of this cycle
yields a tree G. If f(G) > 0, then again we are finished. Hence we may assume that
every snip of any edge on the unique cycle in G yields the unique m-edge tree G with
f(G) O. However, this is impossible; if snipping by deleting uv and subdividing
vw yields the extremal graph, then snipping by deleting vw and subdividing uv does
not. D

REFERENCES

[1] M. AIGNER AND T. ANDREAE, The total interval number of a graph, J. Combin. Theory Ser.
B, 46 (1989), pp. 7-21.

[2] A. A. BERTOSSI, The edge Hamiltonian path problem is NP-complete, Inform. Process. Lett.,
13 (1981), pp. 157-159.

[3] M. R. GAREY, D. S. JOHNSON, AND R. E. TARJAN, The planar Hamiltonian circuit problem
is NP-complete, SIAM J. Comput., 5 (1976), pp. 704-714.

[4] J. R. GRIGGS AND D. B. WEST, Extremal values of the interval number of a graph, SIAM J.
Alg. Disc. Meth., 1 (1980), pp. 1-7.

[5] F. HARARY AND C. ST. J. A. NASH-WILLIAMS, On eulerian and hamiltonian graphs and line
graphs, Canad. Math. Bull., 8 (1965), pp. 701-710.

[6] W. M. KRATZKE, The Total Interval Number of a Graph, Ph.D. thesis, University of Illinois,
Urbana, IL, 1987; Coordinated Science Laboratory Research report UILU-ENG-88-2202,
1988.

[7] W.M. KRATZKE AND D. B. WEST, The total interval number of a graph I: Fundamental classes,
Discrete Math., 118 (1993), pp. 145-156.

[8] P. G. H. LEHOT, An optimal algorithm to detect a line-graph and output its root graph, J.
Assoc. Comput. Mach., 21 (1974), pp. 569-575.

[9] D.B. SHMOYS AND D. B. WEST, Recognizing graphs with fixed interval number is NP-complete,
Discrete Appl. Math., 8 (1984), pp. 295-305.

[10] W.T. TROTTER AND F. HARARY, On double and multiple interval graphs, J. Graph Theory, 2

(1978), pp. 137-142.

SIAM J. DISCRETE MATH.
Vol. 9, No. 3, pp. 349-359, August 1996

1996 Society for Industrial and Applied Mathematics
001

ANGLES OF PLANAR TRIANGULAR GRAPHS*

GIUSEPPE DI BATTISTA* AND LUCA VISMARA*

Abstract. We give a characterization of all the planar drawings of a triangular graph through
a system of equations and inequalities relating its angles; we also discuss minimality properties of
the characterization. The characterization can be used: (1) to decide in linear time whether a given
distribution of angles between the edges of a planar triangular graph can result in a planar drawing;
(2) to reduce the problem of maximizing the minimum angle in a planar straight-line drawing of
a planar triangular graph to a nonlinear optimization problem purely on a space of angles; (3) to
give a characterization of the planar drawings of a triconnected graph through a system of equations
and inequalities relating its angles; (4) to give a characterization of Delaunay triangulations through
a system of equations and inequalities relating its angles; (5) to give a characterization of all the
planar drawings of a triangular graph through a system of equations and inequalities relating the
lengths of its edges; in turn, this result allows us to give a new characterization of the disc-packing
representations of planar triangular graphs.

Key words, graph drawing, planar graph, Delaunay triangulation, angle

AMS subject classifications. 05C10, 05C40, 05C85, 68R10, 68U05

1. Introduction. Planar straight-line drawings of planar graphs are a classical
topic of the graph drawing field (a survey on graph drawing can be found in [5]).

A classical result independently established by Steinitz and Rademacher [23],
Wagner [27], Fary [9], and Stein [22] shows that every planar graph has a planar
straight-line drawing.

A grid drawing is a drawing in which the vertices have integer coordinates. Inde-
pendently, de Fraysseix, Pach, and Pollack [3] and Schnyder [20, 21] have shown that
every n-vertex planar graph has a planar straight-line grid drawing with O(n2) area.

Planar straight-line drawings have also been studied with the constraint that
all faces be represented by convex polygons (convex drawings). Tutte [24, 25] has
shown that, for a triconnected graph, convex drawings can be constructed by solving
a system of linear equations. Recently, Kant has shown an algorithm for constructing
grid convex drawings with quadratic area [15, 16].

In the research on planar straight-line drawings a very special role is played by the
angles between the segments that compose the drawing. In particular, Vijayan [26]
has studied angle graphs. An angle graph is a planar embedded graph in which the
angles between successive edges incident with each vertex is given. The problem of
the existence of a planar straight-line drawing of an angle graph that preserves the
angles is tackled and partial characterization results are shown.

Received by the editors March 2, 1994; accepted for publication (in revised form) August 11,
1995. This research was supported in part by ESPRIT Basic Research Action 7141 (ALCOM II)
and by Progetto Finalizzato Sistemi Informatici e Calcolo Parallelo of the Consiglio Nazionale delle
Ricerche. An extended abstract of this paper appears in the Proceedings of the 25th Annual ACM
Symposium on the Theory of Computing, San Diego, CA, 1993.

Dipartimento di Discipline Scientifiche, Sezione Informatica, Terza Universitk degli Studi di
Roma, Via della Vasca Navale 84, 00146 Roma, Italy (dibattista@iasi.rm.cnr.it). This research
was performed in part while this author was with the Dipartimento di Informatica e Sistemistica,
Universitk degli Studi di Roma "La Sapienza" and with the Dipartimento di Ingegneria e Fisica
dell’Ambiente, Universitk degli Studi della Basilicata.

Dipartimento di Informatica e Sistemistica, Universitk degli Studi di Roma "La Sapienza," Via
Salaria 113, 00198 Roma, Italy (vismara@iasi.rm.cnr.it). This research was performed in part while
this author was with the Istituto di Analisi dei Sistemi ed Informatica, Consiglio Nazionale delle
Ricerche.

349

350 GIUSEPPE DI BATTISTA AND LUCA VISMARA

In [10], Formann et al. have studied the problem of constructing straight-line
drawings of graphs with large angles. It is shown that it is always possible to construct
a drawing whose smallest angle between the edges incident with a vertex is (1/d2),
where d is the maximum vertex degree of the graph. Other results are given for
particular classes of graphs. For planar graphs the bound is improved to (1/d);
however, in general, the obtained drawing is nonplanar.

Malitz and Papakostas [17] have shown that it is always possible to construct a
planar straight-line drawing of a planar graph whose smallest angle is (ad), where
0 < a < 1 is a constant. They exploit a disc-packing representation of the graph.
In a disc-packing representation (1) each vertex is a disc, (2) two discs are tangent if
and only if the vertices they represent are adjacent, and (3 the interiors of the discs
are pairwise disjoint. No polynomial algorithm is known to construct a disc-packing
representation. However, Brightwell and Scheinerman [2] have shown that, in general,
it is not possible to construct a disc-packing representation with radii whose lengths
are rational numbers. Recently, Mohar [18] has provided a polynomial time algorithm
to approximate a disc-packing representation to any specified accuracy.

Garg and Tamassia [12] have shown that there exist planar graphs such that in
any of their planar straight-line drawings the smallest angle is O(v/log d/d3).

Garg [11] has proved that testing the planarity of a consistent angle graph (an
angle graph for which there exists a straight-line drawing preserving the angles) is an
NP-complete problem.

An important tool for several algorithms and characterizations described above
are planar triangular graphs. For instance the algorithm by de Fraysseix, Pach, and
Pollack and the algorithm by Schnyder have an intermediate step in which the given
planar graph is triangulated. Also, planar triangular graphs play a very special role
in a number of problems arising in computational geometry. However, as far as we

know, characterizing angles of planar triangular graphs has been an elusive goal for a
long time. This paper can be summarized as follows.

We give a characterization of all the planar drawings of a triangular graph through
a system of equations and inequalities relating its angles. The problem is mentioned
as open in [1, 17, 26]. We also discuss minimality properties of the characterization.

The characterization above has several applications.
(i) It can be used to decide in linear time whether a given distribution of angles

between the edges of a planar triangular graph can result in a planar drawing.
(ii) It reduces the problem of maximizing the minimum angle in a planar straight-

line drawing of a planar triangular graph to a nonlinear optimization problem purely
on a space of angles.

(iii) It gives a characterization of the planar drawings of a triconnected graph
through a system of equations and inequalities relating its angles.

(iv) It gives a characterization of Delaunay triangulations through a system of
equations and inequalities relating its angles, solving a problem stated in [6]. Recently,
the problem of deciding whether a plane triangular graph G is Delaunay realizable, i.e.,
it is combinatorially equivalent to a Delaunay triangulation (DT), has been tackled
by Dillencourt and Rivin [81. They have shown that if a linear system of equations
and inequalities relating the angles of G has a feasible solution, then G is Delaunay
realizable; in general, however, the angles of the DT differ from the angles obtained
by solving the system.

(v It can be exploited to give a characterization of all the planar drawings of a
triangular graph through a system of equations and inequalities relating the lengths
of its edges; in turn, this result allows us to give a new characterization of the disc-

ANGLES OF PLANAR TRIANGULAR GRAPHS 351

packing representations of planar triangular graphs.
The rest of the paper is organized as follows. Preliminaries are in 2. Section 3

gives some basic results. Section 4 contains the characterization and some minimality
results. Section 5 highlights some applications. Section 6 contains a discussion of
open problems.

2. Preliminaries. We assume familiarity with planar graphs and with graph
connectivity [19].

A drawing of a graph maps each vertex to a distinct point of the plane and each
edge (u, v) to a simple Jordan curve with end-points u and v. A drawing is planar if
no two edges intersect, except, possibly, at common end-points. A graph is planar if
it has a planar drawing. A straight-line drawing is a drawing such that each edge is
mapped to a straight-line segment.

Two planar drawings of a planar graph G are equivalent if, for each vertex v, they
have the same circular clockwise sequence of edges incident with v. Hence, the planar
drawings of G are partitioned into equivalence classes. Each of those classes is called
an embedding of G. An embedded planar graph (also plane graph) is a planar graph
with a prescribed embedding. A planar triconnected graph has a unique embedding,
up to a reflection. A planar drawing divides the plane into topologically connected
regions delimited by cycles; such cycles are called faces. The external face is the cycle
delimiting the unbounded region. Two drawings with the same embedding have the
same faces. Hence, one can refer to the faces of an embedding. We call internal angles
of a drawing the angles formed by consecutive edges of internal faces.

A plane triangular graph is a plane triconnected graph with at least four vertices
in which one face is chosen as external and all faces (except possibly the external one)
consist of three edges.

A Delaunay drawing of a plane triangular graph G is a planar straight-line drawing
of G that is a DT. Not all plane triangular graphs have a Delaunay drawing (see,
e.g., [6, 7, 13, 14]).

3. How to draw a wheel. A wheel Wd is a plane triangular graph with d + 1
(d

_
3) vertices v,v,...,Vd and 2d edges: v is connected to vl,...,Vd and v{ is

connected to V({modd)+l. Vertices v,...,vd identify the external face. Vertex v is
called center of the wheel. A centered drawing of Wd is a planar straight-line drawing
in which v is drawn in the region bounded by the polygon representing cycle v,..., Vd.
In a drawing of Wd the angles of an internal face are denoted as follows: the angle
at vertex v is called the central angle and is followed, in clockwise order, by the left
angle and by the right angle. See Fig. 1.

LEMMA 3.1. Let Wd be a wheel with center v and suppose a set of positive
values for the internal angles between the edges of Wd is given. Wheel Wd has a
centered drawing F with the given angles if and only if the following conditions hold

1. Let /,..., /d be the central angles of Wd:

d

2. For each internal face f of Wd, let a,, y be the angles of f:

a++7=.

352 GIUSEPPE DI BATTISTA AND LUCA VISMARA

5

o5

(a) (b)

FIG. 1. () a centered drawing and (b) a noncentered drawing of a wheel.

3. Let O1,... ,Od and/31,... ,/3d be the left and right angles of Wd, respectively:

d
sin aiH sin 1.

i--1

Proof. This is proved only if conditions 1 and 2 are trivial. Let F be a centered
drawing of Wd and let ri be the length of the edge ei between angles i and O(imodd)+

d modd)-t- 1. By the triangle sine law, r(imdd)-t-1in F We have YI=I r(sin a(imoda)+l
r ri sin (imodd)+l

(i- 1,..., d); condition 3 follows.
If. In the proof we construct F. Let ri be the length of the edge e between angles

/ and O(imodd)+1. First, we choose arbitrarily rl; then, we compute r+l from r
(i 1,..., d- 1) by using the triangle sine law with the prescribed angles; namely,

sin ai+l At each step, condition 2 allows the construction of a new triangleri+l ri sini+l
having edge e in common with the previous one, and condition 1 guarantees that

d sintriangles do not overlap. We have rd rl" YIi=2 snZ. By using condition 3 we

obtain r sin al
rd sinai that is lengths rl and rd satisfy the sine law for the triangle with

angles al, 1, and 71. Thus, we can complete F by adding a segment between the
end-vertices of el and ed different from v.

From the construction above, it follows that v is drawn inside the polygon iden-
tified by the other vertices. Further, the prescribed angles being positive, there is no
overlapping between vertices and/or edges. Cl

4. Characterizing the planar drawings of plane triangular graphs. In
this section we give the main theorem (Theorem 4.6) of the paper. In order to prove
this theorem, we give some preliminary lemmas.

In the following lemma, an external path of a graph G is a proper subpath p of
the external face of G such that (a) it contains at least one edge; (b) all its vertices
are adjacent to a common internal vertex of G; (c) its vertices different from the end-
vertices are adjacent to no other internal vertex of G. To remove an external path p

ANGLES OF PLANAR TRIANGULAR GRAPHS 353

from a graph G means to remove from G all the edges of p, all the vertices of p except
the end-vertices, and all the remaining dangling edges.

In Lemmas 4.1 and 4.4 our definition of plane triangular graph as a plane tricon-
nected graph plays a crucial role.

LEMMA 4.1. Let G be a plane triangular graph. There exists an external path p
of G, such that the graph obtained by removing p from G is a plane triangular graph
or the triangle graph.

Proof. Let c be the external face of G. If G is a wheel, then p can be chosen
as any subpath of c containing all the edges of c except one. The graph obtained by
removing p from G is the triangle graph.

If G is not a wheel, then we proceed as follows: we look for p in a subpath
(called candidate path) of c with at least one edge. At the beginning of the search
the candidate path is suitably chosen. At each step two cases are possible: (1) p
is immediately found as a subpath of the candidate path; (2) the candidate path is
restricted to a proper subpath of itself.

For the candidate path the following invariant holds: let u and w be the end-
vertices of the candidate path; u and w are adjacent to a common internal vertex v,
while all the other vertices of the candidate path, if any, are not adjacent to v; further,
the graph delimited by (v, u), by (v, w), and by the candidate path has at least one
internal vertex.

At the first step there exists at least one subpath of c with the invariant property
defined above, otherwise G would be a wheel.

Let e be an edge of the candidate path and let v be the internal vertex opposite
to e. Vertex v is an internal vertex of the graph delimited by (v, u), by (, w), and
by the candidate path. As explained above, two cases are possible.

FIG. 2. Illustration of Case 1 in the proof of Lemrna 4.1.

Case 1. The edges that connect v to the vertices of the candidate path are
consecutive in the adjacency list of v (see Fig. 2). Then, p is the subpath of the
candidate path identified by the end-vertices, distinct from v, of such edges. Path

354 GIUSEPPE DI BATTISTA AND LUCA VISMARA

p can be removed from G without losing the triconnectivity property: in fact, no
separation pair can be generated by the removal of p, because, by planarity, the only
external vertices of G adjacent to v are those contained in p. Note that p may consist
of just u, w, and e (u, w).

FIG. 3. Illustration of Case 2 in the proof of Lernrna 4.1.

Case 2. The edges that connect v to the vertices of the candidate path are non-
consecutive in the adjacency list of v (see Fig. 3). Let A be the set of the edges
connecting v to the vertices of the candidate path. Consider an ordering for the
vertices of the candidate path, say from to w; it induces an ordering for the edges
of A. Let (v’, u’) and (v’, w’) be the first two consecutive edges in A such that there
exists at least one edge (v, x) between them in the adjacency list of v. We consider,
as the new candidate path, the proper subpath of the current one between u and w.
In fact, it satisfies the invariant of a candidate path: u and w are adjacent to the
internal vertex v, the other vertices, if any, are not adjacent to v, and there exists at
least one internal vertex x in the graph delimited by (v’, u’), by (v’, w’), and by the
new candidate path.

Note that if the candidate path contains just one edge, Case 1 applies. [:]

Operation close-wheel with center v is defined as follows. Let u, v, and w be three
consecutive vertices of the external face of a plane triangular graph G. Operation
close-wheel adds k new vertices and 2k + 1 new edges (k _> 0) to G. If k 0 then
close-wheel adds to G edge (u, w). If k > 0 then close-wheel adds to G vertices
v,..., v, edges (u, v), (v, v2),..., (v_, v), (v, w), and edges (v, 1),..., (u, ’vk).

LEMMA 4.2. Let G be a plane triangular graph with n vertices. G can be con-

structed, starting from the triangle graph, by a sequence of O(n) close-wheel opera-
tions. Each intermediate graph is a plane triangular graph.

Proof. The lemma easily descends from the definition of operation close-wheel,
from Lemma 4.1, and from the definition of external path. Further, each close-wheel
adds at least one edge. rl

In the following corollary we define a new ordering of the vertices of a maximal

ANGLES OF PLANAR TRIANGULAR GRAPHS 355

plane graph, called wheel ordering.
COROLLARY 4.3. Let G be an n-vertex maximal plane graph, with external ver-

tices x, y, and z. There exists an ordering of the vertices of G such that
1. v x, v2 y;
2. v3 is the internal vertex opposite to (x, y);
3. for k 4,...,n- 1,
(i) subgraph G__ c G formed by the union of the wheels with centers v3,..., v_

is a plane triangular graph, and its exterior face is a cycle C-1 containing (x, y);
(ii) vertex v is the vertex of C-1 center of the kth close-wheel operation;
4. vn-z.

A drawing F of a plane graph G is called embedding-preserving if, for each vertex
v of G, the edges incident with v appear in F in the same circular order they have in
the adjacency list of v in G. The external face of G is drawn convex if it is represented
as a (not necessarily simple) polygon p such that, for each vertex v that is found while
walking around p, the angle on, say, the left side is greater than 77 and all the edges
incident with v are on the right side.

LEMMA 4.4. Let G be a plane triangular graph and let F be an embedding-
preserving straight-line drawing of G such that the external face of G is drawn convex.
There exists an internal vertex v of G such that the wheel with center v is drawn
centered in F.

Proof. Let vl,..., Vd be the vertices adjacent to v in this circular order around v.
If v is the only internal vertex (i.e., G is a wheel) or v is not the only internal

vertex but the wheel with center v is drawn centered in F, then the lemma is trivial.
Suppose now that. G is not a wheel and that the wheel with center v is drawn

noncentered in F; it follows that one of the angles around v, say the one between
(v, Vl) and (v, Vd), is greater than 77; see, e.g., Fig. l(b).

If for each vertex vi (i 2,...,d- 1) the sum of the angle between (vi,vi_)
and (vi, v) and the angle between (vi, v) and (vi, vi+) is less than 77, then, by easy
geometric considerations, vertex v and vertices v2,..., Vd- are drawn in F on different
sides of edge (v, Vd). This violates the embedding at vertices Vl and Vd; thus, for at
least one vertex vi (i 2,..., d- 1) the sum. of the angle between (vi, vi-1) and (vi, v)
and the angle between (v, v) and (v, v+l) is greater than 77. It follows that vertex

vi is drawn in the (open) triangular area with vertices v, vi_, vi+. Hence, no angle
around vi can be greater than 77; it follows, by the convexity of the external face, that
vi cannot be an external vertex and that the wheel with center vi is drawn centered
in F.

LEMMA 4.5. Let G be a plane triangular graph and let F be a straight-line drawing

of G such that the external face o.f G is drawn convex. If F is embedding-preserving
then it is planar.

Proo]: The proof is by induction on the number ni of internal vertices of G.
If ni 1, i.e., G is a wheel, by Lemma 4.4 F is a centered drawing of G and the
planarity of F easily follows from the embedding-preserving property. Assume that
the lemma holds for graphs with ni 1 internal vertices. Let v be an internal vertex
of G such that the wheel Wd with center v is drawn centered in F (see Lemma 4.4).
We remove v and its incident edges from G. Let G be the new graph, and let F be
the straight-line drawing obtained from F by removing the point and the segments
representing v and its incident edges. If d >_ 4, we triangulate the inside of the
star-shaped polygon representing the external cycle of Wd by adding new segments
to F; let F" be the new straight-line drawing. By adding the corresponding edges
to G, we obtain a plane triangular graph G" with ni- 1 internal vertices; F" is its

356 GIUSEPPE DI BATTISTA AND LUCA VISMARA

embedding-preserving straight-line drawing (with the same external face of F). By
using the inductive hypothesis, we argue that Ftt is planar. It follows that F is planar
too and so is the union of F and the centered drawing of Wd.

THEOREM 4.6. Let G be a plane triangular graph. Suppose a set of positive values
for the internal angles between the edges of G is given. G has a planar straight-line
drawing F with the given angles and with the given external face drawn convex if and
only if the following conditions hold.

1. For each internal vertex v of G, let /1,...,"/d be the angles around v, where
d is the degree of v:

d

27.

2. For each internal face f of G, let ,/, / be the angles of f:

a++7=.

3. For each internal vertex v of G, let Wd be the wheel with center v and let,... ,(d and/,... ,d be the left and right angles of Wd, respectively:

d
sin a

i=1

4. For each external vertex v of G, the sum of the internal angles of v is less
than

Proof. This is proved only if condition 4 is trivial. Each internal vertex of G forms
a wheel with its adjacent vertices; hence, necessity of conditions 1, 2, and 3 follows
from Lemma 3.1.

If. We give a constructive proof. Namely, starting from a triangle, we construct
F by means of a sequence of close-wheel operations, each one adding to F at least one
edge. The completeness of the approach is guaranteed by Lemma 4.2. Consider the
operation close-wheel performed with center v; let Wd be the wheel with center v; let
u and w be the neighbors of v on the external face of the part of G drawn so far.

At each close-wheel operation we complete the drawing of Wd as in the proof of
Lemma 3.1.

Once G has been completely drawn with the described above strategy, F is a

straight-line drawing with the prescribed angles. It remains to be proved that F is
planar. This is done by observing that

1. Each close-wheel operation preserves the circular orderings of the adjacency
lists of u, v, and w, given by the embedding; this follows from conditions 1 and 4.

2. The external face of G is drawn convex; this follows from condition 4.
Hence, to prove planarity, we use Lemma 4.5.
COROLLARY 4.’. Let G be a plane triangular graph with n vertices. Suppose a

set of positive values for the internal angles between the edges of G is given. There
exists an O(n) time and space algorithm to test if G has a planar straight-line drawing
with the given angles and with the given external face drawn convex.

We now study the minimality of the characterization. Namely, we answer the
question if some of the equations of condition 3 of Theorem 4.6 can be omitted without
losing the correctness of the characterization. As shown in the following theorem, the
answer is negative. In general, all the equations of condition 3 are needed.

ANGLES OF PLANAR TRIANGULAR GRAPHS 357

THEOREM 4.8. There exists a plane triangular graph G, an internal vertex v of
G, and a set of positive values for the internal angles between the edges of G such that
(1) conditions 1, 2, and 4 of Theorem 4.6 hold and condition 3 holds for each internal
vertex different from v; (2) no planar straight-line drawing of G exists with the given
angles.

Proof. Let G be the graph of Fig. 4, where v is the white vertex and the angles
are those specified in the figure. Observe that conditions 1, 2, and 4 are satisfied,
and that condition 3 does not hold for v while it holds for any other internal vertex.
Hence, the wheel with center v cannot be drawn with the given angles. I:]

90

90 60 90 60
30 30

90 30

FIG. 4. Graph in the proof of Theorem 4.8.

5. Some applications. By applying Theorem 4.6, it is possible to set up a
nonlinear optimization problem in order to maximize the minimum angle in a planar
straight-line drawing of a given plane triangular graph. This can be done by declaring
each variable representing an angle greater than or equal to a new variable a0 and by
maximizing a0 [1].

Theorem 4.6 can be used to characterize the convex drawings of a triconnected
graph. Namely, let G be a plane triconnected graph; let G be the graph obtained
by inserting a dummy vertex v inside each nontriangular internal face f of G and
by connecting v to the vertices of f. A characterization of the angles of the con-
vex drawings of G is easily obtained by applying the conditions of Theorem 4.6 on
G and by supplementing them with conditions that guarantee the convexity of the
nontriangular faces.

Theorem 4.6 can also be used to characterize DTs.
THEOREM 5.1. Let G be a plane triangular graph. Suppose a set of positive values

for the internal angles between the edges of G is given. G has a Delaunay drawing F
with the given angles and with the given external face if and only if conditions 1, 2,
3, and 4 of Theorem 4.6 and the following condition hold:

5. For each internal edge e of G, let 1 and 2 be the angles opposite to e in the
two triangular faces of G incident with e:

358 GIUSEPPE DI BATTISTA AND LUCA VISMARA

Proof. The theorem descends from Fact 2.1 of [7] (or from [4]) and from Theo-
rem 4.6. [:]

Another interesting aspect of Theorem 4.6 is that it can be exploited to char-
acterize the planar drawings of plane triangular graphs through the lengths of their
edges. The proof of the following theorem is analogous to the proof of Theorem 4.6
and makes use of the triangle cosine law.

THEOREM 5.2. Let G be a plane triangular graph. Suppose a set of positive values

for the lengths of the edges of G is given. G has a planar straight-line drawing F with
the given lengths for the edges and with the given external face drawn convex if and
only if the following conditions hold.

1. For each internal face f of G, let a, b, c be the lengths of the edges of f:
a<b+c,b<c+a, andc<a+b.

2. For each internal vertex v of G, let Wd be the wheel with center v. Let
c1,..., Cd be the lengths of the edges of the external cycle of Wd and let rl,..., rd be
the lengths of the other edges of Wd:

ri
2 Jr- r(imodd)+l

2
Ci

2

0 < arccos < 7r, 1,...,d,
2rir(imodd)+l

d
ri

2 nc r(imdd)+l 2
Ci

2

arccos
2rir(imoda)+i=1

27r.

3. For each external vertex v of G, let f fd-1 be the internal faces of G
sharing v. Consider face f, let c be the length of the edge of fi opposite to v, and
let ri, ri+l be the lengths of the other two edges:

d-1 2 2
ri -t- ri+ ci

2

arccos
2riri+i=1

The disc-packing representations of a plane triangular graph G are easily charac-
terized by using a variable x for each vertex v of G, representing the length of the
radius of the disc centered at v, and by adding, for each edge (u, v) with length l, a
new condition z + x. to the conditions of Theorem 5..2.

6. Open problems. The conditions of Theorem 4.6 are nonlinear. Is it possible
to simplify some of them for particular classes of drawings and/or for particular classes
of graphs?

Concerning the first possibility, there is a negative result. Namely, consider
straight-line drawings such that for each internal edge the two opposite angles are
equal. In such drawings condition 3 of Theorem 4.6 is always satisfied and hence
can be omitted. Unfortunately, not all the plane triangular graphs admit one of such
drawings.

Theorem 4.8 shows that, in general, it is necessary to use condition 3 of Theo-
rem 4.6 for each internal vertex. Are there special classes of graphs that allow us to
use condition 3 of Theorem 4.6 on a subset of internal vertices? For example, are
there classes of graphs for which such subset is a point cover?

Another issue is to consider how to generalize Theorem 4.6 to nonplanar graphs
or to nonconvex drawings of planar graphs (see also [26]).

ANGLES OF PLANAR TRIANGULAR GRAPHS 359

Acknowledgments. We thank Pierluigi Crescenzi and Adolfo Piperno for useful
discussions on the disc-packing problem.

REFERENCES

[1] F. J. BRANDENBURG, P. KLEINSCHMIDT, AND U. SCHNIEDERS, Drawing planar graphs with wide
angles, Manuscript, 1991.

[2] (. R. BRIGHTWELL AND E. R. SCHEINERMAN, Representation of planar graphs, SIAM J. Dis-
crete Math., 6 (1993), pp. 214-229.

[3] g. DE FRAYSSEIX, J. PACH, AND R. POLLACK, How to draw a planar graph on a grid, Combi-
natorica, 10 (1990), pp. 41-51.

[4] B. DELAUNAY, gur la sphere vide, Izv. Akad. Nauk SSSR, VII Seria, Otdel. Mat. Estestvennyka
Nauk, 7 (1934), pp. 793-800.

[5] (. DI BATTISTA, P. LADES, R. TAMASSIA, AND I. (. TOLLIS, Algorithms for drawing graphs:
An annotated bibliography, Comput. Geom. Theory Appl., 4 (1994), pp. 235-282.

[6] M. B. DILLENCOURT, Graph-Theoretical Properties of Algorithms Involving Delaunay Triangu-
lations, Tech. Report CS-TR-2059, Institute for Advanced Computer Studies, University
of Maryland, College Park, MD, 1988.

[7] , Toughness and Delaunay triangulations, Discrete Comput. Geom., 5 (1990), pp. 575-
601.

[8] M. B. DILLENCOURT AND I. RIVIN, Personal communication, 1992.
[9] I. FARY, On straight lines representation of planar graphs, Acta Sci. Math. (Szeged), 11 (1948),

pp. 229-233.
[10] M. FORMANN, T. HAGERUP, J. HARALAMBIDES, M. KAUFMANN, F. T. LEIGHTON, A. SIMVONIS,

E. WELZL, AND C. WOEGINGER, Drawing graphs in the plane with high resolution, SIAM
J. Comput., 22 (1993), pp. 1035-1052.

[11] A. GARG, On drawing angle graphs, in Graph Drawing, in Proc. DIMACS International Work-
shop on Graph Drawing, Princeton, NJ, Lecture Notes in Computer Science 894, R. Tamas-
sir and I. G. Tollis, eds., Springer-Verlag, Berlin, New York, 1995, pp. 84-95.

[12] A. GARG AND R. TAMASSIA, Planar drawings and angular resolution: Algorithms and bounds, in
Algorithms, Proceedings of the 2nd Annual European Symposium on Algorithms, Utrecht,
the.Netherlands, Lecture Notes in Computer Science 855, J. van Leeuwen, ed., Springer-
Verlag, Berlin, New York, 1994, pp. 12-23.

[13] C. D. HODGSON, I. RIVIN, AND W. D. SMITH, A characterization of convex hyperbolic polyhedra
and of convex polyhedra inscribed in the sphere, Bull. Amer. Math. Soc., 27 (1992), pp. 246-
251.

[14] , Erratum (A characterization of convex hyperbolic polyhedra and of convex polyhedra
inscribed in the sphere), Bull. Amer. Math. Soc., 28 (1993), p. 213.

[15] (. KANT, Drawing planar graphs using the lmc-ordering, in Proc. 33rd Annual IEEE Sympo-
sium on FoundRY.ions of Computer Science, Pittsburgh, PA, 1992, pp. 101-110.

[16] , Drawing planar graphs using the canonical ordering, Algorithmica (special issue on
Graph Drawing, G. Di Battista and R. Tamassia, eds.), to appear.

[17] S. MALITZ AND A. PAPAKOSTAS, On the angular resolution of planar graphs, SIAM J. Discrete
Math., 7 (1994), pp. 172-183.

[18] B. MOHAR, A polynomial time circle packing algorithm, Discrete Math., 117 (1993), pp. 257-
263.

[19] T. NISHIZEKI AND N. CHIBA, Planar Graphs: Theory and Algorithms, Annals of Discrete Math-
ematics, Vol. 32, North-Holland, Amsterdam, 1988.

[20] W. SCHNYDER, Planar graphs and poset dimension, Order, 5 (1989), pp. 323-343.
[21] , Embedding planar graphs on the grid, in Proc. 1st ACM-SIAM Symposium on Discrete

Algorithms, San Francisco, CA, 1990, pp. 138-148.
[22] S. K. STEIN, Convex maps, Proc. Amer. Math. Soc., 2 (1951), pp. 464-466.
[23] E. STEINITZ AND H. RADEMACHER, Vorlesungen iber die Theorie der Polyeder, Julius Springer,

Berlin, Germany, 1934.
[24] W. T. TUTTE, Convex representations of graphs, Proc. London Math. Soc., 10 (1960), pp. 304-

320.
[25] W. T. TUTTE, How to draw a graph, Proc. London Math. Soc., 13 (1963), pp. 743-768.
[26] G. VIJAYAN, Geometry of planar graphs with angles, in Proc. 2nd Annual ACM Symposium

on Computational Geometry, Yorktown Heights, NY, 1986, pp. 116-124.
[27] K. WAGNER, Bemerkungen zum vierfarbenproblem, Jahresber. Deutsch. Math.-Verein., 46

(1936), pp. 26-32.

SIAM J. DISCRETE MATH.
Vol. 9, No. 3, pp. 360-364, August 1996

1996 Society for Industrial and Applied Mathematics
002

CONSTRAINED EMBEDDING PROBABILITY FOR TWO BINARY
STRINGS*

JOVAN DJ. GOLI(t

Abstract. An exponentially small upper bound on the probability that a given binary string
of length n can be embedded into a uniformly distributed random binary string of length 2n by
inserting at most one bit between any two successive bits and an arbitrary number of bits at the
end is analytically derived. This probability is important for a cryptanalytic problem of the initial
state reconstruction of a binary clock-controlled shift register that is clocked either once or twice per
each output symbol, given a segment of its output sequence. The developed approach may also be
interesting for other problems of sequence comparison as well, especially for the codes for correcting
synchronization errors.

Key words, sequence comparison, constrained embedding, recurrences, cryptanalysis, synchro-
nization error-correcting codes

AMS subject classifications. 05A15, 11B37, 94A60, 94B50

1. Introduction. A cryptanalytic problem of the initial state reconstruction of
a binary clock-controlled shift register that is clocked either once or twice per each
output symbol is considered in [5], assuming that its output sequence is known. A
more general case when the register is additively noised and the maximum number of
consecutive clocks at a time is an arbitrary positive integer is examined in [3] using a
generalization of the Levenshtein distance. In the zero-noise case the reconstruction is
successful if the probability that a given binary string can be embedded into a random
binary string of appropriate length decreases sufficiently fast with the string length.
An exponentially decreasing upper bound on’the embedding probability derived in [5]
shows that the required length of the output sequence is linear in the shift register
length. The bound is obtained by direct counting based on some theoretical consid-
erations. In this paper, the underlying combinatorial problem is solved analytically
and an upper bound on the probability that a given binary string of length n can
be embedded into a random binary string of length 2n by inserting at most one bit
between any two successive bits and as many bits as needed at the end is thus derived.
The bound is the tightest in the observed class and hence sharper than the one from
[5]. The combinatorial problems of this kind are also relevant for the codes capable
of correcting synchronization errors; see [1], [2], for example.

2. Preliminaries. Consider two binary strings X {xi}= and Y {Yi}im=l
of lengths n and rn, respectively. For an arbitrary binary string X of length n, let
Xi denote its prefix of length i, 1 _< _< n. Say that X can be l-embedded into
Y if there exists a decimation sequence of integers D {di}l such that xi Yd
for 1 _< n, with dl 1 and d- d-i E {1, 2} for 2 _< _< n. Equivalently, X
can be l-embedded into Y if Y can be obtained from X by inserting at most one bit
between any two successive bits of X and an arbitrary number of bits at the end. If in
addition m- dn E {0, 1}, then X is said to strictly l-embed into Y, and in particular
if dn rn, then X is said to l-embed onto Y.

Received by the editors January 13, 1992; accepted for publication (in revised form) August 11,
1995. A preliminary version was presented at 36.ETAN, Yugoslavia, 1992.

Information Security Research Centre, Queensland University of Technology, GPO Box 2434,
Brisbane, Queensland 4001, Australia, and School of Electrical Engineering, University of Belgrade,
Yugoslavia (golic@fit.qut.edu.au).

360

CONSTRAINED EMBEDDING PROBABILITY 361

Our objective here is to determine the probability that a given binary string X
of length n can be l-embedded into a uniformly distributed random binary string
Y of length 2n. As is shown in [5], this probability proves to be important for the
cryptanalytic problem of reconstructing the initial state of a shift register given a

segment of its decimated output sequence. Let An,k(X), 0 <_ k <_ n, denote the
number of binary strings of length n + k into which a binary string X of length n can

be strictly l-embedded. Also, let An,k denote the maximum of An,(X) over all X of
length n and let

Clearly, An represents an upper bound on the number of binary strings of length 2n
into which any binary string of length n can be l-embedded. This is just an upper
bound because it is in general possible that a given binary string can be strictly 1-
embedded into two binary strings of different lengths one of which is the prefix of
the other. Therefore, the probability that an arbitrary binary string of length n can
be l-embedded into a uniformly distributed random binary string of length 2n is

upper-bounded by

(2) Pn 2-nA

In the next section, we will derive and solve a linear recurrence for An and thus
determine the upper bound Pn. To this end, we also introduce An,,i(X), 0, 1,
as the number of binary strings Y of length n + k such that a binary string X of
length n can be l-embedded onto the prefix Yn+-i and not onto Yn+k Y for 1.

Similarly, let An,k,i denote the maximum of An,,i(X) over all X of length n. Clearly,
for every X,

A,c(X) A,,o(X) + A,,x (X).

3. Embedding probability. Our basic result is a recursive property of
established by the following theorem.

THEOREM 3.1. For an arbitrary binary string X of length N and every 2 <_ n <_ N
and O < k < n we have

(4) A,,o(Xn) An-x,,o(Xn-x) + An-l,k,1 (Xn-1),

An,k,x (X) _< An,-x,o(Xn) + An-x,-x,x (X_),

with equality in (5) if Xn-1 Xn and with the initial values, independent of X1,
A1,0,0(X1) 1, A,0,1(X) 0, A,,o(Xl) O, and A,,(X) 2. It is assumed
that A,,#(Xn) 0 if k < 0 or k > n.

Proof. The initial conditions follow directly. By the definition of A,,0(Xn), (4)
is true because Xn can be l-embedded onto Yn+k if and only if yn+ x and
can be strictly l-embedded into Yn+-l.

On the other hand, a closer examination of An,, (Xn) reveals the following. If
yn+ : x, then X can be l-embedded onto Yn+k- and not onto Y+ if and only
if Xn can be l-embedded onto Yn+k-, which accounts for the first term on the right-
hand side of (5). If y+ xn, then Xn can be l-embedded onto Yn+- and not

362 JOVAN DJ. GOLI

onto Yn+k only if Yn+k-1 Xn and Xn._ can be 1-embedded onto Yn+k-3 and not
onto Yn+k-2. Namely, if Xn-1 could be 1-embedded onto Yn+k-2, then in view of

Yn+k xn it follows that X could be 1-embedded onto Yn+k. This accounts for the
second term on the right-hand side of (5), whereas the inequality is a consequence
of the fact that the condition is necessary but in general not sufficient. Precisely,
if x_l xn and X-2 can be strictly 1-embedded into Y+k-2, then Xn can be
1-embedded onto Yn+, because y+k x and Yn+k- xn xn-. However, if

xn-1 Xn, this is not possible and the condition becomes suificient, meaning that if
y+ Xn, then Xn can be 1-embedded onto Yn+- and not onto Y+ if and only
if Y+k-1 xn and Xn_. can be 1-embedded onto Yn+k-3 and not onto Yn+k-2.
Therefore, if Xn_ Xn, then (5) holds with equality.

COROLLARY 3.1. If X is a binary alternating string of length N, then (5) holds
with equality for every 2 < n < N and 0 <_ k <_ n.

Consequently, for alternating strings the system of recursive inequalities for
An,k,i(X) given in Theorem 3.1 becomes a system of two linear recurrences. More-
over, since the coefficients in (3)-(5) are positive and the initial values AI,,i(X1) are
independent of X.,, we directly obtain the following corollary.

COROLLARY 3.2. For any n >_ 1, 0 <_ k <_ n, and O, 1, the maximum values
An,k# and A.n,k of An,#(Xn) and An,k(X) over all X of length n are both achieved

if Xn is alternating and are determined by the linear recurrences

An,k,O An-l,k,o An-l,k,1,

(7)

.tbr n > 2 and 0 <_ k <_ n, with the initial values A,0,0 1, A1,0,1 0, A,,0 O, and
A,,I 2, assuming that An,,i 0 if k < 0 or k > n, along with the linear equation

(8) An,k An,,o + An,,.

After certain ,nanipulations with (6)-(8), it is not difficult to obtain a linear
recurrence for A,k.

COROLLARY 3.3. For every n >_ 3 and 0 <_ k < n we have

(9)

with the initial values A,0 1, A1,1 2, A,0 1, A.,, 3, and Au, 4, assuming
that A,k O if k < O or k > n.

Corollary 3.3 together with (1) results in a linear recurrence for An which can be
solved easily.

COROLLARY 3.4. For every n >_ 3 we have

(10) An 4An--1

with the initial values A 4 and A 14. The solution to (10) is given by

(11) An 2 2

Corollary 3.4 and (2) determine the desired upper bound I% on the constrained
embedding probability. The bound is exponentially small for large n.

CONSTRAINED EMBEDDING PROBABILITY 363

COROLLARY 3.5. We have that

2 4 2
n_>l. Cl

We proceed now by discussing the upper bound, from [5]. There it is shown that
for any 1 _< m <_ n,

(13) Pn < P[mn/mj <
4

n--m+1

where [xJ denotes the integer part of x. Note that (13) is a simple consequence of (1)
and the fact that any strict l-embedding of a concatenation of binary strings can be
represented as a concatenation of strict l-embeddings of individual strings and vice
versa. Interestingly enough, it follows that any P, < 1 results in an exponentially
small upper bound on the constrained embedding probability. As is shown in [5] by
direct counting, it turns out that P, is smaller than one for every 2 _< m <_ 7. The
sharpest bound is obtained for m 7. Clearly our bound (12), which is based on the
analytical expression (11) for An, is sharper.

Finally, it is not difficult to see that the upper bound An can be further improved
if instead of (1) we use

(14) A E2-An,,’
k=O

which is equal to An-2An-1, for n _> 2, and A 2. In view of (11), the corresponding
upper bound on the constrained embedding probability P 2-2hAth is then given
by the following corollary.

COROLLARY 3.6. We have that

(15) P- 4 + 4
n_>l. Cl

4. Conclusion. In this paper, a counting combinatorial problem raised in [5] is
analytically solved and an upper bound on the probability that a given binary string
of length n can be embedded into a uniformly distributed random binary string of
length 2n by inserting at most one bit between any two successive bits and an ar-
bitrary number of bits at the end is thus determined. The solution is obtained by
deriving suitable recursive characteristics of certain numbers of binary strings of a
given length that satisfy appropriate embedding properties. The probability is im-
portant for the cryptanalytic problem [5], [3] of the initial state reconstruction of a
binary clock-controlled shift register that is clocked at least once and at most twice
per each output symbol, given a segment of its output sequence. The obtained bound
is sharper than the one from [5] where the underlying combinatorial problem is treated
by direct counting for small string lengths. Both the bounds are exponentially small
for large string lengths which shows that the required length of the output sequence
for the successful reconstruction is linear in the shift register length. The developed
theoretical approach may also be useful for solving a more general constrained era-
bedding problem with an arbitrary maximum number of consecutive insertions or a

364 JOVAN DJ. GOLI

modified embedding problem with permitted substitutions, both relevant for the gen-
eral cryptanalytic problem pointed out in [3]. Apart from that, the result might also
be interesting for other problems of sequence comparison [4] as well, especially for
synchronization error-correcting codes; see [1], [2], for example.

REFERENCES

[1] L. CALABI AND W. E. HARTNETT, Some general results of coding theory with applications to
the study of codes for the correction of synchronization errors, Inform. and Control, 15
(1969), pp. 235-249.

[2] A. S. DOLGOPOLOV, Capacity bounds for a channel with synchronization errors, Prob.
Peredachi Inform., 26 (1990), pp. 27-37. (In Russian.)

[3] J. DJ. GOLId AND M. J. MIHALJEVId, A generalized correlation attack on a class of stream
ciphers based on the Levenshtein distance, J. Cryptology, 3 (1991), pp. 201-212.

[4] D. SANKOFF AND J. B. KRUSKAL, Time Warps, String Edits, and Macromolecules: The Theory
and Practice of Sequence Comparison, Addison-Wesley, Reading, MA, 1983.

[5] M. V. ;IVKOVI(, An algorithm for the initial state reconstruction of the clock-controlled shift
register, IEEE Trans. Inform. Theory, 37 (1991), pp. 1488-1490.

SIAM J. DISCRETE MATH.
Vol. 9, No. 3, pp. 365-376, August 1996

() 1996 Society for Industrial and Applied Mathematics
003

ON THE COMPLEXITY OF A CUTTING PLANE ALGORITHM FOR
SOLVING COMBINATORIAL LINEAR PROGRAMS*

E. ANDREW BOYDi

Abstract. A cutting plane algorithm is presented for solving combinatorial linear programs--
integer programs with 0/1 vertices represented by a separation oracle. The algorithm is a standard
cutting plane method but uses a prescribed dual criterion for choosing a cut at each iteration. As a
result, it is possible to demonstrate that for problems containing a ball whose size is polynomially
bounded from below, there exists an algorithm polynomial in the running time of the separation
oracle and pseudopolynomial in the size of the objective function. In particular, the cardinality
versions of many combinatorial optimization problems are shown to be solvable in polynomial time
using this generic algorithm.

Key words, cutting planes, integer programming

AMS subject classifications. 90C10, 90Cll

1. Introduction. Cutting plane algorithms for solving integer programs have
received considerable attention in recent years. Much of the work has been performed
on specific combinatorial optimization problems such as the traveling salesman prob-
lem (see, for example, [19] and [20]), but a great deal of work has also been devoted
to general integer programs (see, for example, [7], [13], and [21]). Padberg coined
the term "branch-and-cut" for branch-and-bound algorithms making extensive use of
cutting planes at nodes of the search tree, and branch-and-cut algorithms form the
basis for almost all of the recent work in exact algorithms for integer programs.

Yet, while cutting plane algorithms have been used with great frequency and
success in practice, very little is known about their convergence properties apart
from the fact that in many instances they are finite. In the case of Gomory cut-
ting planes [10], [11], and Fenchel cutting planes [5], finiteness was at one time an
issue in and of itself. Lift and project cutting plane procedures using ideas such as
those found in [2], [17], and [23] are finite but depend upon an exponential function
of the problem dimension. Standard polyhedral cutting plane algorithms commonly
employ separation oracles for finding violated inequalities that generate facets of the
underlying polyhedron, and in these instances the running time of the cutting plane
algorithm is bounded by the number of facets. Unfortunately, in most instances where
cutting plane algorithms re actually employed, the number of facets is exponential
in the natural problem size. Even for problems that are known to have polynomial
algorithms that are not based on cutting planes, such as the matching problem, the
theoretical behavior of cutting plane algorithms remains unexplored. The importance
of convergence properties is far from purely theoretical, since it is well recognized
that cutting plane algorithms almost uniformly demonstrate significant "tailing off"--
substantial progress in early iterations with very little progress in latter iterations.
While general observations can be made explaining this phenomenon, a better theo-
retical understanding of the convergence properties of cutting plane algorithms may
lead to variants which at least partially overcome this difficulty.

Received by the editors November 23, 1993; accepted for publication (in revised form) August
14, 1995. This work was sponsored in part by the National Science Foundation and the Office of
Naval Research under NSF grant number DDM-9396105.

Department of Industrial Engineering, Texas A&M University, College Station, TX 77843-3131
(boyd@marvin.tamu.edu).

365

366 E. ANDREW BOYD

An alternative to more standard cutting plane methods is the ellipsoid algorithm,
the convergence properties of which are well studied and theoretically quite satisfac-
tory. (See [4].) Like cutting plane algorithms, the ellipsoid algorithm does not require
an explicit representation of the linear program being solved, instead requiring only
tile existence of a separation oracle. The polynomiality of the ellipsoid algorithm in
the presence of a polynomial separation oracle was recognized early in the develop-
ment of the ellipsoid algorithm, and is extensively elaborated upon in [12]. In fact, the
unique theoretical properties of the ellipsoid algorithm are responsible for its contin-
ued significance in combinatorial optimization. Nonetheless, the algorithm performs
so poorly in practice that it has been all but abandoned, and in problems where the
underlying linear program is represented by a separation oracle more standard cutting
plane algorithms continue to be used.

In light of the favored status of standard cutting plane algorithms in practice,
their convergence properties remain compelling. In this paper we develop a cutting
plane algorithm whose complexity is unrelated to the number of facets defining the un-
derlying optimization polyhedron. The algorithm is a standard cutting plane method
but uses a prescribed dual criterion for choosing a cut at each iteration. As a result, it
is possible to demonstrate that for problems containing a ball whose size is polynomi-
ally bounded from below, there exists an algorithm polynomial in the running time of
the separation oracle and pseudopolynomial in the size of the objective function. In
particular, the cardinality versions of many combinatorial optimization problems are
shown to be solvable in polynonial time using this generic cutting plane algorithm.

The optimization problem to be considered is

(p)
max cz
s.t. xP

where P is a polyhedron. Rather than assuming P is represented by an explicit set of
linear inequalities, we assume instead that it is represented by a separation algorithm,
SEPARATE, defined as follows.

SEPARATE. Given a point Rn, find an inequality rx <_ 5 satisfying r > 5
and rz _< 5 for all z 7), or prove that no such inequality exists.

Polyhedra represented in this form commonly arise in the context of integer and
mixed-integer programming, where 7) corresponds to the convex hull of feasible integer
solutions for the underlying problem and an explicit inequality description is not
typically known. We make the following assumptions.

Assumptions. 1. 7)
_
R is full dimensional and contains the origin in its interior.

2. There exists a ball of radius r _< 1 centered at the origin and contained in 7)
and a ball of radius R _> 1 centered at the origin which contains 7).

3. c is integral and the absolute value of each element of c is bounded by C.
4. The extreme points 2 of 7) can be expressed as 2/M, where 2 is integral and

the absolute value of each element of 2 is bounded by N.
Translating 7) so that the origin is contained in its interior is primarily for expos-

itory purposes, since it allows 1-polar results to be applied without constant reference
to a virtual origin. The 1-polar rI of 7) is defined by

II {r R 7rx _< 1 is valid for 7)}.
With the origin contained in the interior of 7), every valid inequality for P is repre-
sented in II (up to scalar multiplication). The following proposition is used exten-
sively and without explicit reference in the results to be presented [18].

CUTTING PLANE COMPLEXITY 367

PROPOSITION 1.1. Suppose 7) is bounded and contains the origin in its interior.
Then II1 is a polyhedron, and x <_ 1 is a facet defining inequality of II if and only
if x is an extreme point of 7). Further, 7) is the l-polar of II.

The following results are easily verified and will prove useful in the exposition to
follow. Throughout the paper, I1" will be used to denote the g2 norm of a vector,
and log will denote the base 2 logarithm unless otherwise indicated.

PROPOSITION 1.2. Given a problem (P) satisfying assumptions 1 through 4, the
following conditions are true.

1. Every extreme point solution of 7) has objective function value p/M in (P),
where p is an integer in the interval [-NCn, NCn]. In particular, the optimal
value of (P) is p/M, where p E [0, NCn].

2. For any 7 II, I111 _< 1/r.

2. Algorithm. Given a problem (P) as described in the previous section, a
generic implementation of standard cutting plane methods proceeds as follows. The
polyhedron 7) is first approximated by at least n linearly independent constraints

x _< 1 with the property that maximizing cx subject to these constraints yields a
finite solution 2. A separation oracle is then invoked to determine if 2 7), and if
so the algorithm terminates with 2 optimal for (P). Otherwise, the separating hyper-
plane #x _< 1 is included in the set of constraints approximating 7) and the process
continues. An idealized version of this algorithm maintains exactly n linearly inde-
pendent constraints at each iteration, replacing one incumbent constraint with the
cutting plane generated at each iteration.

The proposed algorithm varies from the standard framework in two regards. First,
it maintains n+1 affinely independent constraints rather than n constraints, and this is
essential in proving the convergence properties of the algorithm. Second, the algorithm
is based on solving a collection o.f validity problems rather than a single optimization
problem, where each validity problem is solved using cutting planes. More specifically,
the proposed algorithm proceeds in a sequence of major iterations indexed by s where
the optimal objective function value is assumed to be vs. The algorithm then verifies
or refutes this condition by determining whether or not the constraint cSx <_ 1, c

c/vs, is valid for 7). The algorithm begins with the procedure MAIN shown in Fig. 1,
which is primarily a binary search procedure. It calls VALIDITY to determine if the
constraint cSx _< 1 is valid for 7) or not, and OPTIMAL to construct an optimal
solution from a near optimal solution at the termination of the algorithm.

Input: A problem (P) satisfying assumptions 1 through 4.
Output: An optimal extreme point solution x* to (P) and its optimal value
V*.

O. Initialize. Let VOLB 0, VB NCn/M, and 2 0. Let s 0.
1. Let s s + 1, v8 [M(VLB + vB)/2J/M and cs c/v If v vB call

OPTIMAL(2), let x* be the value returned by this algorithm, let v* VB,
and stop. Otherwise, continue with step 2.

2. If IlcSll > l/r, cSx _< 1 is not valid for 7); go to step 3. Otherwise, call
VALIDITY(cS).

v Otherwise,3. If VALIDITY determines that cSx _< i is valid for 7), let VB
let VLB V and let 2 be the value of x returned by VALIDITY. Continue
with step 1.

FIG. 1. Procedure MAIN.

368 E. ANDREW BOYD

Key to the operation of the overall algorithm is procedure VALIDITY. (See
Fig. 2.) At iteration t, VALIDITY maintains a set Qt of n + 1 affinely independent
valid inequalities x

_
1 for 7) and makes use of procedures CLOSE and SEPSTEP.

In each iteration, the procedure either demonstrates the validity or invalidity of the
constraint cSx

_
1 or it determines a new set of valid inequalities t differing from

the previous set by a single constraint. Validity is demonstrated by showing that cs

is contained in or almost contained in conv((t), and determining this condition is
the purpose of CLOSE. Invalidity is determined by finding a point E 7) such that
cs :> I, which is the function of SEPSTEP. If neither validity nor invalidity of the
constraint cSx

_
1 is determined during a particular iteration t, Qt is modified by

excluding a constraint determined by CLOSE and including a constraint determined
by SEPSTEP. Invalidity can also be determined by performing a fixed number of it-
erations of VALIDITY, and this is an extremely important consideration in bounding
the work performed by the algorithm.

Input: A problem (P) satisfying assumptions 1 through 4 and a constraint
cSx< 1.
Output: A point E 7) satisfying c8 > 1 or a proof that no such exists.

0. Initialize. Let t 0. Determine a set of n + 1 affinely independent valid
{r,..inequalities ix _< 1 for 7) and let Qt 71.n+l}"

1. Call CLOSE(c8, Qt). If the returned value conv(Qt) satisfies IIc -rl <
(RNCn) -1, return; cx _< 1 is valid for 7). Otherwise, let r be the element
of (t returned by CLOSE.

2. Call SEPSTEP(c, r). If a value 2 7) satisfying c2 > 1 is returned,
return; cSx _< 1 is invalid for P. Otherwise, let Qt+l Qt U {#t}_ {},
where rtx _< 1 is the separating hyperplane returned by SEPSTEP.

3. Lett=t+l. If

t-2(4RNCnIr
return; cx _< 1 is valid for 7). Otherwise, go to step 1.

FIG. 2. Procedure VALIDITY.

CLOSE (see Fig. 3) takes as input the collection Qt of n + 1 valid inequalities
for 7) maintained by VALIDITY and seeks to determine if c can be expressed as a
convex combination of these vectors. It accomplishes this task by seeking the unique
point r conv(Qt) closest to cs. If is sufficiently close to c, indicating that c
is either contained in or nearly contained in conv(Qt), CLOSE returns only 7 as an
indicator of this fact. Otherwise, CLOSE returns both r and a Qt such that

t. that is, can be expressed as a convexak 0 in the expression -Qt ar,
combination of the vectors in Qt_ {r}.

SEPSTEP (see Fig. 4) takes as input the direction d (c- r)/llc- 11 and
seeks to determine how far it is possible to move in this direction from the origin while
remaining in the polyhedron 7). More to the point, it conceptually seeks 2 Od,
0 > 0, on the boundary of 7) and a constraint #x _< 1 defining the face of :P in which

resides. In actuality, it uses binary search to determine approximations 2t of 2
and #t of with 2t E :p and #tx _< 1 vlid for 7). If c2 > 1 the procedure returns
2t as proof that cx _< 1 is not valid for 7); otherwise, it returns #tx _< 1 as a new
valid inequality for 7), and this inequality is used to replace the inequality x _< 1

CUTTING PLANE COMPLEXITY 369

Input: A set of n + 1 affinely independent vectors 1,..., n+l and a distin-
guished point cs.
Output: The unique point 70 satisfying IIc 011 -< c 11 for all E
conv(7,..., +), and if c conv(,..., 7n+) a value such that 0 E

Procedure: Apply the algorithm of Kojima, Mizuno, and Yoshise [14] to solve
the linear complementary problem

yl II -I I u 0
Y2 -II I -I u2 0

Y3 -eT It3 1

Y4 eT ua -1
v -.[IT I-IT e -e x 0
v2 I -I I -I x2 -c

v3 -I I -I I x3 c

xivi 0 yiui 0

x, y, u, v >_ 0

where H is a matrix with columns 1,..., 71"n+l and eT is a row vector of l’s.
Return 0 x2 x3 and any such that element k of xl is equal to 0, if
such a 7 exists.

FIc,. 3. Procedure CLOSE.

Input: A problem (P) satisfying assumptions 1 through 4 and vectors c and
71"0.
Output: A point 2 :P satisfying c2 > 1 or a valid inequality #x _< 1 for 7).

O. Initialize. Let h 0, d (c o)/llc 0], UhLB r, and UB R + r.
Call SEPARATE(uBd and let Kx _< 1 be the separating hyperplane that is
returned.

1. Let uh +
2. Call SEPARATE(uhd). If uhd 7) let UB uh, otherwise let uB uh

and let #x _< 1 be the separating hyperplane returned by SEPARATE.
3. Let h h+ 1. If Cs(UhLd) > 1 return 2 UhLsd. Otherwise, if h >_

log 2Rr-2NCn return the valid inequality for P, #x _< 1. Otherwise, go to
step 1.

FIG. 4. Procedure SEPSTEP.

in Qt determined by CLOSE. It is often the case in practice that when a separation
oracle exists a direct "step-length" oracle exists as well so that binary search need not
be used.

The remaining procedure, OPTIMAL (see Fig. 5), is a purification procedure that
generates an optimal solution to (P) from a near optimal solution. It is discussed in
greter detail in 4.

It is important to realize that while the algorithm is expressed using concepts

370 E. ANDREW BOYD

Input: A problem (P) satisfying assumptions 1 through 4, a vector c, and a
point 2 E 7) satisfying cc > v* l/M, where v* is the optimal value of (P).
Output: An optimal solution for (P).

O. Initialize. Let q 0, 2q ., and let B be the null matrix. Let dq be any
non-descent direction with respect to c.

1. Use SEPARATE in a binary search algorithm to determine the largest value
of 0 such that 2q + Odq

_
"[’9 and a valid inequality #qx _< 1 for 7) such that

l’q(gq -t-dq) 1. Let cq+l cq + Odq and append #q to B as a new row. If
q + 1 n, return the value 2q+l.

2. Let dq+l be any non-descent direction with respect to c contained in the
nullspace of B. Let q q + 1 and go to step 1.

FIG. 5. Procedure OPTIMAL.

related to the primal space in which 79 resides, motivation for the algorithm comes
from the dual space in which II1 resides. In this space, the direction d (cS-r))/llcs-
r passed to SEPSTEP by VALIDITY can be seen as defining an objective function
that when maximized on II1 yields an optimal solution #t with the properties required
to achieve the convergence criteria embodied in the statement of Theorem 3.2. The
dual interpretation of SEPSTEP is that it yields a solution #t to this optimization
problem of high accuracy using binary search and SEPARATE as a validity oracle
for II1.

Apart from the binary search aspect of MAIN dictated by solving a sequence of
validity problems, the major difference between the proposed algorithm and standard
cutting plane algorithms is the way in which the cutting plane is chosen. Rather than
being driven by seeking to separate the incumbent linear programming solution from
7), the algorithm is instead driven by seeking to express c as a convex combination
of valid inequalities for 7), thus demonstrating that c:c _< 1 is itself valid for 7). It is
this dual approach which leads to a complexity independent of the number of facets
of P.

3. Proof of correctness. A number of issues remain to be addressed in order
to demonstrate the correctness of the algorithm. We begin by making some observa-
tions about the algorithm that do not require explicit proof but are fundamental to
understanding the algorithm.

Proposition 1.2 guarantees that vgB and VB as defined in MAIN represent lower
and upper bounds on the optimal value of (P), and that every extreme point of (P)
has an objective function value that is a multiple of 1/M. The operation of MAIN
guarantees that VOLB and vB remain lower and upper bounds on the optimal value
of (P). Thus, when MAIN terminates, v* is the optimal value for (P), and while is
not optimal for (P) it is feasible and cc > v* 1/M. The point 2 is therefore near
optimal in the sense of having objective function value better than any nonoptimal
extreme points of 7) These facts are important to the operation of OPTIMAL. The
claim made in step 2 of MAIN follows directly from Proposition 1.2.1.

CLOSE is a direct application of the algorithm of Kojima, Mizuno, and Yoshise [14]
to the linear complementarity problem derived from the Karush-Kuhn-Tucker condi-
tions associated with finding the closest point r0 to c contained in conv(r,..., 7c+).
The solution of this problem is such that r0 x2 x3 and x is the vector of weights
expressing r0 as a convex combination of the points r,..., 7c+; that is, r0 IIx.

CUTTING PLANE COMPLEXITY 371

Note that if c conv(Trl,..., 7rn+l), at least one of the entries in xl must be 0, as

implied in the statement of the algorithm.
The definitions of/2 and r ensure that uBd E 79 and uBd P in SEPSTEP.

The values ud and ud remain contained in and not contained in P, respectively,
by virtue of the binary search nature of the procedure.

Two issues require explicit verification, both found in VALIDITY. First, it must
be demonstrated that when VALIDITY terminates in step 1, it is correct to conclude
that cx 1 is a valid inequality for P. Second, it must be demonstrated that when
VALIDITY terminates in step 3 aiter the stated number of iterations it is correct to
reach this same conclusion. The following theorem addresses the first question.

THEOREM 3 1 Let c c where p [1 NCn] is an integer, and supposep

c H. Then for any e H, I1 1 (RNCn) -1.
Proof. Let q > p be the smallest integer such that cx < 1 is valid for P. Byq

Proposition 1.2.1 q < NCn and there exists an 2 P such that c2 1 Since
2 1 is valid for H, it follows that for any H,

1
1c_2] > 1 (M M) 1

I1 > 2--c 2--c M2c
q- p

p q Pq

With q > p we hve (q- p)/pq 1/pq, nd with 2c- q/M and I1 th lst
expression is greater than or equal to 1/pR. Together with the fact that p NCn,
the desired result follows.

Since CLOSE returns a value 0 Hx, Theorem 3.1 verifies the termination
condition in step 1 of procedure VALIDITY.

The termination condition in step 3 of procedure VALIDITY also depends on
Theorem 3.1. It can be shown that c
rate such that after the number of iterations stated in step 3 of procedure VALIDITY,
IIc-ll < (NC)-1, Thus, by Theorem 3,1, if cx 1 is not valid for P, procedure
VALIDITY must terminate within this number of iterations. The following theorem
dostrts th rt t which I1 1 dcrs.

THEOREM 3.2. If c H, then at iteration t of VALIDITY,

(1) IlCs__+l,l [1--(4NC)2 1/2

.Proof. In order to demonstrate (1) it is shown that some point t on the line
segment connecting and t defined in VALIDITY satisfies

(2) IIc-ll 1-
4RNCn

Since d cov(O+
c t by the definition of +, (1) follows.

It is shown in Lemm 3.4 that #t returned by SEPSTEP stisfies

()(3) ll IIc ll 2NC’

and since c H it follows by Theorem 3.1 that

((a) I 1- ii

372 E. ANDREW BOYD

Thus,

c 7r
7rt5 > 1

 :,11 nNC

Let t be the projection of c onto the line defined by 7r and #t. If #t c then
7r, rt, and c are colinear, in which case (3) and (4) imply IIc rt]l _< I]c 7r11/2.
With #t E (t+l by the operation of VALIDITY, this would complete the proof.

Thus, suppose t c and consider the right triangle formed by r, #t, and cs. By
(5), we can restrict attention to the two cases fc conv(r, rt) and #t conv(7c, rt).
If r conv(Tc, #t) then fr conv(Qt+l) since r,# Qt+l by the operation of
VALIDITY. Letting 0 be the angle between the vectors (c-Tr) and (#t-r), we have
by the definition of #t that Ic rtll/llc rl sin 0. Letting 7rp-t be the projection
of #t onto the line defined by 7r and c, we also have cos0 117rp
By Proposition 1.2.2, I-- < 2/, and by (5),

(cs- 7r)r > 1
21 NC

Thus, cos0 > r/4RNCn and

sin 0 (1 cos 0) 1/2 1
4RNCn

1/2

Finally, consider the case r cony(Try, frt). By the definition of #t, this can only
occur if #t is contained in the sphere of radius IIc 7r11/2 centered between c and

7r. By (3) and (4), it follows that IIc #t _< @1 c rll. With #t II1 by the
operation of SEPSTEP, the proof is complete. D

It remains only to show that condition (3) assumed in the proof of Theorem 3.2
is guaranteed by the operation of the algorithm, and this is demonstrated in LeInma
3.4. However, before proving this lemma we first make note of the following corollary
to Theorem 3.2, which is the main result of this section.

THEOREM 3.3. If c II, then after at most

iterations, VALIDITY will return an Yc T9 satisfying cYc > 1.

Proof. By the operation of MAIN, VALIDITY is not called if IIcll > l/r, and
since 1%1 _< 1/r by Proposition 1.2.2, IIc-7c <_ 2/r. Using this fact and the bound
-log a _> 1- a we find that if

r r
lOge (2t:NC?’t)I > 21oge (2RNCn) 1Og-I (r

1
4RNCn

then IIc -t)+lll < (RNCn) -1, causing VALIDITY to return as specified.
LEMMA 3.4. If SEPSTEP returns a valid inequality #x <_ 1 for 7) then

1

2RNCn

CUTTING PLANE COMPLEXITY 373

Pro@ Since IlULdll <_ r and II@dl > R it follows by assumption 2 that
ULd 7) while ud , and by the operation of SEPSTEP ud 7) and

UrBd 7) are maintained throughout.
Let H log 2Rr-NCn, the number of iterations performed by the procedure

when a separating hyperplane is returned. Since #x _< 1 separates ud from 7),
#(ud) > 1. Purther, C(UHLd) _< 1, for otherwise the procedure would return
instead of #. Thus,

dc d# <

Given that u -uB R, it follows that after H iterations of SEPSTEP uH
uH <_ R/2H; and since u can only increase, ucH _> r. Together, these facts imply
dc -d# <_ R/2Hr, which in turn implies the desired result, rl

4. An optimal solution from MAIN. At the conclusion of MAIN, v* is the
optimal solution value of (P), but the point 2 maintained by the algorithm is only
nearly optimal. A common way of purifying a near optimal solution is to begin by
perturbing the objective function by a small amount so that an optimal solution can
be obtained simply by rounding the near optimal solution appropriately. This pertur-
bation poses no difficulty for algorithms having a complexity polynomial in the size
of the objective function, but since the algorithm presented here is pseudopolynomial
in the size of the objective function an alternative purification method is required.

As mentioned in 3, when MAIN terminates 2 is not only feasible for (P) but
cc > v* l/M; that is, 2 has objective function value greater than any extreme point
solution of (P) other than any optimal solutions. All OPTIMAL must do, therefore,
is find an extreme point solution of (P) with objective function value at least as large
as that of 2, and this extreme point is guaranteed to be optimal for (P). Conceptually
the process is quite straightforward, consisting of modifying the point 2 through a
sequence of nondescent moves until after n such moves an extreme point is found.
This is the basis of procedure OPTIMAL.

5. Analysis. It remains to consider the complexity of the overall algorithm.
Here we follow the development of recent interior point methods and focus on the
number of arithmetic operations performed in the course of the algorithm without
addressing the bit complexity of these operations. A bitwise development would not
fundamentally impact the stated results.

CLOSE inherits the complexity of the algorithm of Kojima, Mizuno, and Yoshise,
which is O(n3L), where L is the size of the data defining the linear complementar-
ity problem that must be solved. The entries in c and II predominate so that L is
O(n log C + n log g), where g is an upper bound on the absolute value of the numer-
ators and denominators in the coefficients of the r found in (t. Equivalently, g is
an upper bound on the absolute value of the numerators and denominators found in
the # returned by SEPARATE. Using this bound on L we have

O(n3L) O(n log C + n5 log g).

The complexity of SEPSTEP is also intimately related to the complexity of
SEPARATE but directly on the running time G of this algorithm rather than the
size log g of numbers occurring in its output. The amount of work per iteration of
SEPSTEP is constant other than the work performed in SEPARATE, and so the

374 E. ANDREW BOYD

overall complexity is

(8) O(G log 2R2r-VNCn).
VALIDITY performs constant work other than the work involved in initialization

and the work performed in calls to the procedures CLOSE and SEPSTEP, and by
Theorem 3.3 the maximum number of iterations of VALIDITY during any given call
is given by (6).

OPTIMAL is called only once at the conclusion of MAIN and performs n it-
erations. The dual interpretation of step 1 is that of maximizing dq on II1 using
SEPARATE as a validity oracle. Maximizing a linear function on a bounded polyhe-
dron in R contained in a ball of radius 1/r (see Proposition 1.2.2) with constraints
of encoding length bounded by 2n log max(m,N) (see assumption 4) and objective
function dq can be performed in time polynomial in log l/r, n, log max(M, N), and
the encoding length of dq via binary search; see, for example, [12]. The process gen-
erates an optimal extreme point of H with encoding length polynomial in n and
2n log max(M, N). Step 2 of OPTIMAL consists of finding a solution dq to a q n
system of equations, each of which has encoding length bounded by a polynomial
function of n and 2n log max(M, N) by the operation of step 1. A well-known result
of Edmonds (see [12]) implies that the direction dq generated by solving this system
of equations therefore has encoding length polynomial in n and 2n log max(M, N).

Finally, MAIN performs constant work except for calls to VALIDITY and a single
call to OPTIMAL, and as a binary search algorithm it performs log NCn iterations.
The overall complexity of the proposed algorithm is given by the product of log NCn,
(6), and the sum of (7) and (8), plus the work done by OPTIMAL. The algorithm is
therefore a polynomial function of R, r, N, C, n, log l/r, logmax(M,N), logg, and
G, where standard assumptions on the separation oracle imply log 9 is polynomially
related to G. For integer programs with 0/1 vertices, it is trivially verified that N, M,
and R are polynomial in n. Thus, for 0/1 integer programs the proposed algorithm
is polynomial in r, C, n, and the running time of the separation oracle.

In many 0/1 integer programs the existence of a polynomially bounded ball con-
tained within the feasible set 79 is easily verified. One particular class of such problems
is that of independence system polyhedra, which are defined by the property that if
x 79 and y < x then y 79. It is easily seen that full dimensional 0/1 independence
system polyhedra contain the origin and all of the unit coordinate vectors, and there-
fore they contain a ball of radius r (n + 1)-3/ centered at the point (+,..., +).
As a consequence, the proposed algorithm is polynomial in C and the running time of
the separation oracle for optimization problems on these polyhedra. In particular, the
proposed algorithm represents a generic polynomial cutting plane procedure for the
cardinality versions of such problems as matching, T-join, and matroid intersection,
among others.

6. Conclusions. A cutting plane algorithm has been presented and analyzed
for solving linear programs where the feasible region is represented by a separation
oracle, a condition common to many integer and mixed-integer programs. It was
demonstrated that for problems containing a ball of polynomially bounded radius the
algorithm is polynomial in the running time of the separation oracle and pseudopoly-
nomial in the size of the objective function, and consequences of the algorithm were
discussed.

A number of obstacles preclude the use of the algorithm in practice. First, a
linear complementarity problem is solved during every iteration of VALIDITY. While

CUTTING PLANE COMPLEXITY 375

the linear complementarity problems that are encountered are relatively small and
each problem in the sequence varies only slightly, they remain a significant bottleneck
to the operation of the algorithm. Second, the algorithm is primarily a constraint
validity algorithm molded into an optimization algorithm through the use of binary
search. While the use of binary search can be mitigated through problem-specific
knowledge of an optimal or near optimal solution, as a rule, algorithms based on
binary search do not perform as well as more direct methods.

What the algorithm does show, however, is that it is possible to construct a cutting
plane algorithm whose complexity does not depend on the number of facets of the
underlying polyhedron. Instead, the complexity of the algorithm is fundamentally
interrelated With the numerical properties of the extreme points and the objective
function. This alternative perspective makes it possible to show that the proposed
algorithm is polynomial in some instances where alternative cutting plane algorithms
are not. Given the predominance of cutting plane algorithms in applied integer pro-
gramming, it is hoped that further results along these lines can be developed.

Acknowledgments. The author gratefully acknowledges the Department of
Mathematics at the University of Houston for providing facilities which aided im-
mensely in the development and preparation of the present work.

REFERENCES

[1] D. APPLEGATE AND W. COOK (1991), A computational study of the job-shop scheduling prob-
lem, ORSA J. Comput., 3, pp. 149-156.

[2] E. BALAS, S. CEPdA, AND G. CORNUJOLS (1993, A lift-and-project cutting plane algorithm
for mixed 0-1 programs, Math. Programming, 58, pp. 295-324.

[3] M. S. BAZARAA, g. D. SHERALI, AND C. M. SHETTY (1993), Nonlinear Programming: Theory
and Algorithms, Wiley and Sons, New York.

[4] R. G. BLAND, D. GOLDFARB, AND M. J. TODD (1981), The ellipsoid method: A survey, Oper.
Res., 29, pp. 1039-1091.

[5] E. A. BOYD (1995), On the convergence of Fenchel cutting planes in mixed-integer program-
ming, SIAM J. Optim., 5, pp. 421-435.

[6] V. CHVTAL (1973), Edmonds polytopes and a hierarchy of combinatorial problems, Discrete
Math., 4, pp. 305-337.

[7] H. CROWDER, E. L. JOHNSON, AND M. W. PADBERG (1983), Solving large-scale zero-one linear
programming problems, Oper. Res., 31, pp. 803-834.

[8] A. FRANK AND E. TARDOS (1987), An application of simultaneous diophantine approximation
in combinatorial optimization, Combinatorica, 7, pp. 49-65.

[9] D. GOLDFARB AND M. J. TODD (1989), Linear Programming, in Optimization, G. L. Nemhauser
et al., eds., Elsevier Science Publishers, New York.

l. E. GOMORY (1958), Outline of an algorithm for integer solutions to linear programs, Bull.
Amer. Math. Soc., 64, pp. 275-278.

(1963), An algorithm for integer solutions to linear programs, in Recent Advances in
Mathematical Programming, R. L. Graves and P. Wolfe, eds., McGraw Hill, New York,
pp. 269-302.

[12] M. Gt6TSCHEL, L. LOVSZ, AND A. SCHUJVER (1988), Geometric Algorithms and Cornbina-
torial Optimization, Springer-Verlag, Ne.w York.

[13] K. L. HOFFMAN AND M. W. PADBER((1991), Improving the LP-representation of zero-one
linear programs for branch-and-cut, ORSA J. Comput., 3, pp. 121-134.

[14] M. KOJIMA, S. MIZUNO, AND A. YOSHISE (1989), A polynomial-time algorithm for a class of
linear complementarity problems, Math. Programming, 44, pp. 1-26.

[15] (1991), An O(V/-L) iteration potential reduction algorithm for linear complementarity
problems, Math. Programming, 50, pp. 331-342.

[16] E. L. LAWLER, J. K. LENSTRA, A. H. G. RINNOOY KAN, AND D. B. SHMOYS, EDS. (1985), The
Traveling Salesman Problem: A Guided Tour of Combinatorial Optimization, Wiley and
Sons, New York.

[10]

[11]

376 E. ANDREW BOYD

[17] L. LovXsz AND A. SCHRIJVER (1991), Cones of matrices and set-functions and 0-1 optirniza-
tion, SIAM J. Optim., 1, pp. 166-190.

[18] G. L. NEMHAUSER AND L. A. WOLSEY (1988), Integer and Combinatorial Optimization, Wiley
and Sons, New York.

[19] M. PADBERG AND M. CRTSCHEL (1985), Polyhedral computations, in The Traveling Salesman
Problem, E. L. Lawler et al., eds., Wiley and Sons, New York.

[20] M. PADBERG AND G. RINALDI (1991), A branch-and-cut algorithm for the resolution of large-
scale symmetric traveling salesman problems, SIAM Rev., 33, pp. 60-100.

[21] W. P. SAVELSBERGH, C. C. SIGISMONDI, AND G. L. NEMHAUSER (1991), MINTO, A Mixed
Integer Optimizer, Tech. report COC-91-04, Computational Optimization Center, School
of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA.

[22] J. F. SHAPIRO (1979), Mathematical Programming: Structures and Algorithms, Wiley and
Sons, New York.

[23] H. SHERALI AND W. ADAMS (1990), A hierarchy of relaxations between the continuous and
convex hull representations for zero-one programming problems, SIAM J. Discrete Math.,
3, pp. 411-430.

[24] E. TARDOS (1986), A strongly polynomial algorithm to solve combinatorial linear programs,
Oper. Res., 34, pp. 250-256.

SIAM J. DISCRETE MATH.
Vol. 9, No. 3, pp. 377-392, August 1996

1996 Society for Industrial and Applied Mathematics
OO4

COHEN-MACAULAY RINGS IN NETWORK RELIABILITY*

JASON I. BROWNt, CHARLES J. COLBOURN*, AND DAVID G. WAGNER*

Abstract. For any simplicial complex A and field K, one can associate a graded /<-algebra
K[A] (the Stanley-Reisner ring). For certain A and K, the Stanley-Reisner rings have a homo-
geneous system of parameters, @), such that K[A]/(1 is finite-dimensional, and coefficients of its
Hilbert series are the h-vector of A. The previous constructions of were noncombinatorial. In
the special case of cographic matroids, we give (for any field K) a combinatorial description of a

homogeneous system of parameters in terms of the graph structure, as well as an explicit basis for the
resulting quotient algebra. The results have applications to a central problem of reliability, namely
the association of a multicomplex to a connected graph, such that the reliability is a simple function
of the rank numbers.

Key words, reliability, graph, Cohen-Macaulay ring, homogeneous system of parameters,
Grhbner basis

AMS subject classifications. 05C30, 05E99, 68M15

1. Introduction. Let G be a finite undirected connected graph of order n (i.e.,
with exactly n vertices). Assume that each edge of G is independently operational
with probability p E [0, 1] (we denote the failure probability of an edge by q 1 -p).
The reliability of G, Rel(G,p), is the probability that the graph is connected, i.e.,
the probability that the operational edges form a spanning connected subgraph of G.
This model of reliability (sometimes called all-terminal reliability in the literature) has
been well studied [12], with the preponderance of work carried out on techniques for
efficiently bounding the reliability function. One of the best techniques for bounding
reliability is due to Ball and Provan [1] and relies on Stanley’s [21] inequalities for the
h-vectors of shellable complexes. The essence is that there is a Cohen-Macaulay stan-
dard graded algebra A A(G) whose Hilbert series, Hilbert(A,x), has the property
that

Rel(G, p) pn-lHilbert(A, 1 p).

What is not explicit is how the construction can be carried out combinatorially to
find A. It is this problem that we consider here.

2. Combinatorial background: Complexes matroids, and order sets of
monomials. A complex A on a finite set X {x1,..., x,} is simply a collection of
subsets (often called faces or independent sets) of X closed under containment. For
an independent set a of complex A, we let denote the set of subsets of a (of course,

C_ A). If al and cr2 are any two independent sets of A with al c_ a2, the interval
[al, a2] {a" al c cr C a2}. The dimension of a complex A is equal to the cardinality
of the largest set in A (this is one more than the definition of dimension usually found
in the literature, but will be convenient for our combinatorial applications). We say
that A is purely d-dimensional if A is d-dimensional and every maximal independent
set (or facet) of A has cardinality d. A purely d-dimensional complex A is shellable

Received by the editors July 6, 1994; accepted for publication (in revised form) August 14, 1995.
Department of Mathematics, Statistics, and Computing Science, Dalhousie University, Halifax

Nova Scotia, Canada B3H 3J5 (brown@cs.dal.ca).
Department of Combinatorics and Optimization, University of Waterloo, Waterloo, Ontario,

Canada N2L 3G1 (cjcolbou@math.uwaterloo.ca and dgwagner@math.uwaterloo.ca).

377

378 J.I. BROWN, C. J. COLBOURN, AND D. G. WAGNER

if its facets can be ordered as crl,...,at with the property that for 2,...,t,
cr g/(I.Jj= --]) is purely (d- 1)-dimensional. For any shelling a,...,

is an interval [-i, cri], and these intervals partition A (cf. [4]); this interval partition is
called the interval partition corresponding to the shelling a,...,

A complex A is a matroid if the well-known exchange axiom holds (cf. [24]).
One well-known class of matroids is that of cographic matroids. Given a graph G,
the complex on the edges of G whose independent sets consist of those sets of edges
whose removal does not increase the nunber of components is in fact a matroid, the
cographic rnatroid of G (which we usually denote by Coga).

The f-vector of a d-dimensional complex A is (fo,..., fd), where fi is the number
of independent sets of cardinality i. The h-vector of A is (ho,..., hd), where hi is
given by

(h-vectors have played an important role in polytope theory, primarily with regards
to the Upper Bound Theorem.) The h-vector of a shellable complex is always non-
negative and has no internal zeros (the reasons for this will soon become apparent).
Let

d

f(A,x)--Efix
i--0

and

d

h(a, x)
i=0

(these are the generating functions for the f-vector and h-vector, respectively). It is
not hard to verify that

(1) (x)h(A,x) (1- x)df A,_x
and hence

d

When A Coga, the cographic matroid of a connected graph G, one sees that

Rel(G’p) P’f (Cga’ l -p)p pn-lh(A, 1 -p),

and the sum of the terms in the h-vector is simply the number of spanning trees of
G.

RELIABILITY AND COHEN-MACAULAY RINGS 379

Finally, we can extend complexes to multicomplexes as follows. Let xl,...,xt
be commuting indeterminates. We let Mon(xl,... ,xt) denote the set of monomials
in x,..., x,. An order set of monomials in variables x,..., xt is a subset M of
Mon(xl,... ,Xl) closed under division (’1’), i.e., if ml, m2 e Mon(x,... ,xt), ml e M
and m21ml, then m2 E M. In an obvious way, any order set of square-free monomials
corresponds to a complex, and hence order sets of monomials are sometimes called
multicomplexes.

If we are given N c_ Mon(xl,... ,xt), we can define an order set of monomials
-N by "chopping out" frown Mon(xl,... ,xt) all monomials that are divisible by any
monomial in N, that is,

-N-- {?’n e Mon(xl,...,Xl) (V?Tt e N)(ml m)}.

We call N a set of choppers on the variables x,..., xt for the order set of monomials
-N.

3. Algebraic background: Stanley-Reisner rings. We turn now to com-
mutative algebra, and assume that the reader has a basic knowledge of rings. Let K
be any field. A commutative ring A containing K is a standard graded K-algebra if
A is a vector space direct sum

A]A
i>0

of subspaces A0,..., such that
(i) A0 K,
(ii) AiAj C_ Ai+j for all i,j >_ O, and
(iii) there are finitely many elements zl,..., zt in A1 such that every element of

A can be written as a polynomial in z,..., zt with coefficients in K; for such an A, we
call the elements of Ai homogeneous of degree i. The Hilbert series for the standard
graded K-algebra A is the generating series for the dimensions of the vector spaces
Ai, i.e.,

Hilbert(A, x) E Dim:(A)x"
i>0

If I is an ideal of ring A, z A, and :A -- A/I is the natural homomorphism,
we often write simply z for (z). If J’ is an ideal of A/I and J -(J’), then clearly
(A/I)/J’ =_ A/(I + J) A/(I U J}, and so we don’t distinguish between these. We
also write A (modulo (I + J)) for the ring (A/I)/J’.

We now associate a standard graded K-algebra to any complex (further details
can be found, for example, in [3]). Let A be a complex of dimension d on a set
X {x,... ,Xm}. K[x] K[Xl,... ,x,] denotes the (commutative)polynomial ring
over K in indeterminates xl,... ,x,; recall that Mon(x,... ,x,) denotes the set of
monomials in x,..., Xm. For a subset Y of X, we denote

and

380 J.I. BROWN, C. J. COLBOURN, AND D. G. WAGNER

The Stanley-Reisner ring of the complex A over K is

K[A]- K[x_]/Circ(A),

where Circ(A) {{I]Y Y c_ X, Y A}} is the ideal generated by all (mini-
mal subsets of X not in A (such minimal subsets are called circuits of A). Since
K[Xl,..., x,] is a standard graded K-algebra and Circ(A) is generated by homoge-
neous polynomials, K[A] is also a standard graded K-algebra, and can therefore be
expressed as a vector space direct sum

i>0

where R is generated by all monomials of degree i. It is easy to verify that the vector
d i- xspace dimension of Ri is -]j=o (y-)fY" This is also the coefficient of x

From

Silbert(K[A], x) E Dimg(R)x’
i>0

the preceding fact, and (1), we see that

(2) h(A, x) (1 x)dnilbert(K[A], x).

This connects the h-vector of a complex to the Hilbert series of the associated Stanley-
Reisner ring.

Now any quotient of a polynomial ring has a basis that is an order set of mono-
mials. Stanley’s argument [20] of this fact (which was first proved by Macaulay [18])
uses a greedy algorithm on a term ordering on all monomials to choose a maximal
linearly independent set of monomials. A term ordering < on all monomials in a finite
set of variables is any linear ordering of them with the property that

(i) 1

_
m for any monomial m, and

(ii) if ml < m2, then ml u < m2 u for any monomials m, m2, and u.
For example, a lexicographic (or reverse lexicographic) ordering on each set of mono-
mials of the same degree, with monomials of lower degree preceding those of higher
degree, is a term ordering. Another viewpoint for finding an order set of monomials
that is a basis is afforded via Grbbner bases, and we will return to this later.

We want now to associate an order set of monomials such that the number of
monomials of degree equals h, the ith term in the h-vector of the complex A. From
(2) and the above, if we can show that (1 x)dHilbert(K[A], x) is again the Hilbert
series of a quotient of the polynomial ring, then we will derive a monomial basis with
the required properties. However, it is not necessarily true that for any standard
graded/(-algebra A, (1 -x)dHilbert(A, x) is again a Hilbert series. Fortunately, for
certain complexes and fields, the Stanley-Reisner rings do in fact satisfy this condition.

A set of homogeneous elements O {0.,..., 0d} of K[x] is called a homogeneous
system of parameters (h.s.o.p.) for K[A] if K[A]/{0,..., Od} is a finite-dimensional
vector space over K, that is,

d

K[x_]/{Circ(A) U {1,..., d}} @
i=0

where for 0,..., d, R is generated by all. monomials of degree i; if, furthermore,
each 0i has degree 1, then O is a h.s.o.p, of degree 1. If A is any d-dimensional

RELIABILITY AND COHEN-MACAULAY RINGS 381

complex then, provided K is infinite, Stanley noted that K[A] does in fact have a
h.s.o.p, of degree 1, though his argument [22] does not explicitly construct one (we
shall return to this in the next section).

The Stanley-Reisner rings of sh.ellable complexes (over any field) are known to be
Cohen-Macaulay, and it can be shown in these cases that for any h.s.o.p. {01,..., 0d}
of degree 1,

Hilbert(K[A]//{01,..., 0d}), z) (1 z)aHilbert(K[A], x)
h(A,x) (from (2))

(see [3] for a definition of Cohen-Macaulay rings and their relation to Stanley-Reisner
rings). Now

K[A]/({O-,..., 0}} --- K[z__]/(Circ(A) U {01,..., Od}}

is clearly the quotient of the polynomial ring K[z_], and thus we can, for any shellable
complexes A, associate an order set of monomials, such that the number of monomials
of degree in the set equals the ith term of the h-vector of the complex (Stanley [19]
used this result to derive certain inequalities on the terms in the h-vector of a shellable
complex, and thereby prove the upper bound conjecture for convex polytopes). This
association has applications as well to network reliability (cf. [1], [5]-[8]) since, if (7
is a connected graph of order n and size ’rn, then its reliability can be expressed as

m--n+1

Rel(a,p) pn-I hi(1
i---’0

where Iho,..., hrn-n+l} is the h-vector of the cographic matroid of G. Ball and Provan
[1] used Stanley’s inequalities for h-vectors with this polynomial expansion to derive
strong upper and lower bounds for network reliability.

What is fascinating is that this association between two types of combinatorial
objects (shellable complexes and order sets of monomials) goes through commutative
ring theory as described above, and it is not known how to carry out the algebraic steps
in a purely combinatorial setting. Stanley also showed that for shellable complexes
it is not necessarily true that for finite K such a h.s.o.p, of degree 1 exists. In the
next section we turn to cographic matroids. We show for this case that homogeneous
systems of parameters of degree 1 exist for any field K, and we give an explicit
combinatorial construction for them.

4. H.S.O.P.s for cographic matroids. We begin with a useful result of Stan-
ley’s which determines when K[A] has a homogeneous system of parameters of de-
gree 1.

PROPOSITION 4.1 (see [22]). Let A be a sirnplicial cornplez of dimension d over
X {Xl,... ,z,}. Let 0,... ,0 be any homogeneous element of degree 1 in K[A],
with 0 -j=. a,jxj. Then 01,..., 0 is a homogeneous system of parameters (of
degree 1) if and only if the d x rn rnatriz M, whose (i,j)th entry is ai,j, has the
property that for every facet F E A, the d x d subrnatriz rnF of M consisting of the
columns of M corresponding to the edges in F is nonsingular.

In particular, if K is infinite, we can clearly choose such a matrix M so that every
d x d submatrix is nonsingular, and hence every simplicial complex has a h.s.o.p, of
degree 1 over any infinite field.

382 J.I. BROWN, C. J. COLBOURN, AND D. G. WAGNER

We need to recall another standard definition from matroid theory (for more de-
tails, see [24]). Let A be a matroid on a set X of cardinality rn. A representation over
field/ of z is a function 7r that maps X into some vector space V over/ such that
Y E A if and only if 7r(Y) (considered as a multiset of vectors) is linearly independent
in V (that is, r preserves rank). Now if A is a matroid that is representable over
field K, then there exists a d rn matrix M such that the submatrix consisting of
d columns of M is nonsingular (i.e., of full rank) if and only if the elements of M
indexing these columns form a basis of M. We deduce immediately from this and
Proposition 4.1 the following.

COROLLARY 4.2. Let A be a matrvid of dimension d over X {Xl,... ,Xrn}. Let
01,..., Od be any homogeneous elements of degree 1 in K[A], with O 3-= a,jxj.
Then 01,..., Od is a homogeneous system of parameters (of degree 1) for K[A] if the
map rr /k --+ I(d xi - (al,i,..., ad,i) is a representation of A over K.

Thus for a matroid A representable over a field K, K[A] has a homogeneous
system of parameters of degree 1. We remark that the converse is not true, as it was
observed earlier that any simplicial complex has a homogeneous system of parameters
of degree 1 over any infinite field, while there are matroids that are not representable
over any field.

We turn specifically now to cographic matroids. Let G be a connected graph of or-
der n with edge set E {el,..., e,}, and set d m-n+ 1. Let K be any field. As in
the previous section, K[Coga] denotes the graded algebra K[el,..., e,]/Circ(Cog),
where Circ(Coga) ({rI Y Y Coga}) is the ideal generated by all (minimal)
subsets of E not in Coga (i.e., all edge cutsets of G). From the previous section, we
know that if K is infinite, K[Coga] has a h.s.o.p, of degree 1. We now proceed to find
a h.s.o.p, of degree 1 for any field K.

As in [23], we fix an orientation of the edges of graph G, and for every circuit of G,
we orient it in one of its two directions. We form the circuit matrix C C(G) whose
columns are indexed by the edges E {e,..., e,} of G, whose rows are indexed by
the circuits CI,..., Ct of G, and whose (i, j)th entry is

(i) 1 if e E C and the orientation of e agrees with its orientation in C,
(ii) -1 if ej Ci and the orientation of e disagrees with its orientation in Ci,

and
(iii) 0 if ej f[

Let T be a fixed spanning tree of G, and for e E- T, let C be the fundamental
cycle of T + e. A well-known result (see Theorem 6.11 of [23]) states that if B is
a submatrix of the circuit matrix C with d rows and rank d, then a square d x d
submatrix B of B is nonsingular if and only if the rows of B correspond to the edges
of the complement of some spanning tree of G (actually, the argument there is stated
with the field being Q, but it holds as well for any field K). This is equivalent to B
being a representation of the cographic matroid A of G over K.

Let us now take MT to be the d x m submatrix of C whose rows correspond to the
fundamental cycles of T. MT has rank d, since the d x d submatrix on the columns
not in T is a diagonal matrix with all diagonal entries either 1 or -1. Moreover, F is
a basis of A if and only if it is the complement of a spanning tree of G. Hence MT is
a representation of A, and we deduce from Corollary 4.2 the following combinatorial
description of a h.s.o.p, of degree 1 for A.

THEOREM 4.3. Let G be a connected graph of order n with edge set E. Fix a

RELIABILITY AND COHEN-MACAULAY RINGS 383

spanning tree T of G, and for each edge e E E T, set

where for f xk Ce, cf is the entry in matrix C corresponding to edge f and circuit
E- oI (of 1)

 [Cogd.
This result is important in that while Stanley’s work states that such a homo-

geneous system of parameters exists for K[CogG] provided K is infinite, we have
described an explicit (combinatorial) construction of such a system for any field
In fact, there are matroids M and finite fields K for which K[M] does not have
h.s.o.p, of degree 1 (while it has a h.s.o.p.). For example, Stanley [22] states that for
a shellable complex A of dimension 2, K[A] has a h.s.o.p, of degree 1 if and only if A
is (IKI + 1)-colorable (in the usual graph-theoretic sense). Now if we take for M any
complete/-partite graph where >_ IKI + 2, then clearly M is not (IKI + 1)-colorable,
and so K[A] has no h.s.o.p, of degree 1. Why does this not contradict our theorem
above? The fact is that for d 2, the possible cographic matroids are complete bipar-
tite or tripartite (as they are the Kl-bond of two cycles or a theta graph), and as any
field K has at least two elements, such a matroid is always (IKI + 1 > 3)-colorable.

The net result of Theorem 4.3 is that if we are interested in the h-vector of Coga,
we can work over Z2 and use the h.s.o.p.

as in Z2, -1 1. This simplifies the arithmetic, and in the following sections, we
focus in on K-

5. A basis for K[Coga]/(O}. Now once we have the h.s.o.p. O of degree 1
(from the previous section) for the cographic matroid Coga of G, we can form

It follows (see [3]) that we can find a vector space decomposition

where {dim/c(R)} is the h-vector of Coga. Now

where J is the ideal generated by

Circ(A) U O.

We can now use Stanley’s greedy algorithm (over any field) to find monomial bases for
each of the R’s. On the other hand, we can attempt to directly find a set of monomials
that form a basis for K[Coga]/lO}, hopefully with a combinatorial interpretation in
terms of the graph. We shall do so presently, but first we need some graph-theoretic
definitions.

384 J.I. BROWN, C. J. COLBOURN, AND D. G. WAGNER

For connected graph G of order n, let < be a fixed linear order on the edge set
E E(G) of G. Let T be a spanning tree of G, and let e E E- E(T). e is externally
active if e is the least edge (under the ordering <) in the unique cycle in. T + e, and
E is externally passive otherwise. EP(T) denotes the set of externally passive edges
of spanning tree T. Let Hi denote the number of spanning trees of G with precisely
externally passive edges. Then [13]

m--n+1

RI3I(G,p) pn-1 Hi(1 p)i,
i=o

i.e., (Hi} is the h-vector of the cographic matroid of G. What this states algebraically
is that there is a 1-1 correspondence between the spanning trees of G and the elements
of a vector space basis for K[Cogc]/(}.

Now, with the help of Theorem 4.3, we can demonstrate a monomial basis. We
state the theorem for K Z2, but with some minor modifications, the proof holds
for any field K.

THEOREM 5.1. Let G be a connected loopless graph, A the cographic matroid of
G, and (9 the h.s.o.p, of degree 1 for Z2[Coga] defined in Theorem 4.3. Then the set

of monornials

{H EP(T) T is a spanning tree of G}
is a basis for

Proof. It is well known (see [2, 23]) that the subspace generated by O is the circuit

subspace, and contains C for any circuit C of G. It follows that if H is an Eulerian
spanning subgraph of G (i.e., every vertex of G has even degree in H), then H also
belongs to the subspace generated by O. Thus if Euler denotes the ideal generated by
{- H: H is an Eulerian subgraph of G}, then the ideals Euler and (@} of Z2[Coga]
are identical. Hence

Z2[Cogc]/(O} Z[Coga]/Euler.

Since we know that the total number of monomials in {1-I EP(T) T is a

spanning tree of G} is at most the total number of spanning trees of G, which is

’. H, the (vector space) dimension of Z[Coga]//O U Euler), we need only show that
{1-I EP(T)" T is a spanning tree of G} spans Z[_e] (modulo (Circ + Euler))(here Circ
is an abbreviation for the ideal Circ[Coga]).

We start by showing the following.
LEMMA 5.2.

+).
Proof. Let f E N; we denote by f the monomialcf() (so that for

S X, S is simply f, where f is the characteristic vector of S). The support of f
is the set

supp(f) {e e E’f(e) > 0}.

We shall show that f is in the span of {YI S S c_ E} by reverse induction on

Isupp(f)l. If Isupp(f)l > d, then G- supp(f) is not connected, so _ef Circ, and

RELIABILITY AND COHEN-MACAULAY RINGS 385

therefore _ef 0 (modulo (Circ + Euler)). For the inductive step, we can assume that
G- supp(f) is connected. If f is {0, 1}-valued (i.e., _ef E {1-I S" S c_ E}) then we
are done, so we can also assume that for some e E E, .f(e) >_ 2. Let P be a path in
G- supp(f) with the same ends as e. Then

and so

e E P(modulo Euler)

e-f E eIpe- (modulo Euler).
pP

Each monomial on the right-hand side has larger support than f, so by induction we
are done.

It remains to show that for all S c_ E, rI s is a Z2-1inear combination of {l-[EP(T)
T is a spanning tree of G} (modulo (Circ + Euler)). Again, if G- S is disconnected,
1-[S Cire, and so rI s 0 (modulo (Circ + Euler)). Hence we assume that G- S is
connected. Let T be a spanning tree of G with ST . If S EP(T), then we are
done; otherwise, we make some local changes to "improve" the pair (S, T) (see also
[15]).

LEMMA 5.3. Let T be a spanning tree of G with EP(T) 7 O. Let e EP(T) and
let e’ min< C(T, e), where C(T, e) is the unique cycle in T + e. Set T’ T e’ + e.
Then EP(T’) c_ EP(T)- e. Furthermore, i.f e- min< EP(T), then EP(T’)
EP(T) -e.

Pro@ Consider any edge a EP(T’). Since C(T’, e’) C(T, e), we have e’
min<d(T’, e’), so e’ EP(T’), and hence a e’. If e C(T’, a), then C(T’,a)
C(T, a), so a EP(T’) implies a EP(T) e. On the other hand, if e C(T’, a),
then e’ d(T,a); hence, if a EP(T)- e, then a min<d(T,a) and a < e’
min<d(T, e), and so we must have a min<d(T’, a) since C(T’, a) is a subset of the
symmetric difference of C(T, a) and C(T, e). This contradicts a EP(T’), and thus
again a EP(T) e. It follows that EP(T’) C_ EP(T) e.

Now assume e min<EP(T). Let a EP(T)- e. Then e < a. If e’ C(T, a),
then C(T’, a) C(T, a), so a EP(T’) as above. If e’ C(T, a), then e C(T’, a), so
a EP(T’) in this case as well. Hence EP(T)- e c_ EP(T’), completing the proof
of this lemma, rl

Returning now to the proof of Theorem 5.1, let Fti denote the set of pairs (S, T)
where S c_ E has cardinality and T is a spanning tree of G disjoint to S. For e E E
let l(e)

_
I{a E" a < e}l and for S c_ E, let l(S) -.sl(e). We define a

partial order on fti by setting (S, T) (S’, T’) if and only if either l(S) </(S’), or

l(S) l(S’) and EP(T’) S’ c EP(T) S.
Assume that (S, T) is maximal in (ft, <1_). Then we claim first that S-EP(T) O.

If not, then let e S- EP(T). Then e min<C(T, e). Pick e’ C(T, e)- e (we
can do so as G is loopless). Then S’ S-e+e’ has l(S’) > /(S), and thus
(S, T)< (S’, T- e’+ e), contradicting the maximality of (S, T).

Furthermore, the maximality of (S, T) implies that EP(T) S 0 as well. For if
not, then let e EP(T)-S and e’ min<C(T, e). Then by Lemma 5.3, (S, T)<(S, T’),
where T T- e + e, which again contradicts the maximality of (S, T).

It follows that the maximality of (S, T) implies that S EP(T), and clearly in
this case YI S YI EP(T) is a Z2-1inear combination of {YI EP(T)" T is a spanning
tree of G} (modulo (Circ+Euler)), which is what we want to show. We finally describe
the local improvements if (S, T) is not maximal.

386 J.I. BROWN, C. J. COLBOURN, AND D. G. WAGNER

First, if EP(T)- S 7 O, then let e E EP(T)- S, let e’ min<C(T, e), and let
T’= T- e’ + e. Then, as above, (S, T) (S, T’), and by downwards induction on

I-I S is in the span of {rI EP(T): T is a spanning tree of G} (modulo (Circ + Euler)).
Secondly, if S- EP(T) 7 0, then let e S- EP(T). Let C(T, e) {e, el,..., ek},

so e < ei for all j {1,..., k}. For each such j, let Sj S-e+ e.j and Tj T-ej + e.
Then (S,T), (Sj,Tj) for each j. Furthermore, e ei (modulo Euler) and so

1-I S 1-I $1 +... + 1-I Sk (modulo Euler). By downwards induction on fti, we see
that each 1-I Si is in the span of {I-[EP(T) T is a spanning tree of G} (modulo
(Circ + Euler)), and hence so is I-[S.

This completes the proof of Theorem 5.1.
What is fascinating is that this basis for Z2[CogG]/(O depends on all spanning

trees of the graph, while the explicit h.s.o.p. O (and hence any basis) depends on only
one spanning tree of G.

We .remark finally that in fact Theorem 5.1 can also be deduced in another way.
Kind and Kleinschmidt [17] proved that if a d-dimensional complex A has a shelling
F,..., Fr and the associated interval partition [G1, F1],..., [Gr, F], then the mono-
mials rI G,..., rI G form a basis for K[A]/(O}, where O is any h.s.o.p, of degree 1
for K[A]. BjSrner’s explicit shelling of matroids [4, p. 236] yields an interval partition,
which for cographic matroids has intervals that are of the form [EP(T), E- T], where
T is a spanning tree of G. We have included the proof above since it relies more
heavily on the underlying graphical structure (in terms of internal activities, trees,
and circuits).

6. Some examples with GrSbner bases. Unfortunately, the monomial basis
produced in Theorem 5.1 is not an order set of monomials. In this section, we examine
some consequences of our work and a different approach that produces a monomial
basis that is an order set of monomials.

A GrSbner basis (GB) (cf. [14, 16]) for an ideal I of K[x,...,Xr] is a set of
polynomials from K[x,...,Xm] that is useful for determining membership in the
ideal I, as well as for many other algebraic properties. The best known algorithm for
producing a GrSbner basis is due to Buchberger [9], and we will briefly outline the
algorithm (see [16]).

First we need some definitions. Suppose we have a given term ordering < on

Mon(xl,..., Xm) and set Q c_ I- {0}. The head term of a polynomial p, ht(p), is
the largest monomial (under the given term ordering <) that appears with a nonzero
coefficient; the head coefficient, hcoeff(p), is the coefficient of ht(p). For a set of
polynomials Q c K[x,... ,Xm]- {0}, ht(GB) denotes the set of head terms of all
polynomials in S. Let p be any nonzero polynomial. Suppose there exists a polynomial
q G Q such that ht(q) divides a monomial in p, i.e., p krnht(q) + r where k G K, rn
is a monomial, and r is a polynomial. Then we write

p -Q p- krnq

and say that p is reducible modulo Q (otherwise, p is reduced modulo Q; we also define
the zero polynomial to be reduced as well). If p G I, then the polynomial on the
right obviously belongs to the ideal I as well, but has smaller head term. We let H+
denote the reflexive, transitive closure of HQ; that is, p r if and only if there are
polynomials Pl,...,P for some such that

P Q q Q q2 -Q -Q ql r.

RELIABILITY AND COHEN-MACAULAY RINGS 387

We write p H r if p H r and r is reduced modulo Q. A set GB c_ I is a GrSbner
basis for I if for every polynomial p E K[xl,..., x,],

p E I if and only if P --SB 0.

Buchberger’s algorithm for constructing a GrSbner basis for an ideal I of K[Xl,..., x,]
can be stated as follows (cf. [16]). The S-polynomial of polynomials p and q is

p
Spoly(p,q) LCM(ht(p), ht(q))

hcoeff(p) ht(p) hcoeff(q), ht(q)

where LCM denotes the least common multiple (of two monomials). Buchberger
[10] proved that a subset GB of ideal I is a GrSbner basis for I if and only if
Spoly(p,q) B 0 for all p, q GB. To calculate a GrSbner basis for ideal I,
take any generating set Q {pl,...,pk} for the ideal. We take pairs of elements
from Q, and reduce their S-polynomial with respect to Q. If the result is 0, we ig-
nore it, but otherwise we add it into Q, and repeat the process. We stop when the
S-polynomial of any two elements of Q reduces to 0 modulo Q (that such a process
does terminate is the basis of Buchberger’s algorithm). The final set Q is a GrSbner
basis for Q.

The following observations hold for Buchberger’s algorithm applied to a finitely
generated ideal I (F {Pl,... ,Pk}} of K[x,... ,x,] (see [16] for a proof of the
last property)"

(i) If Q’ c_ Q and p, q then p q.
(ii) If p and q are polynomials with qlP, then p Hq 0.
(iii) If each pi is homogeneous, then for any homogeneous polynomial p of degree

>_ 1, either p reduces to 0 modulo F, or all reductions ofp modulo F are homogeneous
of degree 1.

(iv) If p and q are homogeneous, then their S-polynomial is either 0 or also
homogeneous (of degree LCM(ht(p), ht(q)) >_ max(degree(p), degree(q))).

(v) If p and q are monomials, then their S-polynomial is 0.
(vi) If the head terms of p and q are relatively prime (i.e., LCM(ht(p), ht(q))

ht(pt ht(q))then Spoly(p, q)Hp q} 0.
follows that in Buchberger’s’ algorithm, we need only consider the S-polynomial

pairs of elements whose head terms are not relatively prime.
Another basic fact about GrSbner bases (see [16, p. 452]) is that if GB is a GrSbner

basis for ideal I of K[xl,..., Xm], then a basis for the quotient K[x,..., x,]/I is the
set

{me Mon(xl,... ,Xm)’(Vm’ e ht(GB))(m’ rn)}.

Thus we can derive a basis of monomials for K[Xl,..., x,]/I by taking the order set
of monomials -ht(GB) on x,... ,Xm. The head terms of a GrSbner basis yield a set
of choppers for an order set of monomial that is a basis for K[x,..., x,]/I.

Therefore, instead of using Stanley’s greedy algorithm, we can calculate GrSbner
bases (over any field of our choice) to find monomial bases for each of the homogeneous
pieces R’s (and if we only mod out by a subset of J, we get upper bounds for the
dimensions of the corresponding summands). Again, to simplify the arithmetic, we
work over Z2.

When we talk subsequently about a GrSbner basis for a graph G, we are referring
to a GrSbner basis for the quotient Z2[Coga]/(O}, where O is the h.s.o.p, found in

388 J.I. BROWN, C. J. COLBOURN, AND D. G. WAGNER

2. In the same vein, an order set of monomials for G is one such that for each
i, the number of monomials of degree is equal to the ith term in the h-vector of
the cographic matroid of G. We point out that once we use Buchberger’s GrSbner
basis algorithm, the order set of monomials constructed appears to have no natural
graph-theoretic description.

First we note some observations which follow from the previous sections. Let
T be any spanning tree T of G. Suppose first that e is a loop, and let O(G) and
O(G- e) denote the h.s.o.p, of G and G- e determined by the tree T. Clearly,
O(G) O(G-e)[J{{e}}, and G and G-e have the same minimal cutsets. It follows
that

and hence G and G- e have isomorphic order sets of monomials (and of course
identical h-vectors).

Suppose now that e is a cut edge of G. Then the minimal cutsets of G are precisely
those of G. e together with {e}. It is easy to verify that G and G. e have the same
h.s.o.p, with respect to T. Again it follows that

Z[Cog]/(O()) Z[Cog.]/(O(.)),

and hence G and G. e hve isomorphic order sets of monomials (and identical h-
vectors).

PROPOSITION 6.1. Suppose that G has blocks GI,..., Gk, and a Grfibner basis

for the respective rings are GBI,..., GBk (each of which contains the h.s.o.p, of degree
1 defined earlier and the minimal cutsets as products). Then [2=IGB is a GrSbner
basis for G. Consequently, one can find an order set of monomials for G by taking
the product of order set of monomials for each of GI,..., G.

Proof. This follows from the facts that the union of spanning trees in each G
yields a spanning tree for G, the mininal cutsets of G are the union of those from
each G, and Buchberger’s algorithm always yields zero reductions when the head
terms are relatively prime. The second part is derived from the fact that the set of
choppers for G is the union of the set of choppers for each G, which are on disjoint
sets of variables.

Now let’s turn to a particular class of graphs. For k

_
1, l

_
1, and l

_
0

for all E {2,... ,k}, let G(l,... ,/) denote the graph consisting of two vertices x
and y (called the terminals) joined by internally disjoint paths P,..., P of lengths
l,12 + 1,...,1 + 1, respectively (the length of a path is the number of edges it

contains). For k 1, we simply have a path, and for k 2, a cycle. When k 3, we
have what is usually called a 0-graph. Clearly, G(ll,..., k) has order n Ei--I li) -[-1’
size m (%1 l + k 1 and dimension d k- 1. We shall produce a GrSbner basis
for G(l, lk).

PROPOSITION 6.2. Let G G(l,...,lk) (k

_
2) have its edges labelled as in

Fig. 1. For i 1, k let

/={ l if i= l,
l + 1 if 2,...,k.

Then a GrSbner basis for G is

RELIABILITY AND COHEN-MACAULAY RINGS 389

p k

U (eq,ieq,j q 1,..., k, 1 <_ < j <_ lq}

[-J eq,i q- 1,..., k, 1 <_ <_ lq
q=l

{eq,i+eq,i.’Pl-q-2,...,k, l_<i_<l}

Proof. Let the edge ordering be ei,j < ei,,j, iff < i’, or i’ and j < j’
(i.e., the lexicographic ordering on {e,j}), and extend this to any term ordering on
the monomials in these variables. Take the spanning tree T {ei,j 1 or >_
2 and j _< li}.

Now the corresponding h.s.o.p, is 02,..., 0k, where

Let

Or,i,j r,ier,j

fort-l, l_<i<j_<ll orr-2,...,k, l_<i<j_<l+l. Let

k

i ik H eJ’iJ
j=l

where 1 <_ ij

_
lj. That is, the sets of c’s and/’s correspond to the minimal cutsets

of G (which are either two edges from some Pi or one edge from each Pi).
Thus a GrSbner basis for G can be obtained by running Buchberger’s algorithm

on

Throughout, we do not consider S-polynomials with zero reductions. Recall that zero
reductions result from the S-polynomial of any two polynomials whose head terms
are relatively disjoint, and for any monomials; also, if a polynomial is a multiple of
a member of the GrSbner basis, then it also reduces down to 0. The head term of
any monomial is obviously itself, and the head term of 0 is e,h+l. We will need one
additional observation about :

390 J.I. BROWN, C. J. COLBOURN, AND D. G. WAGNER

If p is any polynomial and 0 is homogeneous of degree 1, then

P -+{0} subs(ht(0) - 0- ht(0),p),

where subs(x +-- y, p) denotes the polynomial formed by substituting y for all
occurrences of x in p.

For r >_ 2, we have

S(Ogr,i,lr+l, Or) r,i er,i + er,i

and these are the only S-polynomials to consider among the 0’s and a’s. We tack
these onto the end of our list.

For the ’s, note that if for exactly one j, ij ly + 1, then

1,il gr,ir

and hence we get all monomials of degree k of the form

e,l H e,,
r3

where J1 E {2,..., k} is of cardinality k-2, and iv lv. If exactly two j’s, say jl and
ju, satisfy i3 13 + 1, then in light of the previous monomials, %r j jl Or j2,

r#l ,=

and hence we get all monomials of degree k of the

rJa

where J2 E {3,..., k} is of cardinality k 3, and iv lv. Continuing in this manner,
we add to our list all monomials of degree k of the

where j {2,..., k} and m is a square-Dee monomial %rmed by taking the product
of edges, one taken kom each of k- j paths P -eu,t,..., P -e,t. These complete
the only S-polynomials to consider among the initial sequence:

2,..., k, a1,1,2,..., a,l,l+, 1,1 1,..., l,,l+l,...,l+l.

We need only consider S-polynomials involving a 7r, and either an ar,jl,j= with
jl or j2 i, a il ik with ir i, or a (j, il,m) with e,lm. In the first
case, if (without loss) jl i, 3 simple calculation shows that Spoly(%,, ar,jl,j) is
multiple of an ajl,j. In the second case, Spoly(Tr,, ,) is a multiple , .
Similarly, in the third case Spoly(%,, 5(j, i, m)) is a multiple of 5(j, il, m). In any
case, the S-polynomial reduces down to 0, so Buchberger’s algorithm terminates with
the sequence

02,""", 0k, a1,1,2,""", a,/,/+ 1,1 1,""",

1,

RELIABILITY AND COHEN-MACAULAY RINGS 391

being a GrSbner basis.
As a corollary, we derive explicit formulation for an order set of monomials for

COROLLARY 6.3. A set of choppers for an order set of monomials for G(ll,..., lk)
on variables {ei,j 1 <_ <_ k, 1 <_ j <_ li} is

2{ei,j’2<i<k, l<j<li}
U{ei,jei,j, "l_<i_<k, l_<j<j’<li}

U{eJ H "2<j<k, l<i<ll, ISI k-j l<j<lq}1,i eq,j
qES

kAlso, set N -i= li, and for 1 < <_ k 1 let gi ljllj lj, where the sum is
taken over all 2 <_ j < j2 < < ji <_ k. Then the h-vector (H0,..., Hk-} satisfies

H1 N,
Hi gi d- ll (gi-2 d- gi-3 d- d- 91 d- 1) fori- 2,...,k- 1.

7. Conclusion. One of the least understood aspects of the use of the Ball-
Provan bounds for network reliability is an explicit construction of the order set of
monomials for a connected graph G, and what properties hold for such a multicomplex.
Corollary 6.3 shows that an order set of monomials for G(ll,...,l) on variables
{ei,j 1 <_ <_ k, 1 <_ j <_ li} consists of all monomials of the form

ej1,ii H eq’i’
qES

where 1 <_ j < k, 1 _< il

_
ll, S

_
{2,...,]}, 1o1 <]- j, and 1 <_ <_ lq. This order

set of monomials is pure, i.e., all the maximal monomials (under division) have the
same degree. It is conjectured that every graph has an associated pure order set of
monomials [20], and the truth of this conjecture would have implications to improving
the Ball-Provan bounds for network reliability.

A further understanding of the associated order sets of monomials could have
strong bounding implications in the following sense as well. The Ball-Provan bounds
for reliability use inequalities [1] that are satisfied by degree sequences of order sets of
monomials, and hence h-vectors of shellable complexes. The sharper set of Clements-
LindstrSm inequalities [11] could be used to strengthen the Ball-Provan bounds, pro-
vided the maximum degree of each variable can be bounded in the order set of mono-
mials produced in 6. Unfortunately, we only have partial results in this direction.
Along these lines, we have been able to prove that if G is a connected graph of order
n with an independent set I {Vl,..., v} such that G- I is still connected, then
there exists for G an order set of monomials M on n- 1 variables such that for some

deg(vi)k of the variables el,..., ek, the highest power of each e in any term of M is

(here deg(v) is the degree of vertex v, in graph G). Much stronger results will be of
significant interest.

392 J.I. BROWN, C. J. COLBOURN, AND D. G. WAGNER

REFERENCES

[1] M. O. BALL AND J. S. PROVAN, Bounds on the reliability polynomial for shellable independence
systems, SIAM J. Alg. Disc. Meth., 3 (1982), pp. 166-181.

[2] N. BIGGS, Algebraic Graph Theory, Cambridge Univ. Press, Cambridge, UK, 1974.
[3] L. J. BILLERA, Polyhedral theory and commutative algebra, in Mathematical Programming: The

State of the Art, Springer-Verlag, New York, 1983, pp. 57--77.
[4] A. BJRNER, Homology and Shellability, in Matroid Applications, Cambridge Univ. Press, Cam-

bridge, UK, 1992.
[5] J. I. BROWN AND C. J. COLBOURN, On the log concavity of reliability and matroidal sequences,

Adv. Appl. Math., 15 (1994), pp. 114-127.
[6] ., Roots of the reliability polynomial, SIAM J. Discrete Math., 5 (1992), pp. 571--585.
[7] J. I. BROWN, C. J. COLBOURN, AND J. S. DEVITT, Network transformations and bounding

network reliability, Networks, 23 (1993), pp. 1-17.
.[8] J. I. BROWN AND C. J. COLBOURN, Non-Stanley bounds for network reliability, J. Algebraic

Combin., 5 (1996), pp. 13-36.
[9] B. BUCHBERGER, An algorithm for finding a basis for the residue class ring of a zero-dimensional

polynomial ideal, Ph.D. Thesis, Univ. of Innsbruck, Austria, 1965.
[10]

[11]

[12]

[14]

[15]

[16]

[17]

[is]

[19]

[20]
[e]
[ee]

[23]

[24]

, A theoretical basis for the reduction of polynomials to canonical forms, ACM SIGSAM
Bull., 10 (1976), pp. 19-29.

(. F. CLEMENTS AND B. LINDSTRM, A generalization of a combinatorial theorem of Macaulay,
J. Combin. Theory, 7 (1969), pp. 230-238.

C. J. COLBOURN, The combinatorics of network reliability, Oxford Univ. Press, New York, 1987.
C. J. COLBOURN AND W. R. PULLEYBLANK, Matroid Steiner problems, the Tutte polynomial

and network reliability, J. Combin. Theory Ser. B, 47 (1989), pp. 20-31.
D. Cox, J. LITTLE, AND D. O’SHEA, Ideals, Varieties, and Algorithms, Springer-Verlag, New

York, 1992.
J. E. DAWSON, A Collection of Sets Related to the Tutte Polynomial of a Matroid, in Lecture

Notes in Mathematics 1073, 1984, pp. 193-204.
Z. O. GEDDES, S. R. CZAPOR, AND G. LABAHN, Algorithms for Computer Algebra, Kulwer,

Boston, 1992.
B. KIND AND P. KLEINSGHMIDT, Schgbare Cohen-Macauley Komplexe und ihre Parametrisier-

ung, Math. Z., 167 (1979), pp. 173-179.
F. S. MACAULAY, Some properties of enumeration in the theory of modular systems, J. Load.

Math. Soc., 26 (1927), pp. 531-555.
R. P. STANLEY, The upper bound conjecture and Cohen-Macaulay rings, Stud. Appl. Math., 54

(1975), pp. 135-142.
, Cohen-Macaulay complexes, in Higher Combinatorics, Reidel, Boston, 1977, pp. 51-64.
, Hilbert Functions of Graded Algebra, Adv. Math., 28 (1978), pp. 57-83.

Balanced Cohen-Macaulay Complexes, Trans. Amer. Math. Soc., 249 (1979), pp. 139-
157; Reidel, Boston, 1977, pp. 51-64.

K. THULASIRAMAN AND M. N. S. SWAMY, Graphs: Theory and Algorithms, John Wiley, New
York, 1992.

D. J. A. WELSH, Matroid Theory, Academic Press, London, 1976.

SIAM J. DISCRETE MATH.
Vol. 9, No. 3, pp. 393-412, August 1996

() 1996 Society for Industrial and Applied Mathematics
OO5

TILINGS OF BINARY SPACES*

GERARD COHENt, SIMON LITSYN$, ALEXANDER VARDY, AND GILLES Z]MOR

Abstract. We study partitions of the space IF of all the binary n-tuples into disjoint sets,
where each set is an additive coset of a given set V. Such a partition is called a tiling of IF and
denoted (V, A), where A is the set of coset representatives. We give a sufficient condition for a
set V to be a tile in terms of the cardinality of V-t-V. We then employ this condition to classify
all tilings with sets of small cardinality. Further, periodicity of tilings in]F is discussed, and a
simple construction of nonperiodic tilings of IF is presented for all n _> 6. It is also shown that the
nonperiodic tiling of IF26 is unique. A tiling (V, A) is said to be proper if V generates IF; it is said
to be full rank if both V and A generate]F. We show that, in general, the classification of tilings
can be reduced to the study of proper tilings. We then prove that any tiling may be decomposed
into smaller tilings that are either trivial or have full rank. Existence of full-rank filings is exhibited
by showing that each tiling is uniquely associated with a perfect binary code. Moreover, it is shown
that periodic full-rank tilings may be further decomposed into smaller tilings, and then the existence
of nonperiodic full-rank tilings is deduced. Finally, we generalize the well-known Lloyd theorem,
originally stated for tilings by spheres, for the case of arbitrary tilings.

Key words, tiling, tessallation, Hamming space, hypercube, factorization, finite graphs, perfect
codes

AMS subject classifications. 05B45, 05A18, 94B25, 94B60, 52C25

1. Introduction. Given a body in an n-dimensional metric space, is it possible
to tile the space with translations of this body? This problem has been extensively
studied for the Euclidean space]Rn; see [29, 32] and references therein. The case
of Euclidean spaces of small dimension has received considerable attention, and sub-
stantial progress was achieved for tilings of the Euclidean plane [11, 9]. In particular,
Penrose [24] demonstrated the existence of nonperiodic tilings of IR2. Another related
topic is tilings of the plane with a finite collection of specially defined bodies. See, for
example, publications on polyomino tilings and related problems [12].

In another setting, one may define tilings of finite abelian groups G, where by a
tiling we mean a decomposition of the form G A + V such that IVI. IAI IGI. In
other words, tiling is a partition of G into additive cosets of a tile set V. The problem
of describing all possible tilings of abelian groups was first brought up by HajSs [13]
and is largely unsolved. HajSs suggested a first effort in this direction by considering
tilings of a certain type, which will be called periodic in this paper. For a precise
definition of such tilings, see 5. If all the tilings of a given group G are periodic, then
they can be described accurately with the help of a recursive decomposition. After a
substantial amount of effort, the problem of determining all the abelian groups that
admit only periodic tilings was finally solved by Sands [30], following ingenious ideas
of de Bruijn [3] and Rdei [28].

Received by the editors January 18, 1995; accepted for publication (in revised form) August 15,
1995.

Department Informatique, cole Nationale Superieure des Tlcommunications, 46 rue Bar-
rault, 75634 Paris, France.

Department of Electrical Engineering, Tel-Aviv University, Ramat-Aviv 69978, Israel.
Coordinated Science Laboratory, University of Illinois, Urbana, IL 61801. The research of

this author was supported in part by the National Science Foundation and in part by JSEP grant
N00014-9610129.

Department Reseaux, tcole Nationale Superieure des Tlcommunications, 46 rue Barrault,
75634 Paris, France.

393

394 G. COHEN, S. LITSYN, A. VARDY, AND G. ZtMOR

In this work we are interested in tiling the Hamming space IF consisting of all
binary n-tuples. This problem falls into both of the above-mentioned categories of
tilings, since IF is at the same time a metric space and a finite abelian group. We will
show that other features of tilings besides periodicity, and in particular their rank,
may be employed for the r.ecursive decomposition of tilings. More generally, we shall
be interested in describing those subsets of IF that are tiles.

Results on the problem of tiling IF have applications in coding theory. Thus,
certain particular cases of this problem have already been studied in the coding theory
literature [20, 22]. For example, tilings of IF with Hamming spheres are known as
perfect binary codes [19, 20]. Although the parameters of all such tilings have been
determined in [19, 34], a complete classification remains an open problem. Another
example is tilings of IF by the so-called L-spheres, which are unions of some of
the shells of the Hamming sphere. For this case all possible parameters are also
known [4, 15], whenever L C {0, 1,..., n/2}.

In general, tilings of IF with arbitrary bodies correspond to perfect codes cor-
recting an arbitrary set of errors. Conditions for the existence of codes correcting
an arbitrary set of errors and estimates of their cardinality were investigated in
[6, 7, 8, 16, 17]. Such codes are useful, for instance, for correcting errors at the
output of logic networks--the set of errors depends on the structure of the network
and a single error in an element of the network may lead to an error of greater multi-
plicity at the network output [8]. Other examples where the problem of correcting a
given set of errors arises are concatenated coding schemes [33] and "artificial noise"
channels, which occur if the process of data transmission is considered as a game sit-
uation [6]. Tilings of IF were also found useful in [35] for the design of soft-decision
decoders for BCH codes.

This paper is organized as follows. We start with some notation and definitions
in 2. In 3 we present a sufficient condition for a given set V to be a tile in terms of
the cardinality of the difference set of V. In 4 we provide a complete classification
of tiles of cardinality _< 8. Tilings with sets of large rank are also considered in 4. In
5 we define periodicity of tilings in IF, which is analogous to periodicity of tilings in
the Euclidean plane. We prove that nonperiodic tilings of IF do not exist for n < 5
and that the nonperiodic tiling of IF is unique up to coordinate transformations.
An explicit construction of nonperiodic tilings of IF for all n _> 6 is also presented.
In 6 we introduce the concept of proper tilings and show that the classification of
tilings of IF may be reduced to the study of proper tilings. This leads to a recursive
decomposition of tilings into tilings of smaller and smaller size and ultimately shows
that any tiling of IF may be constructed from tilings that are either trivial or have full
rank. In 7 we show that a tiling (V, A) is uniquely associated with a perfect binary
code of length IV 1. This allows us to deduce the existence of full-rank tilings from
the existence of full-rank perfect codes, established in [10]. A construction of tilings
from perfect codes is also presented in 7. In 8 we describe a technique for further
decomposing a periodic full-rank tiling into tilings of smaller size. This technique is
then employed to show that nonperiodic full-rank tilings exist. In 9 we generalize
the well-known Lloyd theorem [20, Chap. 7], originally stated for tilings by spheres,
for the case of arbitrary tilings. We give examples where such generalization may be
used to prove the nonexistence of certain tilings.

2. Preliminaries. Let IF denote the vector space of dimension n over GF(2).
The Hamming distance between vectors x,y E IF, denoted d(z,y), is the number
of positions where x and y differ. The Hamming weight of x is wt(x) d(x, 0),

TILINGS OF BINARY SPACES 395

where 0 denotes the all-zero vector. Given a subset C c IF and x E IF, we denote
d(x, C) minyec d(x, y). If ICI M and minxCyec d(x, y) d, we shall say that C
is an (n, M, d) binary code. For any x E IF and a nonnegative integer R _< n, the
Hamming sphere of radius R about x is given by Bn (x, R) { y IF d(x, y) <_ R }.
Given x (xl,x2,... ,In) IF, we denote by supp(x) the subset of {1,2,...,n}
consisting of all such that xi 0. Given a subset V c IF with 0 V, we denote

iV d= V+V+...+V
times

where + stands for the direct sum. Thus iV is the set of all vectors in IF that may
be represented as a sum of some elements of V. The linear span of V, denoted
is the subspace of IF generated by V. The rank of V is given by rank(V) dim(V).
We let p(V) denote the minimum number of elements of V required to generate any
vector in its linear span; namely,

p(V) de_f min{j jV= {V} }.

It is easy to see that p(V) is the covering radius of the linear code defined by a
parity-check matrix H(V), having the elements of V \ {0} as its columns.

We shall say that a given set V is a tile of IF if it is possible to partition IF
into disjoint additive cosets of V. Note that the set of coset representatives A is
also a tile of]F’. Without loss of generality (w.l.o.g) we assume that both V and A
contain the 0 element, unless stated otherwise. Evidently, each x IF has a unique
representation of the form x v + a, where v E V and a A. Thus we have the
following definition.

DEFINITION 2.1. The pair (V, A) is a tiling of IF if V+A IF and 2VO2A
(o}.

A trivial necessary condition for (V, A) to be a tiling of IF is that IVl 2k and
IAI 2’-k for some 0 _< k <_ n. Thus, hereafter, when denoting a subset of IF by V,
we assume that IVI 2.

If both V and A are linear subspaces of IF, then (V, A) is a tiling if and only if
A IF/V. Hence, in what follows we mainly focus on those tilings where at least
one of the sets V, A is not linear. However, we shall say that V c IF is a linear tile
if there is a tiling (V, A) such that A is a linear subspace of IF.

3. A sufficient condition. A well-known example of a linear tile is the Ham-
ming sphere, in which case the set of coset representatives A is a perfect binary
code. More precisely, a sphere of radius R < (n-1)/2 is a (linear) tile if and only if
R 1, n 2"- 1 or R 3, n 23 (cf. [22]). In this section we present a sufficient
condition for a set V to be a linear tile, which shows that many more such tiles exist.

THEOREM 3.1. If [2V < 2 IVI then V is a linear tile.
Proof. Let IV 2 and suppose that 12VI < 2+1. Then either k n, in which

case V 1F is a trivial linear tile, or]2V] < 2" and there exists an al IF \ 2V.
Set V V U (al + V). Since a 2V, we have V C (al + V) 0 and IVll 2 IVI
2+1. If Vx IF then (V, {0, al}) is a tiling of IF and we are done. Otherwise,
since 12Vl1 12V U (al + 2V)I < 2 IVll, there exists an a2 IF \ 2Vx, and we set
V2 V1 U (a2 + V1) with Vx N (a2 + V1) 0 and IV2[2 IV1]. Continuing in this
manner we construct Vn_k IF and a tiling (V, A) of IF, where A is a subspace of
IF generated by al,a2,...,a_. D

396 G. COHEN, S. LITSYN, A. VARDY, AND G. Z15.MOR

Using the results of Z6mor [38], it is, in principle, possible to characterize all
the sets V which satisfy the condition of Theorem 3.1. Here we give an example of
construction that produces such a set. Fix a subspace S C IF and a nonzero element
s E S. Partition S into cosets modulo the two-element subspace {0, s}, and construct
V by choosing one and only one element from each coset. By assumption, we need
0 E V and therefore s V. But then, by construction, s is not in V + V and hence

liVl < ISl- IVl.
In the following sections we will be particularly interested in those tiles V which

satisfy (V) IF. It can be shown that for these tiles I2VI _> 1/4 Ivl. More bounds on
the cardinality of V + V for a given set V may be found in [38].

The condition 12VI < 2 IV of Theorem 3.1 may be somewhat relaxed if additional
information pertaining to V is available. For instance, consider the following corollary.

COROLLARY 3.2. If 12V] 2 IV then V is a tile if and only if 2V is not linear.

Proof. () If 2V is not linear then 2V :fi 4V and there is an al 4V \ 2V. Set
V1 V U (al + V). Since al 2V, we have VN (al -+- V) 0 and]VII 2 IV] as before.
Now 2V1 2V t2 (al + 2V), and since al 4V it follows that 2VN (al + 2V) : 0. Thus
]2Vll < 2 12VI- 2 IV]. Applying Theorem3.1 to V, we conclude that there exists
a subspace A c IF such that (V1,A1) is a tiling. But then so is (V, A1 + {0, al}).
(3) If 2V is linear then (V) 2V, and therefore V does not tile its linear span. The
claim now follows directly from Proposition 6.1.

Note that 2V is not linear if and only if p(V) > 2. In fact, the argument of
Corollary 3.2 may be pushed a little, further, provided that p(V) is large enough.

COROLLARY 3.3. If any of the following hold, then V is a linear tile.

(a) 12V’ _<2IV1+2 and p(V) >2;
(b) 12V _<2lvl+4 and p(V)>5;
(c)]2V _<2[V]+5 and p(V)>20.

Proof. () Ifp(V) > 2 there exists an ax 3V\2V, sayal-v+v2+v3. As
before let Vx V U (al + V) with]Vx[2]Y] and 2Vx 2Y U (ax + 2V). Note that
2V (ax + 2V) must contain the six vectors vx, vz, v3, vx + v, vl + v3, v + v3. Thus
]2V <_ 2 12VI- 6 <_ 2 IVx]- 2. Again, applying Theorem 3.1 to V, we conclude that
V is linear tile. Hence so is V.

(b) A similar rgument yields]2V1] < 2]V1] + 2 in this case. Since p(V) > 5, it
follows that 2V 2V U (a + 2V) = (Y} or, in other words, p(V.) > 2. Hence, the
proof of case (a) my be used to establish that V1, gAd therefore also V, is tile.

(c) Similarly, 12V] _< 2 IVy] + 4, and since p(V) > 20 we have p(V) > 5. Thus,
the proof of case (b) applies.

4. Classification of small tiles. In this section we completely characterize
tiles of size _< 8. In addition, we also consider tilings with sets of large rank. First,
we have the following simple proposition.

PROPOSITION 4.1. If IVI < 4 then V is a tile.

Proof. Noticetht]2V] < (12vI) +1, and for [V[_< 4wehave (12vI) +1 < 2[V[.
Hence V is a linear tile by Theorem 3.1. [3

Next we classify tiles of size 8. Let V {0, Vl,..., vT}. When is V a tile? The
answer to this question is greatly facilitated by the following simple fact: V is a tile of
]F if and only if it is a tile of its own linear span {V}. The proof of this statement is
postponed until Proposition 6.1. Here, we distinguish between several cases according
to the rank of V.

CLAIM 4.2. If rank(V) 7 then V is a tile.

TILINGS OF BINARY SPACES 397

Proof. Let C be the perfect binary Hamming code of length 7. Define

A { ClV -}- C2V2 -Jr-’’’-- C7V7 (C1, C2,..., C7) E C }.

We claim that (V, A) is a tiling of <V}. Since IV 23, IAI- 2, and I<v)l- 2, it
would suce to show that 2VCI2A {0}. If a.+a2 E 2V for some distinct al, a2 A,
then there are two distinct codewords in C at distance _< 2 from each other. However,
since the minimum distance of C is 3, this is a contradiction. [:]

Note that the proof of Claim 4.2 amounts to choosing the appropriate coordinates
for {V} so that the set V of rank 7 becomes the ttamming sphere BT(0, 1). In general,
we may always assume w.l.o.g, that B(0, 1) c V, where r rank(V).

Consider the case where rank(V) 6. After a suitable choice of coordinates for
{V}, we have V B(0, 1) U {x}, where x is of weight 2. In this case, V is a
tile if and only if wt(x) 4, 5. The proof of this follows from Proposition 4.5, and is
therefore postponed.

Now let rank(V) 5. Again, with a suitable choice of coordinates for {V), we
hv v U(0,) {, }.

CLAIM 4.3. V is a tile if and only if one of the following holds:
() t() , t() , d t(x +) ;
(b) ,t() , t() , d t(+) ;
() t() , t() e, d t(x +) ;
(d) t() , t() , d t(x +) e.
.Proof. Note that 2V may be written as Bh(0, 2) Bh(X, 1) Bh(y, 1) {x + y}.

Hence, V is a tile of {V} if and only if there exists a set A c F of cardinlity 4, such
that

(1) 2AB(0,2) {0},

(2) 2A g(x, 1) 2A g(y, 1) 2A {x + y} 0.

Condition (1) means that the Hamming distance between any two vectors in A is at
least 3. Since the (5,4,3) binary code is unique [22], we have that

(3) A { 00000, 11100, 10011, 01111 }

up to a permutation of coordinates. Note that A is linear, and therefore 2A A.
Hence, condition (2) translates into

(4) d(x, A) >_ 2, d(y, A) >_ 2, x + y

_
A.

The cases (a)--(d) now may be derived by inspection from (3) and (4). [:]

For rank(V) 4 we have V B4(O, 1)t2 {x, y, z}. In this case it is obvious (from
Corollary 3.2) that V is a tile if and only if 2V

CLAIM 4.4. V is a tile if and only if one of the following holds:
() wt() t() t(z) d
(b) wt(x) wt(y) 2, wt(z) 3 and wt(x + y) 2, wt(x + z) wt(y + z) l;
(c) wt(x) 2, wt(y) wt(z) 3 and either wt(x + y) =1or wt(x + z) l;
(d) t() t() t() .
Proof. All we need to show is that there exists a vector in IF which is not a

sum of two elements from B4(0, 1) U {x, y, z}. This is easily done by inspection. For
instance, (1111) is such a vector in case (a), and so A {0000, 1111}. In all other
cases A has the form {0000, 1110}. [:]

398 C. COHEN, S. LITSYN, A. VARDY, AND G. ZtMOR

Finally, if rank(V) 3 then V is linear and hence is a trivial tile. Note that the
foregoing classification shows that in all cases where IVI _< 8 and V is a tile, it is also
a linear tile. This also follows directly from Corollary 7.3.

We now consider tiles of large rank, that is, those tiles for which rank(V) is close to
the upper bound IV 1. For instance, if rank(V) IV 1 then w.l.o.g. V Br(0, 1)
and is therefore a tile. If rank(V) V 2 then w.l.o.g. V Br(0, 1)U {x} for some
x E]F of weight _> 2.

PROPOSITION 4.5. If V ,r(O, 1)[2 {x} then V is a tile, provided wt(x)
r-2, r-1.

Proof. We have 2V B(0, 2) U B(x, 1) with r 2k 2. Thus, we may take A to
be an (r, 2-k, 3) linear code, obtained by shortening the (r + 1, 2-+1, 3) Hamming
code C, provided d(x, 2A) d(x,A) _> 2. It is well known [10, 22] that for any
3 < w < r-2 orw-r+lthereexistsacodewordcE Cofweight w. Hence, if
wt(x) r- 2, r- 1, we may always find a permutation of C such that c coincides
with x in the first r coordinates and has a 1 in the last coordinate. Upon shortening
(that is, taking all codewords with a zero) in the last coordinate, we obtain A with
d(x, A) >_ 2.

As a consequence of Proposition 4.5, we have the following claim.
CLAIM 4.6. If IVI s d rank(V) 6, that is V B6(0, 1) U {x}, then V is a

tile if and only if wt(x) # 4, 5.
It follows from the proof of Proposition 4.5 that if V Br(0, 1) {x} and a tiling

(V, A) exists, then A must have the parameters (n, M, d) of a shortened Hamming
code. Further, it is easy to show that there cannot be a vector of weight n- 2 or n- 1
at distance >_ 2 from any shortened perfect code C of length n- 2k- 2 (either linear
or nonlinear). Assume to the contrary that x is such a vector, and extend C to
perfect code C 6o261 of length n+l. Here C0 {(cl0) c e C} and 61
c e C*} for some C*, where (. I" denotes concatenation. Since d((xlO), C) _< 1 while
d((xlO), Co) >_ 2, it follows that d((xl0), 61)

_
1. Therefore x C* and hence Ce

contains a codeword of weight n- 1 or n, which is a contradiction. Thus, if any code
with the parameters (2 2, 2--, 3) can be obtained by shortening a perfect code,
then no tiling is possible for wt(x) r- 2 or wt(x) r- 1. This is certainly true
for k 3, since the (6, 8, 3) shortened Hamming code is unique, which establishes the
"only if" part of Claim 4.6.

5. Periodicity of tilings. A tiling T of the Euclidean space IR is said to be
periodic if there exists a translation mapping from]Rn to IR which takes T into itself.
In other words, T is periodic if t + T T for some nonzero t IR. Similarly, we
shall say that a tile V of IF is periodic if there exists a nonzero v E IF such that
v+V V. Note that since 0 V by assumption, we must havev V. We call
v a periodic point of V. To keep the notation rigorous, we shall consider 0 to be a
periodic point of any set. A periodic point is also called a stabilizer of the set in some
texts [14]. Given a tiling (V, A) of]F, we shall say that it is nonperiodic if neither V
nor A contains a nonzero periodic point.

The existence of nonperiodic tilings of IR2 is a well-known problem in tessellation
theory [24]. The "kites and darts" tiling of Penrose [24] is a notable example of
a nonperiodic tiling of the plane with two distinct polygons. It is still unknown,
however, whether there exists a single (nonconvex) body which tiles the plane only
nonperiodically.

In this section we consider the periodicity of tilings in IF. First, we construct a
nonperiodic tiling of IF and then show that IF is the smallest binary space which

TILINGS OF BINARY SPACES 399

admits a nonperiodic tiling. We also present without proof a simple general con-
struction of tilings in IF, which establishes the existence of nonperiodic tilings for all
n _> 6. Although this also follows from the general classification of groups that admit
nonperiodic tilings, concluded by Sands [30], we hope these constructions will prove
insightful. Furthermore, we show that the nonperiodic tiling of IF is unique up to
coordinate transformations.

PROPOSITION 5.1. Let

V-

0 1 0 0 0 0 1 0
0 0 1 0 0 0 1 0
0 0 0 1 0 0 1 0
0 0 0 0 1 0 0 1
0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 0

(6) A {O,a,...,a}

0 1 1 0 0 0 1 1
0 0 1 1 0 1 1 0
0 1 0 1 0 1 0 1
0 0 1 1 0 1 0 1
0 1 0 1 0 0 1 1
0 0 0 0 1 1 1 1

where the elements of V, A c IF6 are represented as column vectors. Then (V, A) is
a nonperiodic tiling of]F.

Proof. To see that (V,A) is a tiling, define A0 {0, al,a2,a3} and A1
{a4, a5, a6, aT}. Then obviously 2V N (A0 + A1) 0 (consider the last row in (5),
(6) above), and it remains to show that 2V A 2A0 2V A 2A1 {0}. Note that
the first five rows of (5) correspond to B5(0, 1) U {x, y} with wt(x + y) 5, while
the first five rows in both A0 and A are isomorphic to the tile set in (3). Thus,
2V2A0 2V2A1 {0} follows from Claim 4.3. To see that (V, A)is nonperiodic,
observe that rank(V) rank(A) 5. It is obvious that a set of cardinality 8 and
rank 5 cannot be periodic.

We now show that the nonperiodic tiling of Proposition 5.1 is the smallest possible.
PROPOSITION 5.2. If (V, A) is a nonperiodic tiling, then IVI 8 and IA 8.

Proof. Obviously, any tile of cardinality 2 is linear and, hence, periodic. Now
let (V, A) be a tiling of with IAI- 4. We claim that either A is linear or V is
periodic. Indeed, let A {0, a, b, c} and define A’ {0, a, b, a + b}. Then 2A’ 2A
which implies 2V 2A’ {0}. Hence, both (V, A) and (V, A’) are tilings of , and
therefore we must have c + V (a + b) + V. This is only possible if c a + b, in
which case A is linear, or if c (a + b) + v, where v is a nonzero periodic point
of V.

rthermore, it can be shown that the tiling of Proposition 5.1 is unique. Namely,
in any nonperiodic tiling of both tiles must be of the form (5), up to coordinate
transtbrmations. For example, under the coordinate transformation corresponding to
taking {a, a, a4, a, a, 1} as the basis of, where 1 denotes the all-one vector, the
tile A given in (6) maps into (5). In view of Proposition 5.2, in order to establish the
uniqueness of (5), (6) we only need to consider tiles of cardinality 8. All such tiles
have been classified in 4. rthermore, if IVI- 8 and V is a nonperiodic tile of F,
then obviously 4 G rank(V) G 6. If rank(V) 6 then V can tile {V) only
linearly, in view of Proposition4.5 and the fact that a (6, 8, 3) code must be linear.
Hence rank(V) 4 or rank(V) 5. Following the various cases in Claims 4.3 and

400 G. COHEN, S. LITSYN, A. VARDY, AND G. ZIMOR

4.4, it may be readily verified that none of them produces a nonperiodic tiling, except
case (c) in Claim 4.3. This is precisely the case corresponding to (5).

We now describe a general construction of tilings in which shows that nonperi-
odic tilings exist for all odd n _> 7. Let u 2"- 1, where rn _> 3, and let hi, h2,..., hu
be the distinct nonzero elements of IF arranged in some definite, say lexicographic,

112rn+lorder. Fix a permutation r on the set {1 2 ,u}, and consider Ao, A1, V c-"2
given by

0 hi h2 h, IA0 0 0 0 0

0 0 0 0

(8)
0 0 0 0

A1 0 hi h2 hu
-i- 1 1 1

(9)
0 hi h2 h

V 0 h() h(2) h();- 0

where the elements of Ao, A1, V are again represented as column vectors, and (’)
denotes concatenation. Let A A0 U A. Then it is easy to see that (V, A) is a tiling
of 2,+ Further, the set A A0 U A is clearly nonperiodic. It may also be shown"2
that if the permutation r is given by, for instance,

(1, 4, 2)(3, 6)(5, 7)(8, 9)(10, 11)... (, 1, ,),

then the set V in (9) is nonperiodic as well. Thus, we have constructed nonperiodic
tilings of IF for all odd n _> 7. To exhibit nonperiodic tilings of IF for even n we
use a variant of the same construction. As before, let p 2 1. Now let 7c be any
derangement of the set {1, 2,..., }. Define A, V IF"+2 as follows"

0 hi h2 h 0 0 0 0

o 0 0 o 0 h h2(10) A
0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0

0 h h2 h. 0 hi h2

(ll) V- h--() h---(2)’" h(,) U - h h2
0 0 0 0 0 0 0
0 0 0 0 1 1 1

Then (V, A) is a nonperiodic tiling of IF."+2 for all rn _> 2.
of

We omit the proof

TILINGS OF BINARY SPACES 401

6. Recursive decomposition of tilings. In this section we present a recursive
decomposition (construction) of tilings, which shows that any tiling of IF may be
decomposed into (constructed from) smaller tilings of certain particular type. First,
we prove the following proposition which was used in the classification of 4.

PROPOSITION 6.1. A set V c]F is a tile of IF if and only if it is a tile of
Proof. (=) Since (V} is linear it is a tile of]F. Thus, if ((V},A1) is a tiling of

]F and (V, A0) is a tiling of (Y/, then evidently (V, A0 + A1) is a tiling of IF.
Let (V, A) be a tiling of]F and define Ao AN (V}. We claim that (V, Ao) is a tiling
of (Y}. Indeed, since A0 C_ A and 2V N 2A {0}, it follows that 2V N 2A0 {0}.
Further, since (V C IF V + A, any w e {V} can be written as w v + a, where
v e V and a e A. However, since (Y} is linear we have a v + w e (V/, so a e Ao.
It follows that {V c_ V + A0. The converse inclusion V + A0 c_ (V is obvious from
V, A0 c (V). El

In view of Proposition 6.1, we shall be particularly interested in those tilings
(V, A) for which IF (V}. Note that until now the order of the sets in the tiling pair
(V, A) was of no importance, since the roles of V and A were completely symmetric.
However, this is no longer true if we require (V} IF.

DEFINITION 6.1. The ordered pair (V, A) is a proper tiling of IF if (V, A) is a
tiling of IF and (V} IF.

The following proposition shows that the classification of all tilings in IF may,
in principle, be reduced to the study of proper tilings. Let V be a tile of IF with
(V} IF or, equivalently, rank(V) < n. Denote n 2n-- 1, where r rank(V).

THEOREM 6.2. The pair (V, A) is a tiling of IF if and only if A has the following
form:

1. For i= 0, 1,..., m, let Ai c (V} be such that (V, Ai) is a tiling of
2. Let co O, c,..., c, be a set of representatives for]F/
3. For O, 1,..., m, let v be any element of

Then

(12) A-AoU(vx+cx+A)U U(v.+Cn+A.).

Proof. (<=) Let A be as in (12), and denote IV 2k. Then AI- 2"- for all i,
and [A[- (m + 1)2-k 2n-. Hence, it remains to show that 2V N 2A {0}. We
have 2A =/O 14, where b/- U02A and YY U0<<j<,(vi +vj +c +cj +A + Ay).
Now, 2VNb/ {0} since 2VN2A {0} for all i. Since c+cj f {V} for all
0 _< < j _< m, it follows that (V} and 14 are disjoint, and hence 2V N /Y 0. ()
Let (V, A) be a tiling of IF. Pick any set of representatives co 0, cl, c2,..., c, for
IF/(V} and define

Ai v+ci+(AN(ci+

where v is any element of (V} such that 0 E A. To see that such v exists, note that
c + (A N c + (V}) c {V}. We have v + c + Ai A (c + (V}) and, hence,

(3)
m m

U(v’+c’+A’) UAN(c’+(V}) A.
i=0 i=0

We need to show that (V, A) is a tiling of (V} for all i. Clearly 2A
(AO(c+(V})) c 2A, and therefore 2VO2A {0}. Note that A c (V}, which implies
V + A c_ (V}. Thus, to establish that (V, A) is a tiling of {V}, it remains to show
that IAI 2r-k. Since 2V 2Ai {0}, we obviously have IAI _< 2-. However,

402 G. COHEN, S. LITSYN, A. VARDY, AND G. ZtMOR

(m + 1)2r-k 2’-k IAI <_ Ei0]Ail, where the last inequality is from (13). This
implies IAI 2r-k and completes the proof.

Remark. The vectors Vl, v2,..., v, and the sets A0, A1,..., Am in Theorem 6.2
are not necessarily distinct. It is assumed that 0 E Ai for all 0, 1,..., m.

The analysis of Theorem 6.2 shows that if all the proper tilings of IF are known
for r 1, 2,..., n, we can construct all the tilings of IF. However, as will now be
shown, the set of all the proper tilings is not the smallest class of tilings which permits
complete classification of all tilings of]F. Indeed, let (V, A) be a proper tiling of
and consider the tiling (A, Y). Unless rank(A) rank(V), this tiling is not proper
and, hence, by Theorem 6.2

(14) V VoU(al+Cl+V1) U tA(a,+cm+V,),

where (A, V) is a proper tiling of (A) for all i, 0, cl,... ,Cm are representatives of
(V}/(A}, and al,a2,... ,a, (A). Thus, using (14), each of the tilings (V, Ai) of
in Theorem 6.2 may be decomposed into yet smaller tilings, unless (A} (V}. This
process may be iterated until a complete decomposition of the original tiling (V, A) is
obtained.

Example. Consider the tiling (V, A) of IF26 given in (5) and (6). This tiling is not
proper since rank(V) rank(A) 5 < 6. If we take Co 0 and cl (000001) as the
representatives of IF62/(V}, we can write A Ao U (Cl -" A1) with

0 1 1 0 0 0 1 1
0 0 1 1 0 1 1 0

Ao 0 1 0 1 0 1 0 1
0 0 1 1 A1 0 1 0 1
0 1 0 1 0 0 1 1
0 0 0 0 0 0 0 0

Note that (V, Ao) and (V, A1) are proper tilings of (V). Since rank(A0) rank(A1) <
rank(V), we may further decompose (V, Ao) and (V, A1) as follows. Let 0, c0,1,..., c0,7
and 0, C1,1,..., C1,7 be the representatives of (Y)/(Ao} and (V}/(A1}, respectively. We
may take, for instance,

{C0,1,C0,2,...,C0,7} {C1,1,Cl,2,...,Cl,7}

1 0 1 0 1 0 1
0 1 1 0 0 1 1
0 0 0 1 1 1 1
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

Then the corresponding decompositions of V are given by

where

V Vo,o U (Co,1 + co,1 + Vo,1) U t2 (co,7 + co,7 + Vo,),
V Vl,0 I..J (al,1 q- Cl,1 -[- Vl,1) [-J [-J (al,7 + Cl,7 -[- V1,7),

co,l, co,2,..., ao, 0, 0, (110100), 0, (101010), (011110), 0 e (Ao),
a1,1, al,2,..., al,7 0, 0, (110010), 0, (101110), (011100), 0

Vo,o Vo, vl,o Vl, {o}.

TILINGS OF BINARY SPACES 403

Indeed, since A0 and A1 are linear, both (A0, V0,) (A0, {0}) and (A1, VI,,)
(A1, {0}) are trivial tilings of (A0} A0 and (A1} A1, respectively. [3

As illustrated in the foregoing example, the recursive decomposition of (12) and (14)
terminates when trivial tilings, of the form (V, {0}) with V linear, are obtained. The
only other case where the recursion of (12), (14) stops is when a tiling (V, A) with
(V} (A} is encountered.

DEFINITION 6.2. A tiling (V, A) of IF is said to be of full rank if
It is easy to see that a tiling (V, A) of IF is of full rank if and only if rank(V)

rank(A) n. In the sense described in this section, any tiling oflF can be constructed
in a unique way from the trivial tilings and tilings of full rank. This clearly leads to
the following question: do full-rank tilings exist? We shall settle this question in the
affirmative in the next section.

7. Tilings and perfect binary codes. A perfect binary code of length n and
Hamrning distance 2R+ 1 is a tiling of IF with Hamming spheres of radius R. Perfect
codes have been extensively studied; see for instance [10, 18, 23, 25, 26, 34, 36]. It is
known [18, 34] that perfect codes exist only for R=0, R=n, R (n-1)/2 with n
odd, R 1 with n 2m- 1, and R 3 with n 23. Since the first three cases are
trivial while the last case corresponds to the well-known binary Golay code [22], we
shall henceforth use the word "perfect" to refer to the perfect codes with R 1 and
n= 2m-1.

It can be shown that each tiling (V, A) of IF is uniquely associated with a perfect
binary code of length IVI- 1. A similar result in the context of coverings was
established by Blokhuis and Lain [2]. Let H(V) be an n matrix having the
elements of V \ {0}, arranged in some fixed order, as its columns. For x E IF’, let
s(x) H(V)x denote the syndrome of x with respect to H(V).

PROPOSITION 7.1. Let

(15) c { H(v) A }.

Then C is a perfect code of length .
Proof. We first show that d(C) min,cd(cl,c.) Z 3. Denote al s(cl)

and a2 s(c2), where al,a A by (15). Suppose that al a or, equivalently,
s(cl +c2) 0. Then d(cl, c.) wt(cl +c.) _> 3 since the columns of H(V) are distinct.
Now suppose that al a2. Note that al + a s(cl + c2) Eesupp(cl+c.)v.
Further note that al + a2 2V, since 2V N 2A {0}. Hence, again d(cl,c2)
Isupp(cl / c2)1 _> 3. It remains to show that d(x,C) _< 1 for all x IF’. Since
V+A=IF,wehaves(x) =v+aforsomevVandaA. Ifv=0thenxC
by (15) and we are done. Otherwise, let c E IF’ be a vector which coincides with x
in all positions except one, which is the position corresponding to the location of v in
H(V). Then d(x, c)-- 1, and s(c) a which implies that c

Proposition 7.1 provides a means for constructing a perfect code C from any
given tiling (V, A). We shall say that this code C is the perfect code associated with
(V A). It should be pointed out that the correspondence between sets V, A such that
V+A IF and coverings by spheres of radius R 1 has been initially noticed by
Blokhuis and Lam in [2]. The relevance of their rank, however, seems to have been
overlooked in [2]. We now elaborate on this issue.

PROPOSITION 7.2. If C is the perfect code associated with a proper tiling (V, A),
then

rank(C) - rank(V) / rank(A).

404 G. COHEN, S. LITSYN, A. VARDY, AND G. ZIMOR

Proof. Define Co {c IF s(c) 0}. Clearly, Co is a linear code and
dimC0 u rank(V). Now let A {0, al,...,a,} where # IAI 1. Since
{V} IF, we can always find a set C1 {0, Cl,..., c,} c IF’ such that s(ci) ai
for all i, rank(C1) rank(A), and {C} Co {0}. Then C [-JCec (c + Co) and
rank(C) dim Co + rank(C1) rank(V) + rank(A).

Remark. If (V, A) is not a proper tiling then Proposition 7.2 does not apply. This
is so because for rank(V) < n there exist elements a A which cannot be represented
in the form H(V)x for any z IF’. In this case we have

rank(C) u rank(V) + rank(A0) < rank(V) + rank(A),

where A0 A C? (V).
Note that Co is a linear subcode of C (regardless of whether (V, A) is proper or

not), and C itself is linear, i.e., equivalent to the Hamming code of length u, if and
only if A0 A A (V} is linear. The following corollary is an immediate consequence
of this fact.

COROLLARY 7.3. If IVI <_ 8 and (V, A) is a proper tiling, then A is linear.

Proof. The perfect code C associated with (V, A) has length at most 7 and, hence,
is equivalent (see, e.g., [25]) to the Hamming (7, 16, 3) code or to the (3, 2, 3) repetition
code.

We now employ the foregoing results on the relation between tilings and perfect
codes to establish the existence of full-rank tilings. Indeed, full-rank perfect code
(that is, a perfect code of length and rnk) together with the Hamming sphere
B(0, 1) constitute an example of a full-rnk tiling. Furthermore, we have shown that
full-rank tilings exist if nd only if there exist full-rank perfect codes, for if (V, A) is
full-rank tiling then the associated perfect code must hve full rank by Proposition 7.2.
Unfortunately, none of the classical constructions of nonlinear perfect codes given
in [1, 23, 25, 26, 36] produces perfect codes of full rnk. On the other hnd, such
codes have been recently constructed by Etzion and Vrdy in [10].

THEOREM 7.4 (see [10]). For all m >_ 4, there exists a full-rank perfect code of
length 2"- 1.

Thus, full-rank tilings of IF exist for all n- 2"* 1 with rn > 4. It is shown in
the next section that they also exist for n 2TM 2 with rn _> 4, nd in particular for
n- 14. As consequence of Corollary 7.3, full-rnk tilings do not exist for n < 7. It
is still n open question whether full-rank tilings exist for n 8, 9,..., 13, nd many
other values of n. However, we have the following theorem.

THEOREM 7.5. Full-rank tilings of IF exist for all sufficiently large n.

Proof. Let (V1, A1) and (V2, A.) be tilings of IF and IF’, respectively. Define

v= { e e },
d={ (al]ae) aeA1, aeeA. }.

Then clearly 2VC2A {0} nd]V].]A] 2nl+-, which means that (V,A)is a tiling
of]F+n Now rnk(V) rank(V)+ rank(V) and rnk(A) rnk(d)+ rank(A).
Thus, if (V,A1) and (V2,A2) are full-rnk tilings then so is (V,A). By Theorem 7.4
there exist full-rank tilings of IF for n 15, 31, 63, Since 15 and 31 are relatively
prime, by the conductor theorem of Frobenius [31, p. 376] we hve full-rnk tilings of
]F for all n > no, where no is sufficiently large.

Remark. In fact, using the results of the next section in the proof of Theorem 7.5
it is possible to show that full-rank tilings of IF exist for all n > 112. This leaves
exactly 53 values of n for which we do not know whether full-rank tilings exist.

TILINGS OF BINARY SPACES 405

We conclude this section with a construction of proper tilings from perfect binary
codes. This construction is, in a sense, the converse of Proposition 7.1. Let C be
a perfect binary code of length u and let F be a linear subcode of C such that
F + C C. For instance, by Proposition 8.1 of the next section, we may take as F
any linear subspace of the set of all the periodic points of C (the kernel of C in the
terminology of [1, 27]). Denote 7 dim F, and let H(F) be a (u- 3’) x u parity-
check matrix of F. Note that the matrix H(F) is full rank by assumption. Take
V {0} U {the columns of H(F)} and define A {H(F)c c C}.

PROPOSrrlON 7.6. With V and A as defined above, the ordered pair (V, A) is a
proper tiling of IF-.

Proof. For x IF’ let s(x) H(F)xt. We claim that

(16) C { cEIF’ s(c)=H(F)c cA}.

Indeed, if c C then s(c) A by the definition of A. To see the converse inclusion,
consider a vector x IF’ such that s(x) a A. By the definition of A, there exists
c E Csuchthat s(c) a. Hence s(x/c) 0, which implies that x+cG F. But
since F + C C it follows that x (x + c) + c C.

It is now easy to see that d(C) 3 implies 2VN2A {0}. Suppose to the contrary
that)1 / V2 al + a2 for some Vl v2 G V and al 7 a2 G A. By (16) and the fact
that (V} IF’-, there exists a codeword cl E C such that s(c) a. Let c IF’
be a vector which coincides with c in all but the two positions corresponding to the
locations of VI and v2 in H(F). Then s(c2) al + vl + v2 a2 G A, and therefore
c G C by (16). This is a contradiction, since d(cx, c2) 2.

The fact that V + A IF’- also follows from (16). Let x G IF’-. Since
(V) IF’-, there exists y E IF’ such that x,= s(y). If y C then x A by (16),
and we are done. Otherwise, there exists a codeword c G C at distance 1 from y. Let
s(c) a A. Then x a + v, where v is the column of H(F) located at the position
where c and y differ.

Note that 7 is possibly 0, in which case V is a sphere and A C. However, as
will be shown in the next section, given any perfect code C we may always find
linear subcode F {0} such that F + C C.

8. Decomposition of full-rank tilings. In this section we show that a peri-
odic full-rank tiling may be further decomposed into smaller tilings in a way similar
to Theorem 6.2. Analysis of the rank and periodicity of tilings resulting from such
recursive decomposition is presented. Using this analysis we deduce the existence of
nonperiodic full-rank tilings.

Let A c IF and let A0 denote the set of all the periodic points of A. The set
A0 is sometimes called the kernel of A [1, 27]. The following proposition is rather
obvious and was first established in [1]. We include the proof herein for completeness.

PROPOSITION 8.1. The set Ao is a linear subcode of A. Furthermore, A is the
union of disjoint additive cosets of Ao.

Proof. Proposition 8.1 holds vacuously if A is either nonperiodic or linear. Hence
assume that A0 {0} and A0 -7/= A. To see that A0 is linear, note that (al +a.)+A
al / (a2 / A) al + A A for any 61, a E A0. To see that A0 tiles A, let a A \ A0.
Then (a + A0) NA0 0 since A0 is linear, and a + A0 C A since A0 consists of periodic
points of A. If A A0 U (a + A0) we are done; otherwise, continue in this manner
until A is exhausted.

It follows from Proposition 8.1 that there exists A c A such that A / A0 A
and 2A02A’ {0}. We shall write A’ A/Ao. More generally, for any set V C IF,

406 G. COHEN, S. LITSYN, A. VARDY, AND G. ZIMOR

we define V V/Ao as follows. Fix a basis a, a,..., a, for A0 where rn- dim A0,
bl b2 b-m for IF. Then each vectorand complete this to a basis a a, ,a,,

v Ei aia +Ei%m ibi in V is mapped onto the vector v’ E-ibi in V/Aoi=1
Thus V/Ao is just the projection of V onto F/Ao. Note that the mapping from
V to V/Ao is not necessarily one-to-one. Thus, for instance, the mapping from A
to A’ A/Ao is lA0 to one, and it is easy to see that the two definitions of A/Ao
coincide.

THEOREM 8.2. Let (V, A) be a tiling of and let Ao be the set of periodic
points of A. Then A has the following form:

(17) A A’ (c + A’)... (c-1 + A’),

where (V/Ao, A’) is a tiling of F/do, and 0, Cl,...,c_ are representatives for
 /Ao

Proof. Set A’ A/do and {O,c,c,...,c_} do. Then (17) holds by
Proposition8.1, and all we need to show is that (V/Ao,A/Ao) is tiling of F/A0.
First, we claim that the mapping from V to V/Ao is one-to-one in this case. Indeed,
suppose to the contrary that v, v V which map onto the same vector v V/Ao.
Then v aa + v’ and v2 1Za + v’ which implies that v + v2
(a +)a e A0. This is a contradiction since A0 C A and 2V 2A {0}.
Thus V/do-]Y], and therefore V/Ao.]A/Ao]-]F/Ao]. It remains to show that
2(V/A0) 2(A/A0) {0}. Again, suppose to the contrary that v + v a + a for
some v v e V/do nd a a e A/do. Let v, v be the two vectors in Y which
map onto v, v, and let a, a2 be some two vectors in A that map onto a, a. Then

m

Vl + V2- aia + ia + V + V2,
i=1 i=1

m

al + a2 7a + 5a + a + a2,
i=1 i=1

which implies, by linearity of A0, that v + v a0 + a + a for some a0 A0.
But, since A0 consists of periodic points of A, we have a0 + al A which contradicts
ev e eA {o}.

Remark. Note that Proposition 8.1 and Theorem 8.2 hold without change if A0 is
any linear subspace of the set of all the periodic points of A.

Using Theorem 8.2, a full-rank tiling (V, A) of F may be further decomposed
into smaller tilings, provided that at least one of the sets V, A is periodic. We have
the following sufficient condition for periodicity of proper tilings.

PROPOSITION 8.3. Let (V, A) be a proper tiling of F and let ev v. Then
is a periodic point of A.

Proof. Let C be the perfect binary code of length IVI- 1 associated with
(V, A). Since the weight distribution of any perfect code containing 0 is uniquely
determined [22], the vector 1 of weight belongs to c + C for all c C. Thus, 1 is a
periodic point of C. Now, g H(V)I s(1) which shows that A. rthermore,
since the tiling (V, A) is proper, for any a A there exists c C such that s(c) a.
But then 1 + c C, and therefore s(1 + c) s(1) + s(c) + a belongs to A. S

By Proposition 8.3 a full-rank tiling (V, A) is nonperiodic only if

Ev=Ea-0.
vV aA

TILINGS OF BINARY SPACES 407

In particular, a full-rank tiling consisting of the Hamming sphere and a full-rank
perfect code is necessarily periodic.

Example. Using Theorems 7.4 and 8.2 it is possible to construct a full-rank tiling
of IF24. Let V B15(0, I) and let A be the full-rank perfect code of length 15
constructed in [I0]. Since 1 is a periodic point of A, we may take A0 {0, i} and
let ul, u2,..., u4, 1 be the corresponding basis of IF5, where uj denotes a vector of
weight 1 with the nonzero entry in the jth position. Then

VIA0 (0, %1,..., it14} U ((111111111111110)},

and A/Ao is the set of all codewords of A with a zero in the last position. Upon
puncturing in the last coordinate we obtain a full-rank tiling (V, A) of IF14.

The following two propositions are concerned with the periodicity of A/Ao and

PROPOSITION 8.4. If Ao contains all the periodic points of A, then A/Ao is
nonperiodic.

Proof. Let a be a periodic point of A/Ao. Then a + A a + (A/Ao) + Ao
(A/Ao)+Ao A. Hence a E A0. But (A/Ao)NAo (0}, and therefore a 0.

PROPOSITION 8.5. The mapping from V to V/Ao takes periodic points of V into
periodic points of V/Ao.

n-, flib be a periodic point of V, and letProof. Let v0 Yi=l ciai + i=

Ev = ib be its image in V/Ao Clearly, for any v -.i= 7a + =1

in V, the fact that v0 +v E V implies that Vo +v’ yi=-l"(i +5i)bi is in

V/Ao n
By Proposition 8.5, if V is periodic then so is V/Ao and, hence, Theorem 8.2

can be applied to the tiling (V/Ao, A/Ao). In general, this process may be iterated
until we obtain a decomposition of the original tiling (V, A) into nonperiodic tilings.
At each iteration, one of the two tile sets loses all its periodic points by Proposition
8.4. However, the recursion of Theorem 8.2 does not necessarily terminate after two
iterations, since the other tile set may acquire new periodic points--that is, V/Ao can
be periodic even if the original set V is not. Such a situation is illustrated in the
following example.

Example. Let V BT(0, 1), and let A be the linear Hamming code generated by

al, a2, a3, a4}

1 1 1 0
1 0 0 0
0 1 0 0
0 0 1 0
1 0 0 1
0 1 0 1
0 0 1 1

Take, for instance, A0 (al, a2, a3}. An appropriate basis for IF is a, a2, a3, ul, u2, u3, u4.
Then, upon puncturing in the last three coordinates,

W/ o
0 1 0 0 0 1 1 1
0 0 1 0 0 1 0 0
0 0 0 1 0 0 1 0
0 0 0 0 1 0 0 1

Note that V/Ao in (18) is periodic (with (1000) being the unique nonzero periodic
point), even though V BT(0, 1) is not.

408 O. COHEN, S. LITSYN, A. VARDY, AND G. ZIMOR

Using the iterative decomposition described above, we can deduce the existence
of nonperiodic full-rank tilings. First, note that

(19) rank(A) m _< rank(A/Ao) < n m,

(20) rank(V) m _< rank(V/A0) <_ n- m,

where m dimA0. The inequalities (19), (20) show that if (V,A) is a full-rank
(proper) tiling of IF, then (V/Ao,A/Ao)is a full-rank (proper)tiling of IF/A0. Thus,
starting with any full-rank tiling (V, A), iterative application of Theorem 8.2 produces
a decomposition of (V, A) into nonperiodic full-rank tilings. In fact, if V B15(0, 1)
and A C, where C is a full-rank perfect code of length 15, we need only one
iteration. This is so because IBis(o, 1)1 16 and by Corollary7.3 full-rank tilings
(V, A) do not exist for IVI <_ 8. Thus, if Co is the set of all the periodic points of C,
then the tiling (B15(0, 1)/C0, C/Co) is full rank and nonperiodic.

We conclude this section by observing that as a consequence of Theorems 6.2 and
8.2, the classification of tiles reduces to the classification of nonperiodic full-rank tiles.
That is, if we can determine whether any given nonperiodic full-rank set is a tile, then
by using Theorems 6.2 and 8.2 we can determine whether any given set is a tile. The
next section provides a means for showing that certain sets cannot be tiles.

9. Nonexistence results: Generalized Lloyd theorem. In this section we
derive several necessary conditions for the existence of tilings. Our main result herein
is a generalization of the Lloyd theorem [21], originally stated for tilings with Ham-
ming spheres, for arbitrary tiles. The Lloyd theorem plays a crucial role in the clas-
sification of perfect binary codes [18, 34]; for more details see [20, Chap. 7]. Other
generalizations of the Lloyd theorem may be found in [19].

As in [22], we represent a vector v (v, v2,..., Vn) E]F by its image z

z z z in the group algebra QG, where G is isomorphic to]F. Then for any
u, v e]F and Y C IF’, the characters X(’) are defined in the standard way (cf. [22,
Chap. 5]),

Xu(zv) --(_l)(U,V),

vEV

where {., .) stands for the inner product modulo 2 in]F. The Krawtchouk polynomial
of degree k in the indeterminate x is defined by

k

Pk(x) (-l)i(:)(-
i--O

for k O, 1,..., n. The distance distribution of a subset A c is given by

1
Di(A) (a + A),

a6A

where Wi(a + A) is the number of vectors of weight in a + A. The MacWilliams
transform of D{(A) is given by

j=0

TILINGS OF BINARY SPACES 409

Now let (V,A) be a tiling of]F. Define the sets N(A),N’(A) C {0, 1,...,n) as
follows:

N(A)= { j Dj(A) # O },
N’(A) { j Dj (A) # O }.

Thus, N(A) is the set of distances occurring in A while N’(A) is the set of distances
occurring in the formal dual A’= {a: Xa (A) = 0) of A. Further, let

u=),
Q(U) { j u e U such that wt(u) j }.

THEOREM 9.1. N’(A) C_ Q(U) U {0).
Proof. Since A + V IF, in the group algebra QG we have x(V)xu(A)

X(IF). Since X(IF) 0 for all u : 0, either x(V) 0 or x(A) 0 or both
xu(Y) xu(A) 0, unless u 0. Now, consider the following sum [22, p. 139]:

(21) Sj(A) de_e 1 1 2

[A[2 E x(A+A) E]x(A)[> O.
t()-- IAI u t()=

Furthermore, since x(A + A) ieN(A) -*()= X(zW), we have
wEA+A

1 1

wt(u)=j iN(A) wt(w)= wt(u)=j
wEAq-A

Here x is an arbitrary vector of weight i, and we have used the fact that ’wt(u)=j X(zx)
depends only on the weight of x. In fact [22, p. 135], ot(u)=j X(zx) Pj(i), and
therefore

(22)
1

eN(A D(A)Pj(i) D(A).Sj(A) IAI
Now let j e {1,2,... ,n}. Clearly, j e N’(A) if and only if D(A) O. From (21)
and (22) it follows that if by(A) # O, then there exists a vector u of weight j such
that x(A) # O. Since xu(Y) xu(A) 0 unless u 0, for this vector u we must have
X.(V) 0. Hence u e U and j e Q(U). D

If V is the Hamming sphere of radius R and u E IF is a vector of weight j then

R

x(V) E(-1) (u’v) E E (-1)(u’v) Po(j) +PI(j) +’"+PR(j).
vV i=0 wt(v)=i

This is precisely the Lloyd polynomial LR(x) evaluated at x j. Thus, in this case
Q(U) is just the set of integer zeros of LR(x), lying between 1 and n. Furthermore,
if A is a perfect binary code then IN’(A)I R / 1, which follows, for instance, from
Proposition 9.4 below. Thus, for tilings with Hamming spheres, Theorem 9.1 implies
that the Lloyd polynomial L(x) has at least R distinct zeros in the set {1, 2,..., n}.
This, together with deg Ln(x) <_ R, is precisely the Lloyd theorem.

The following three propositions give several additional necessary conditions for
the existence of a tiling (V, A).

410 G. COHEN, S. LITSYN, A. VARDY, AND G. ZIMOR

PROPOSITION 9.2. A’ C_ U U {0}.
Proof. Recall that A’= {a xa(A) 0}. The proposition now follows from the

fact that X. (V)X.(A) 0 for u 0. rl
PROPOSITION 9.3. IUI _> IVI- 1.

Proof. Evidently, maxeF Ixu(A)I IAI. Thus, taking into account that x(A+
A) Ix(A)I2 0 for u U LJ {0}, we have

1 1 2 IUI+ 1
max Ix(A)I 2 < Ial + 1.
uEIF

On the other hand,

1 1
n

uElF2 j=0wt(u)=j

n

x(A + A) Dj(A),
j=0

where the second equality follows from (21) and (22). But, since D}(A) is the
nMacWilliams transform of the distance distribution of A, we have Yj=o Dj(A)

2n/IAI]V].
RPROPOSITION 9.4. IQ(U)I > R, where R is the smallest integer such that =o ()

Proof. Let p maxbs- minaeA d(b, a) be the covering radius of A. Note that
IN’(A)I- 1 is the number of nonzero weights in the formal dual of A. Therefore

IQ(U)l

_
]N’(A)I-1 >_ p

where the first inequality follows from Theorem 9.1 and the second from the results
of [5]. By the sphere-covering bound we have

IAI E >- 2".
i=O

This, together with IAI 2/IVl, implies that IVI _< Ei:0P (). 13

Example. Let V C IF9 be the union of B29(0, 3) and some six arbitrarily chosen
vectors of weight >_ 4. We will use Proposition9.4 to show that V cannot be a
tile. Note that IV 212 and therefore R 4. Let u E]F9 and let x denote the
weight of u. For the set V at hand, we obviously have Ixu(V)- n3(x)l _< 6, where
L3(x) X(B29(0, 3)) Po(x)+ P1 (x)+P2(x)+ P3(x) is the Lloyd polynomial. Thus,
x(V) may vanish only if

In3(x)l 4090
2618 4
3 x + 60xe x3

Direct calculation shows that only x 15 satisfies this inequality; hence IQ(U)] <_ 1.
In fact, IQ(U)I I in this case. However, Proposition 9.4 requires IQ(U)I >_ R 4, a
contradiction.

Using the known bounds on the size of linear codes [37], it is often possible to
show that certain sets cannot be linear tiles. For D C {1, 2,..., n}, let M(D) denote
the maximum number of codewords in a linear code C, whose weight spectrum (that
is, the set of all for which Di(C) :/: 0) belongs to D t2 {0}.

PROPOSITION 9.5. If V is a linear tile then IVI < M(Q(U)).

TILINGS OF BINARY SPACES 411

Proof. Recall that V is a linear tile if there exists a tiling (V, A) with A being
linear. IfA is linear then A’ {a xa(A) 0} A+/- is a linear code of size

2n/IAI IYl. Further, A’ C U U {0} by Proposition 9.2. Therefore

IYl- IA’l _< M(Q(U)). D

Example. Let n 32 and let V B32(0, 2) \ X, where X consists of some 17
arbitrary vectors of weight 2. Note that IV[29. Reasoning as in the preceding
example, we conclude that a vector u E IF232 of weight x may belong to U only if
IL2(x)[IPo(x) + Pl(x)+ P2(x)l _< 17. This inequality holds for x 13, 14,..., 20.
Therefore, by Proposition 9.5, the existence of a (32, 29, 13) linear code is a necessary
condition for V to be a linear tile. But from [37] we know that such a code does not
exist.

Example. Let n 6 and V B6(0, 1)t2 (111110). It is easy to verify that U
consists of all vectors of weight 3 or 4 which contain zero in the last coordinate. So,
if V is a linear tile then by Proposition 9.5 there exists a linear code of length 5 and
size at least IVI 8, with nonzero weights 3 and 4. This is impossible, and therefore
V cannot be a linear tile. However, by Proposition 6.1 and Corollary 7.3, any tile of
size _< 8 is also a linear tile. Hence, we conclude that B6(0, 1) 2 (111110) is not a tile.
A similar argument applies to B6(0, 1)t2 (111100). Thus, we have an alternative proof
of the "only if" part in Claim 4.6.

Acknowledgment. We are indebted to Noga Alon and Tuvi Etzion for helpful
discussions.

[10]

[11]

[12]

[14]

[16]

REFERENCES

[1] H. BAUEI, B. (ANTER, AND F. HEIGERT, Algebraic techniques for nonlinear codes, Combina-
torica, 3 (1983), pp. 21-33.

[2] A. BLOKHUIS and C. W. H. LAM, More coverings by rook domains, J. Combin. Theory Ser. A,
36 (1984), pp. 240-244.

[3] N. G. DE BRUIJN, On the factorization offinite abelian groups, Indag. Math. (N.S.), 15 (1953),
pp. 258-264.

[4] G. D. COHEN AND P. FRANKL, On tilings of the binary vector space, Discrete Math., 31 (1980),
pp. 271-277.

[5] P. DELSARTE, Four fundamental parameters of a code and their combinatorial significance,
Inform. and Control, 23 (1973), pp. 407-438.

[6] M. DEZA, The effectiveness of noise correction or detection, Problems of Inf. Trans., 1 (1965),
pp. 29-39.

[7] M. DEZA AND F. HOFFMAN, Some results related to generalized Varshamov-Gilbert bound,
IEEE Trans. Inform. Theory, 4 (1977), pp. 517-518.

[8] M. DEZA, M. KARPOVSKY, AND V. MILMAN, Codes correcting an arbitrary set of errors, Revue
du Cethedec, 66 (1981), pp. 65-76.

[9] A. W. M. DRESS AND R. SCHARLAU, The 37 combinatorial types of minimal, nontransitive,
equivariant tilings of the Euclidean plane, Discrete Math., 60 (1986), pp. 121-138.

W. ETZION AND A. VARDY, Perfect binary codes: Constructions, properties, and enumeration,
IEEE Trans. Inform. Theory, 40 (1994), pp. 754-763.

L. FEJES ThTH, Legerrungen in der Ebene, auf der Kugel und in Raum, 2nd ed., Springer-
Verlag, New York, 1972.

S. W. GOLOMB, Polyominoes, 2rid ed., Princeton University Press, Princeton, NJ, 1994.
G. HAJhS, Sur la factorisation des groupes abdliens, (asopis Pst Math. Rys., 74 (1949),

pp. 157-162.
T. W. HUNGERFORD Algebra, Holt, Rinehart and Winston, New York, 1974.
M. KARPOVSKY, Weight distribution of translates, covering radius and perfect codes correcting

errors of given multiplicities, IEEE Trans. Inform. Theory, 27 (1981), pp. 462-472.
M. KARPOVSKY AND V. MILMAN, Coordinate density of sets of vectors, Discrete Math., 24

(1978), pp. 177-184.

412 G. COHEN, S. LITSYN, A. VARDY, AND G. ZIMOR

[17]

[18]

[19]
[o]
[]
[]

[23]

[24]

[25]

[26]

[27]

[28]

[31]

[33]

[34]

[35]

[36]

[37]

[38]

, On subspaces contained in subsets of finite homogeneous spaces, Discrete Math., 22
(1978), pp. 273-280.

J. H. VAN LINT, Nonexistence theorems for perfect error-correcting-codes, in Computers in
Algebra and Number Theory, Vol. 4, SIAM-AMS Proceedings, Philadelphia, PA, 1971.
, A survey of perfect codes, Rocky Mountain J. Math., 5 (1975), pp. 199-224.
, Introduction to Coding Theory, Springer-Verlag, New York, 1992.
S. P. LLOYD, Binary block coding, Bell Syst. Tech. J., 36 (1957), pp. 517-535.
F. J. MACWILLIAMS AND N. J. A. SLOANE, The Theory of Error-Correcting Codes, North-

Holland, New York, 1977.
M. MOLLARD, A generalized parity function and its use in the construction of perfect codes,

SIAM J. Alg. Disc. Meth., 7 (1986), pp. 113-115.
R. PENROSE, Pentaplexity: A class of nonperiodic tilings of the plane, Math. Intelligencer, 2

(1979), pp. 32-37.
K. T. PHELPS, A combinatorial construction of perfect codes, SIAM J. Alg. Disc. Meth., 4

(1983), pp. 398-403.
, A general product construction for error-correcting codes, SIAM J. Alg. Disc. Meth., 5

(1984), pp. 224-228.
K. W. PHELPS AND M. LEVAN, Kernels of nonlinear Hamming codes, Des. Codes Cryptogr., 6

(1995), pp. 247-257.
L. RIDEI, Lacunary Polynomials Over Finite Fields, North-Holland, New York, 1973.
C. A. ROGERS, Packing and Covering, Cambridge University Press, London, 1964.
A. D. SANDS, On the factorization of finite abelian groups II, Acta Math. Sci., 13 (1962),

pp. 153-169.
A. SCHRIJVER, Theory of Linear and Integer Programming, Wiley, New York, 1986.
S. g. STEIN, Tiling space by congruent polyhedra, Bull. Amer. Math. Soc., 80 (1974), pp. 819-

820.
N. L. TAN, L. R. WELCH, AND R. A. SCHOLTZ, Correcting a specified set of likely error patterns,

IEEE Trans. Inform. Theory, 41 (1995), pp. 272-279.
A. TIET)i,V)INEN AND A. PERKO, There are no unknown perfect binary codes, Ann. Univ.

Turku., Ser. AI, 148 (1971), pp. 3-10.
A. VARDY AND Y. BE’ERY, Maximum-likelihood soft decision decoding of BCH codes, IEEE

Trans. Inform. Theory, 40 (1994), pp. 546-554.
J. L. VASILIEV, On nongroup close-packed codes, Problemi. Tekhn. Kibernet. Robot., 8 (1962),

pp. 375-378.
T. VERHOEFF, An updated table of minimum-distance bounds for binary linear codes, IEEE

Trans. Inform. Theory, 33 (1987), pp. 665-680.
G. ZMOR, Subset sums in binary spaces, European J. Combin., 13 (1992), pp. 221-230.

SIAM J. DISCt:tETE MATH.
Vol. 9, No. 3, pp. 413-423, August 1996

() 1996 Society for Industrial and Applied Mathematics
OO6

NONEQUIVALENT q-ARY PERFECT CODES*

TUVI ETZIONt

Abstract. We construct a set of qqC nonequivalent q-cry perfect single error-correcting codes
e The construction is basedof length n over GF(q) for sufficiently large n and a constant c

on a small subcode A of the q-cry Hamming code of length n for which A and q- 1 of its cosets
A1,..., Aq_ cover the same subset V. We show a few isomorphic and nonisomorphic ways in which
A can be chosen, and we prove the uniqueness of these ways to choose A.

Key words. Hamming codes, isomorphism, nonequivalent codes, perfect codes

AMS subject classifications. 94B, 05B

1. Introduction. Let F be a vector space of dimension n over GF(q). A
subset of F is a q-cry code of length n. Two codes C1, C2 c F, are said to be
isomorphic if there exists a permutation r such that C2 {r(c) c 6 C1). They
are said to be equivalent if there exists a vector v and a permutation r such that
C2 {v / r(c) c e C). The Hamming distance between vectors u, v e F,
denoted d(u, v), is the number of coordinates in which u and v differ. Without loss of
generality (w.l.o.g.), we shall assume, unless stated otherwise, that the all-zero vector
is in C.

A code C of length n is perfect if for some integer r >_ 0 every x F is
within distance r from exactly one codeword of C. The study of perfect codes is
one of the most fascinating subjects in coding theory. It is well known [3] that the
only parameters for nontrivial perfect codes are those of the two Golay codes and

qm-1the Hamming codes. The Hamming codes have length n, q_ m >_ 2, and
r 1. They are single error-correcting codes, and henceforth when we use the words
"perfect code" we will refer to codes with r 1 and length nm. The Hamming codes
are the only linear codes with these parameters [3, p. 77]. For q 2, constructions
for nonequivalent perfect codes were presented by Phelps [5], [6], Etzion and Vardy
[1], and others. For other q’s, constructions of nonlinear codes were presented by
Schhnheim [9], Lindstrhm [2], and Mollard [4]. Nonequivalent perfect codes were

generated by Phelps [7]. The construction for q 2 given in Etzion and Vardy [1]
has the advantage of obtaining the largest known set of nonequivalent perfect codes.
It is also possible to obtain from the construction of [1] perfect codes with other
properties as different ranks [1] and different kernels [8]. In this paper we generalize
the construction of Etzion and Vardy [1] to any alphabet of size q, where q is a power
of a prime.

rim--,! +l--logq(nm(q--l)+l)
In 2 we present a construction of a set of qq distinct perfect

--1 +l_logq(nm(q_l)+l)
codes of length n. This set contains at least qq -n(l+,ogq n)

nonequivalent codes. This is the largest known set of nonequivalent perfect codes.
The construction is based on a small subcode A of the q-cry Hamming code for which
A and q- 1 of its cosets A,..., A_ cover the same subset V. This set A is important

Received by the editors December 5, 1994; accepted for publication (in revised form) August
25, 1995. This research was supported in part by the EPSRC of the United Kingdom under grant
GR/K38847.

Computer Science Department, Royal Holloway, University of London, Egham, Surrey TW20
0EX, United Kingdom (etzion@cs.technion.ac.il). The author is on leave of absence from the Com-
puter Science Department, Technion Israel Institute of Technology, Haifa 32000, Israel.

413

414 TUVI ETZION

in constructions of perfect codes with different ranks [1] and different kernels [8]. In
3 we show a few isomorphic and nonisomorphic ways in which this set A can be
chosen, and we prove the uniqueness of the ways in which A is chosen.

2. Construction for nonequivalent perfect codes. The parity check matrix
qm+l--1 qm + qm-1 .}_ + q + 1 overof the Hamming code of length n,+l q-1

GF(q), consists of nm+l pairwise linear independent column vectors of length m + 1
over GF(q). We will take the nm+ column vectors of the form (0... 01Xl... xr)T for
all0_< r_< m, where forxi E GF(q), 1 <_ i <_ r. Let a be a primitive element in
GF(q). Then the 2 x (q + 1) parity check matrix of the Hamming code of length n2
has the form

H2=[011 1 "’’1]1 0 a a Oq-2

and its (q- 1) (q + 1) generator matrix has the form

1 aq- -aq- 0 0
1 Olq-2 0 ---0/q-2 0 [1

l X
1 a 0 0 a

where X is a (q- 1) x q matrix.

Assume the Hamming code of length nm q’-I q,-i __... _}_ q + 1 with m > 2
has the m x nm parity check matrix Hm of the [o

0

H, S, $2 nm--1
0
1

where the &’s are column vectors.
Also assume that the (nm- m) x n. generator matrix G. has the form

"1

xO 0

Ox 0

O0 x

F

NONEQUIVALENT q-ARY PERFECT CODES 415

where F is a t n, matrix with t (n, m) (q 1)--!q tm-1 +l-re.
Now, we generate the following (rn + 1) x (n,q + 1) parity check matrix H,+I"

0 0 0 0

$1 S, $1 S,. _1 S,._ Sn.-Hm+l 0 0 0 0
o 1 1 1
1 o s ozq-2 0 Oz0 oq-2 0 oz0 oq-2

LEMMA 2.1. Hm+l is a parity check matrix of the Hamming code of length
nmq+ 1.

Proof. Assume H, has all the n column vectors of length rn of the form (0... 01xl
xr)T for all r, 0 _< r _< rn- 1, where x E GF(q), 1 <_ <_ r. By induction starting

from the basis H2, we can easily prove that Hm+l is a parity check matrix of the
Hamming code of length n,+l.

Now, let G,+I be the following (n,q- m) (n,q + 1) matrix:

xO 0

0x 0

0 0 x

where F’ is some t’ x (n,q + 1) matrix; t’ n, m.
LEMMA 2.2 The generator matrix of the Hamming code with parity check matrix

H,+I has the form of G,n+l.
Proof. From the form of H2 and G2 it follows that the matrix

0 S S S S
1 0 a a Oq-2

for any given column vector S, is orthogonal to the matrix

X

Taking this fact into account the claim follows directly from the form of Hm+1 and
(m+l. []

416 TUVI ETZION

We say that a vector v covers the set U if for any u E U we have d(v, u) <_ 1. A
code C covers a set U if for every element u E U there exists a codeword c C such
that d(c, u) _< 1. Let C(G) denote the code generated by a generator matrix G.

LEMMA 2.3. If Gin..+1 is the matrix consisting of the first rim(q-1) rows of Gin+l,
Gthen C(m+) and (a :0 0)+C(G+I), j O, cover the same subset ofF+.

Proof. Since G2 G nd C(G2) is a perfect code, it follows that its coset
(aYe0... 0)+C(G2) is also a perfect code nd thus C(G) and (aYe0... O)+C(G) cover
the same subset ofF+. Let v (u,...,u) e C(G+), where (u) e C(G2),

m
ui e Fg, e GF(q), and 7 i=1 5i" This is the form of codewords from C(G+I)
as follows from the form of G2 and Gm+. We will show that every vector which
is covered by v is also covered by a codeword of (aJ0 0) + C(m+)" Obviously,
v + (0"" 0), e GF(q), is covered by v + (aJ}O O) e (aJ’o 0) + C(G+I). So,
we only have to show that any word of the form (7}u ui_uiui+.., u,), where

differ in exactly one position, is covered by a codeword of (aJ0 0) +u and u
C(+l). We know that the vector (5i:.ui) is covered by a codeword vi (aY}0... 0)+
C(G2) because (aJ}0 0)+ C(G2) is a perfect code. Since (hi}ui) e C(G2) and since
the minimum distance of C(G2) is 3, it follows that a vector of the form (xK) is

(5. ,,
not in C(G2) and hence also not in (a{0 ..0)+ C(G2). Therefore, v .ui),

and in exactly two positions from uiwhere u" differs in exactly one position from uii.
Since (hi.ui)"" (aJ}0 0) + C(G2), it follows that (5i a:.ui)’’ C(G2) and hence

G1(aYu ui_uui+l un) e C(re+l)" Hence, (7u Ui_lUiUi+l u,) is
IIcovered by (7Ul ..ui_ui ui+ "Un) (aJ}O’..0) +C(G+I). Thus, every vector

which is covered by C(GGm+) is also covered by (a 0...0)+ C(m+l) and since

C(G+) and (a{0 0) + C(Gm+) have the same size the lemma follows. B
Now, we can write Gm as

m where

F
where fi is a 1 x n matrix. Let cj, 1 <_ j <_ qt, be the qt codewords formed from F.
By Lemma 2.3 we have that cj +C(G) and (aJio .0)+cj +C(G) cover the same
subset of F".

LEMMA 2.4. Given the vector (gl, g2,..., gqt), gi e GF(q), 1 <_ <_ qt, the code

a
c + +

i--1

forms a q-cry perfect code.

Proof. If gi 0 for all i, then C is the Hamming code. The lemma now follows
from the fact that ci + C(Gm) and (gi]O... O) q- ci / C(Gm) cover the same subset of

Fo
Let (nm) be the set of perfect codes constructed in Lemma 2.4. Obviously

Given a perfect code C
of length rim, there are at most qnnm qnqn.toaqn qn(+togqn) different
perfect codes equivalent to C. Hence we have Theorem 2.5.

NONEQUIVALENT q-ARY PERFECT CODES 417

THEOREM 2.5. t(nm) contains at least qq
nonequivalent perfect codes.

A more precise enumeration will slightly improve the result of Theorem 2.5. Fi-
nally, we would like to mention that given a perfect code C one might permute symbols
independently in each position to obtain another perfect code. If we consider these
perfect codes as equivalent we will have that there are at most qn’n.!(q!) different
perfect codes equivalent to C. But, this will hardly influence the result of Theorem
2.5.

3. Splitting submatrices of the Hamming code. In Lemma 2.3 we have
proved that C(G.+I) and (Oj 0’’’0)-c(Glm+l), j >_ 0, cover the same subset
of F"+1. The following question is of interest and importance. For a given i,
2 <_ <_ n.q + 1, does there exist an n.(q- 1) (n.q + 1) submatrix G.+I of Gm+l
such that cj (Gn+1) J 0, whereC(G,+I) and ei + C _> (0...010...0) with the
1 in position i, cover the same subset of F’q+l? For q 2 these submatrices exist
as proved in [1]. These subcodes together with C(G+I) were used in [1] to construct
codes with various ranks and in [8] to construct codes with various kernels. This
submatrix, Gi,+l, 1 _< _< n,+l, will be called a splitting subrnatrix of Gm+l and
these submatrices are the subject of this section.

In this section we will prove that for each i, 1 _< _< n,+l, a splitting submatrix

G/m+l of G,+I exists. We will also prove the uniqueness of these submatrices. In
order to simplify the understanding of the construction for G,+I we will permute the
columns of the code such that column will become the first column.

We start by considering the Hamming code of length q + 1. As shown in 2, a

parity check matrix of the code H2 has the form

H2=[011 1 "’’1]1 0 a c aq-2

the generator matrix of the code has the form

s 0 1 -1 0 0 0
c1-s 0 1 -1 0 0

aq-2-c-3 0 0 0 1 -1

and from this matrix we can immediately compute

i1 1
as given is 2.

If q p then we can take instead of H2 the check matrix

0 1 1
1 0 1

and its generator matrix has the form

1 1 -1
1 0 1

1 0 0

1 1]
2 p-1 J

0 0 0
-1 0 0

0 1 -1

418 TUVI ETZION

For a given E GF(q), if the parity check matrix has the column () as the first
column then we take the parity check matrix

and its generator matrix is

1 s -1 0 0
1 o 0 -1 0 I 1

y
1 cq- 0 0 1

1

where Y is a (q- 1) >< q matrix.
The proof that H is a parity check matrix of the Hamming code is based on the

following simple lemma.
LEMMA 3.1. If is an element in GF(q) then the set of elements { + a 0 <_

_< q- 2} consists of all the elements of GF(q).
We will make extensive use of this lemma in our constructions to prove that the

parity check matrix of the codes, which we will construct, has all the columns of
length m + 1 and the form (0... 01xl Xr)T for all r, 0 _< r _< m, where x GF(q),
l<i<r.

Now, we want to form the Hamming code of length rim+l, which has as the first
column in the parity check matrix the column vector of length m+1, (0... 01al a)T
for somer, 0 <_ r_< m, and somea’s, a GF(q), 1 <_ <_ r. We start with the_ given in 2 Forparity check matrix Hm+l- and the splitting submatrix Gm+l
r m we take H1 [1] and G is an empty matrix. Now, let H+l_ H,+l-r
and Gn+l-r Glm+l-r. Assume we have constructed the >< n parity check matrix

H, _> m + 1- r, where S (0...01a... a_,_+)T is the first column of H,
and the (q- 1) >< n splitting submatrix G which is a submatrix of the generator
matrix of the Hamming code with the parity check matrix H. Assume further that

G has the form

0 0

0 0
where Z is either the (q- 1) q matrix X given in 2 or the (q- 1) q matrix Y
given in this section. W.l.o.g. we will further assume that there exists an integer l,

NONEQUIVALENT q-ARY PERFECT CODES 419

0 _< _< n_ 1, such that for each j, 1 < j <_ l, Zj X, and for each j, l+ 1 <_ j <_ n_l,
Zj Y. Now, assume HI has the form

where Tj, 1 <_ j < hi-1 is an q matrix
We distinguish between two cases
Case 1. If a-m+r 0, we generate the following (i + 1) n+l parity check

matrix HI+1"

0 0.L a.L aq-2.L

0

0
0.K a.K aq-2.K 1 a c

where 1 < j <_ l, + 1 <_ k <_ hi-l, L is an 1 x q matrix of the form L [1... 1], and
K is a 1 x q matrix of the form K

Case 2. If ai-r+r ac, we generate the following (i + 1) x ni+l parity check
matrix Hi*+

a M + 0 M + a M r- Oq-2 N + 0- K N + a K

0

s s s
0

N+aq-2.K 1 cc+ao a+l a+aq-2

where 1 <_ j _< l, l+ 1 _< k _< ni-1, M is an 1 q matrix of the form M
[0 c a+1 ac+q-2], and N is a 1 x q matrix of the form N [0 c a].

LEMMA 3.2. Hi*+1 is a parity check rnatriz for the Harnrnin9 code.
Proof. This is an immediate consequence from the fact that HI is a parity check

matrix of the Hamming code, Lemma 3.1, and the observation that in the four q x q
matrices,

O.L O.K M+O N+O.K
a L a K M + oz N + a K

and

Oq-2 L aq-2 K M + aq- N + aq-2 K

each column is a permutation of the elements of GF(q).

420 TUVI ETZION

Note that the definition of H/*+I coincides with the definition of H given in 2
and hence there is no ambiguity. Now, we are in a stage to produce

LEMMA 3.3. The (qi_ 1) x ni+l matrix

i+1

210 0

0 & 0

is a splitting submatriz of the generator matrix of the Hamming code which is orthogo-
hal to H[+I. Moreover, for each j, 1 < j <_ lq, Zi X and for each j, lq+ 1 <_ j < hi,

Zj Y.
Proof. LeInma 3.3 follows immediately after a careful anMysis of the structure of

G, HI, Hi*+l and Gi*+l together with the structure of/-/2, (2, H, and G.
An immediate consequence is Theorem 3.4.
THEOREM 3.4. For each i, 2 <_ < n,q + 1, there exists a splitting submatriz

G,+ of the Hamming code of length nrn+l.
Similar lemmas and theorems such as Lemmas 2.3 and 2.4 and Theorem 2.5 can

be obtained by using the splitting submatrix G,+.
Given the first column of the parity check matrix of the Hamming code, an

interesting question is whether there exist different splitting submatrices for the code
by proper rearrangement of the other columns. If q 2 then G2 G [1 1 1] and
all the splitting submatrices are isomorphic. This structure was used to construct
perfect codes with different ranks in [1] and different kernels in [8]. Although we
can obtain similar results from different splitting submatrices (isomorphic splitting
submatrices were not vital in those constructions), it is of interest to examine if there
are nonisomorphic splitting submatrices given the first column of the parity check
matrix of the Hamming code. Now, we will prove that the splitting submatrix is
unique, given the first column of the parity check matrix.

We start by examining the vectors, starting with either 0 or 1, which are orthog-
onal to the rows of G2 and G. From the structure of H2 we have that the vectors
starting with either 0 or 1, which are orthogonal to the rows of G, have the form

(1) (0 /3,), / E OF(q),

(2) 1 /3, /3 + c, /3 + cq-2), /3 E
From the structure of H we have that the vectors, starting with either 0 or 1,

which are orthogonal to rows of G, have the form

(3) 0 , OgO, Ogq-2), aF(q),

NONEQUIVALENT q-ARY PERFECT CODES 421

(4) l fl, fla+1, flaq-2 + l), fl GF(q).

For a row v (ittlU2"’. "Ur), / E GF(q), ui Fg, 1 <_ <_ r, of the Hamming
code, we say that (7:ui) is a subrow of v for 1 _< <_ r. Now, assume that we are
constructing the parity check matrix H of the Hamming code of length n,+l which
have as a first column in the parity check matrix the column vector of length m / 1,
S (O...Olal...ar)T (81""8m+1)T for some r, 0 _< r _< m, and some ai’s,
ai GF(q), 1 <_ <_ r. Now, we distinguish between two cases.

Case 1. 81 1. Since the first row of H consists only of O’s and l’s, it follows
that only subrows of type (4) with 0 appear in the first row of H and hence only

1

can be a splitting submatrix of the generator matrix of the code.

Case 2. Sl O. All the l’s in the first row of H must participate in subrows of
type (1). This implies that we can write any splitting submatrix of the code as

"1

422 TUVI ETZION

where Zi X, 1 _< _< qn-1, and H has the form

0

8m+l

1 1 0

The matrix

82

8m+1

is the parity check matrix of the Hamming code of length nm, with a splitting sub-
matrix

1

Zqm--l+1
1
1

0
1

1

0
1

Zqm-+2 0

m

We proceed to examine/ and (inductively in the same manner until we reach
sj 1, j rn + 1 r, using Cases 1 and 2. This process and the constructions of 2
and this section lead to Theorem 3.5.

THEOREM 3.5. Given the parity check matrix

of the .Hamming code, then by ordering the columns of H we can obtain the unique
splitting subm.atrix of the generator matrix of the code. This unique splitting submatriz
G+ has the form

NONEQUIVALENT q-ARY PERFECT CODES 423

m+l

1

0

m-1where Zi X for 1 <_ <_ and Zi Y for + 1 <_ <_ n,, Ej=r qJ"
ilFinally, we will mention that the intersection between C(Om+l) and C(

for # 2 is not empty since the zero codeword belongs to both of them. Also,
C(G+I) # C(G+I) and the proof is done by a careful analysis of the codewords of
weight 3 in the codes. But finding C(1+1) F/c(Gin+l) is not easy, except for the
case q 2 which was dealt with in [1].

Acknowledgment. The author would like to thank Alexander Vardy for his
constructive comments.

REFERENCES

[1] T. ETZION AND A. VARDY, Perfect codes: Constructions, properties and enumeration, IEEE
Trans. Inform. Theory, 40 (1994), pp. 754-763.

[2] B. LINDSTRSM, On group and non-group perfect codes in q symbols, Math. Scand., 25 (1969),
pp. 149-158.

[3] F. J. MACWILLIAMS AND N. J. A. SLOANE, The Theory of Error Correcting Codes, North-
Holland, Amsterdam, 1977.

[4] M. MOLLAID, A generalized parity function and its use in the construction of perfect codes,
SIAM J. Alg. Disc. Meth., 7 (1986), pp. 113-115.

[5] K. T. PHELPS, A combinatorial construction of perfect codes, SIAM J. Alg. Disc. Meth., 4 (1983),
pp. 398-403.

[6] , A general product construction for error-correcting codes, SIAM J. Alg. Disc. Meth., 5
(1984), pp. 224-228.

[7] , A product construction for perfect codes over arbitrary alphabets, IEEE Trans. Inform.
Theory, 30 (1984), pp. 769-771.

[8] K. T. PHELPS AND M. LEVAN, Kernels of nonlinear hamming codes, Des. Codes Cryptogr., 6
(1995), pp. 247-257.

[9] J. SCHSNHEIM, On linear and nonlinear single-error-correcting q-ary perfect codes, Inform. and
Control, 12 (1968), pp. 23-26.

SIAM J. DISCRETE MATH. () 1996 Society for Industrial and Applied Mathematics
Vol. 9 No. 3 pp. 424--452, August 1996 007

ORTHOGONAL ARRAYS RESILIENT FUNCTIONS
ERROR-CORRECTING CODES AND LINEAR PROGRAMMING

BOUNDS*

JRGEN BIERBRAUERt, K. GOPALAKRISHNAN$, AND D. R. STINSON

Abstract. Orthogonal arrays (OAs) are basic combinatorial structures, which appear under
various disguises in cryptology and the theory of algorithms. Among their applications are uni-
versal hashing, authentication codes, resilient and correlation-immune functions, derandomization
of algorithms, and perfect local randomizers. In this paper, we give new explicit bounds on the
size of orthogonal arrays using Delsarte’s linear programming method. Specifically, we prove that
the minimum number of rows in a binary orthogonal array of length n and strength is at least
2 (n2n-1/t + 1) and also at least 2 (2n-2(n-}- 1)/ t-I[--). We also prove that these bounds are
as powerful as the linear programming bound itself for many parametric situations.

An (n, m, t)-resilient function is a function f" {0, 1}n {0, 1}m such that every possible output
m-tuple is equally likely to occur when the values of arbitrary inputs are fixed by an opponent and
the remaining n-t input bits are chosen independently at random. A basic problem is to maximize
given m and n, i.e., to determine the largest value of such that an (n, m, t)-resilient function exists.
In this paper, we obtain upper and lower bounds for the optimal values of where 1 _< n _< 25 and

_< m < n. The upper bounds are derived from Delsarte’s linear programming bound, and the lower
bounds come from constructions based on error-correcting codes. We also obtain new explicit upper
bounds for the optimal values of t.

It was proved by Chor et al. in [Proc. 26th IEEE Syrup. on Foundations of Computer Science,
2n1985, pp. 396-407] that an (n, 2, t)-resilient function exists if and only if < [-J. This result

was generalized by Friedman [Proc. 33rd IEEE Syrup. on Foundations of Computer Science, 1992,
pp. 314-319], who proved a bound for general m. We also prove some new bounds, and complete
the determination of the optimal resiliency of resilient functions with m 3 and most of the cases
for m 4. Several other infinite classes of (optimal) resilient functions are also constructed using
the theory of anticodes.

Key words, resilient functions, orthogonal arrays, error-correcting codes, linear programming
bound, anticodes

AMS subject classifications. 05B15, 94A60, 94B05, 94B65

1. Introduction. Orthogonal arrays (OAs) are basic combinatorial structures.
They and some natural generalizations appear under various disguises in cryptology
and the theory of algorithms. Among the possible applications we mention universal
hashing and authentication codes, resilient and correlation-immune functions, deran-
domization of algorithms, and perfect local randomizers.

Here, we concentrate on resilient functions, two possible applications of which
are mentioned in [4] and [9]. The first application concerns the generation of shared
random strings in the presence of faulty processors. The second involves renewing a
partially leaked cryptographic key. (One setting in which this would be relevant is
quantum cryptography [3].) Correlation-immune functions are used in stream ciphers

Received by the editors July 11, 1994; accepted for publication (in revised form) August 25,
1995. This paper is an expanded and revised version of the extended abstract "Bounds for Resilient
Functions and OrthogonM Arrays" by Jiirgen Bierbrauer, K. Gopalakrishnan, and D. R. Stinson,
which appeared in Lecture Notes in Computer Science 839, 1994, pp. 247-256 (Advances in Cryp-
tology, Proceedings of CRYPTO’94).

Department of Mathematical Sciences, Michigan Technological University, Houghton, MI 49931.
Department of Computer Science, Wichita State University, Wichita, KS 67260. This author’s

research was supported in part by NSF grant CCR-9121051.
Department of Computer Science and Engineering and Center for Communication and Infor-

mation Science, University of Nebraska-Lincoln, Lincoln, NE 68588. This author’s research was
supported in part by NSF grant CCR-9121051.

424

ORTHOGONAL ARRAYS 425

as combining functions for running-key generators that are resistant to a correlation
attack (see, for exanple, Rueppel [25]).

The concept of binary resilient functions was introduced and studied in the papers
Chor et al. [9], Bennett, Brassard, and Robert [4], Friedman [12], and Stinson [28].
Here is the definition. Let n

_
m

_
1 be integers and suppose

f’{0,1}n ---{0,1}m.
We will think of f as being a function that accepts n input bits and produces m output

,1 "bits. Let t < n be an integer. Suppose (Xl,.. x) {0 } where the values of
t arbitrary inputs are fixed by an opponent, and the remaining n- t input bits are
chosen independently at random. Then f is said to be t-resilient provided that every
possible output m-tuple is equally likely to occur. More formally, the property can
be stated as follows. For every t-subset {il,..., it} c_ {1,..., n}, for every choice of
zj e {0, 1}(1 _< j <_ t), and for every (y,..., Ym) e {0, 1}m, we have

1
Pr(f(x,...,x) (y,...,ym)lXi zj, 1 <_ j <_ t)- 2m.

We will refer to such a function f as an (n, m, t)-resilient function. Here are some
examples from [9] (all addition is modulo 2).

(1) m 1, t n- 1. Define f(xl,... ,Xn) Xl Jr-’" "- xn.
(2) m- n- 1, t 1. Define f(x,...,x) (Xl +x2,x2 +x3,...,x-i + x).
(3) m=2, n-3h, t-2h-1. Define

f(xl,...,X3h) (x +... + X2h,Xh+l +’’" + X3h).

Many interesting results on resilient functions can be found in [4], [9], [12], [28],
[14], and [13]. The basic problem is to maximize t given m and n, or equivalently, to
maximize m given n and t. An (n, m, t)-resilient function is said to be optimal if an
(n, m, t + 1)-resilient function does not exist.

The paper is organized as follows. In 2 the basic definition of orthogonal arrays
and the associated terminology are introduced. After a brief survey of the classical
bounds on the size of an orthogonal array in 2.1, stronger bounds based on linear
programming are developed in 2.2. In 3 the connections between orthogonal ar-
rays and resilient functions are explored, and as a consequence, the lower bounds
on the size of an orthogonal array are translated into upper bounds on the optimal
resiliency of resilient functions. In 4 lower bounds on the optimal resiliency of re-
silient functions are developed. The lower bounds come from various constructions
of resilient functions. In 4.1 constructions using linear codes are presented, and in

4.2 constructions using nonlinear codes are presented. Some constructions of new
resilient functions from old are discussed in 4.3. The development up to this stage
culminates in 4.4 where a table of upper and lower bounds for the optimal value of
t when 1 _< n _< 25 and 1 _< m < n is presented.

Several properties of Krawtchouk polynomials are used extensively in the rest of
the paper, and because of their great importance, they are dealt with separately in

5. In 6, we consider a recent result of Levenshtein and discuss the implication of
the result to resilient functions. The result is that the minimum size N(n,t) of a
binary orthogonal array of strength t and length n satisfies the equality 2N(n, t)
N(n + 1, t + 1), when t is even.

New explicit bounds on the size of orthogonal arrays are derived in 7 using
Delsarte’s linear programming method. Specifically, we prove that the minimum

426 J. BIERBRAUER, K. GOPALAKRISHNAN, AND D. R. STINSON

number of rows in a binary orthogonal array of length n and strength t is at least
2n (n2-l/t + 1) and also at least 2 (2-2(n + 1)/ [---]). We prove in 8 that
these two bounds are as powerful as the linear programming bound itself for many
parametric situations.

It was proved by Chor et al. in [9] that an (n, 2, t)-resilient function exists if and
only if t < [5J. The corresponding question for m _> 3 was studied by Friedman
[12], who gave some partial results. As a consequence of our new explicit bounds,
we have completed the determination of the optimal resiliency of resilient functions
with m 3, and we have also done most of the cases for m 4. This is the main
theme of 9. The theory of anticodes provides a method for constructing good linear
codes. In many parametric situations, the resilient functions derived from these linear
codes are optimal. In 9.1, anticodes are studied and such parametric situations are
characterized. We conclude the paper with several lingering open problems in 10.

2. Orthogonal arrays. An orthogonal array OA(t, k, v) is a Avt k array of v
symbols, such that in any t columns of the array every one of the possible v ordered
t-tuples of symbols occurs in exactly A rows. Usually t is referred to as the strength of
the orthogonal array, k is called the number of factors, v is called the number of levels,
and is called the index of the orthogonal array. If 1, then we write OA(t, k, v).
An orthogonal array is said to be simple if no two rows are identical. Of course, an
array with A 1 is simple. In this paper, we consider only simple arrays.

A large set of orthogonal arrays LOA(t,k,v) is a set of vk-t/ simple arrays
OA(t, k, v) such that every possible k-tuple of symbols occurs in exactly one of the
orthogonal arrays in the set.

2.1. Classical bounds. One classical bound for orthogonal arrays is the Rao
bound [24], proved in 1947. We record the Rao bound as the following theorem.

THEOREM 2.1. Suppose there exists an OA(t, k, v). Then

t/2

if t is even, and

v >_ 1 + (t- 1)/2 (v- 1) (t+)/ (=)(v-1
if is odd.

Another classical bound which provides necessary conditions for the existence of
orthogonal arrays of index unity (A 1) is the Bush bound [7], proved in 1952. This
bound is as follows.

THEOREM 2.2. Suppose there exists an OA(t, k, v), where t > 1. Then

k <_ v + t-1 if v >_ t, v even,
k <_ v + t- 2 if v >_ t >_ 3, v odd,
k<_t+l ifv<_t.

ORTHOGONAL ARRAYS 427

2.2. Bounds based on linear pro.gramming. We can often find better lower
bounds on the size of orthogonal arrays by using Delsarte’s linear programming bound;
this is the main theme of this section.

While developing the bounds based on linear programming techniques, we will be
using several standard results from coding theory without proof; the reader is referred
to MacWilliams and Sloane [22] for background information on error-correcting codes.

An (n, M, d) binary error-correcting code C is a set of M vectors of length n such
that the Hamming distance between any two vectors in C is at least d. A code is said
to be linear if the codewords form an m-dimensional subspace of [GF(2)] n, where
M 2m. We will denote such a linear code as an In, rn, d] linear code. Let Ai be
the number of codewords having Hamming weight i. The sequence (A0, A1,..., An)
is called the weight distribution of the code. The homogeneous polynomial

n

E Aix-y
i=o

is called the weight enumerator of C and is denoted by Wc(x, y). Clearly

Ao+AI +...+An-M.

The distance distribution of the code is defined to be the sequence (B0,//1,...,/n),
where

Note that B0 1 and B0 + B +... +B M. It is easy to observe that, for a linear
code, the distance distribution is identical to the weight distribution.

If C is a linear code, the dual code +/- is defined to be the set of all vectors u
having inner product zero with every codeword of C. Let Ai denote the number of
codewords having weight in C+/-. The weight enulnerators of C and C+/- are related
by the MacWilliams identity shown below. For a proof, see, for example, [22, p. 127].

1wc - (x, wc (x + x

Equivalently,

n

E A,,xn_ky -1 E Ai(x + y)n-i(x y)
k=0 i=0

If we write

n

(x +
k=0

then we get

1

i=0

428 J. BIERBRAUER, K. GOPALAKRISHNAN, AND D. R. STINSON

Pk (i) is the value of the Krawtchouk polynomial Pk (x) at integer and can be explicitly
described as

k

j=O

k O, 1, 2,

In the case of nonlinear codes, we cannot talk of the dual code C+/-, since the code
C is not a vector space. However, we can still transform the distance distribution
(B0, B1,..., Bn) of the code C in a similar way using the Krawtchouk polynomials to
obtain the dual distance distribution (B0, B1,... B’n), which is defined as follows"

n

Bk -y B,Pk,(i).
i--0

If Bi 0 for 1 _< _< d’ 1 and Bd, 0, then d’ is. called the dual distance of the code

C. This concept was defined by Delsarte [11]. If C is linear then (B’0, B1,... B’n) is
indeed the distance distribution as well as the weight distribution of the dual code C+/-,
and d’ is the minimum distance of C+/-. It turns out that even when C is not a linear
code, the dual distance d’ has a combinatorial significance. The following theorem
describes the combinatorial significance of the dual distance d’, and the proof, due to
Delsarte, can be found in [22, p. 139] and [11].

THEOREM 2.3. If we write the vectors in C as rows of an M n array, then any
set of r <_ d’-1 columns contains each r-tuple exactly M/2r times, and d’ is the largest
number with this property. In other words, C is an orthogonal array OA(d’ 1, n, 2)
where A M/2d -1.

It is clear that for any code C, we have Bi _> 0 for 0, 1,..., n. On the other
hand, it is a nontrivial theorem (see, for example, [22, p. 139] and [11]) that Bi >_ 0
for 0,1,...,n.

Suppose a simple OA(t, n, 2) exists. Let M be the number of rows in this or-
thogonal array. A lower bound on M can be obtained by solving a suitable linear
programming problem, if we view the rows of this orthogonal array as codewords of a
code C (see [22, 4 of Chap. 17] and [10] for similar approaches to a different problem).
Let (B0, B1,..., Bn) be the distance distribution of C and let (B’0, B1,..., Bn) be its
transform. Then

M Bo + B1 +-" + B.

Also

Further,

1
n

Bk - BiPk.(i)
i--0

n
1 1 2n

Bk B, Pk(i) Bo2’ .
k=O i=O k=O

ORTHOGONAL ARRAYS 429

Here we have used

p (i) ".

This is a property of the Krawtchouk polynomials and can be found in 5 as equation
(7). Moreover, the Krawtchouk transform is an involutional operation on the set
of real (n + 1)-tuples with nonvanishing sum and constant term 1. Hence, if we
compute

k 0, 1,...,n,

then
In view of Theorem 2.3, the dual distance of C is at least t + 1 since it is an

orthogonal array of strength t. Hence we have Bk 0 for 1 <_ k _< t. So we formulate
the following linear programming problem which we will refer to as LPI"

Maximize wt+l + wt+2 +’" + wn
subject to

E wiPe(i)_- for 1
i=t+l

<k<n

wi >_ 0 fort + 1 _< _< n

Let W W(n, t) be the optimal solution to the above linear programming prob-
lem. Then we have

2n
(1) M =ZB<I+W"

i--0

Thus, by solving a linear program, we get a lower bound for the size of an orthog-
onal array.

3. Upper bounds for resilient functions. In this section, we will be con-
cerned with developing upper bounds for the optimum value of t for a given n and m.
It is easy to see that n _> m + t, and so we have the upper bound

(2) t <_

However, the above bound is usually very weak, and better upper bounds can
be obtained by exploring the relationship between resilient functions and orthogonal
arrays. These connections were explored and several results were proved in [28], [9],
and [8]. We will briefly survey them and then use the results for our purposes.

The proof of the following theorem which elucidates the connection between re-
silient functions and orthogonal arrays can be found in [28].

THEOREM 3.1. An (n, m, t)-resilient function is equivalent to a large set of or-

thogonal arrays LOA2 (t, n, 2).
In view of Theorem 3.1, any necessary condition for the existence of an orthogonal

array OA2 (t, n, 2) is also a necessary condition for the existence of an (n, m, t)-
resilient function. We obtain the following corollary, which gives a necessary condition

430 J. BIERBRAUER, K. GOPALAKRISHNAN, AND D. R. STINSON

for the existence of an (n, rn, t) resilient function from the classical Rao bound for
orthogonal arrays.

COaOLLARY 3.2 (see [9, 28]). Suppose there exists an (n, m, t)-resilient function.
Then

if t is even, and

rn < n- log

m < n- log2 [(n-1) (t-1)/2(n)](t- 1)/2 + E
i=0

if t is odd.
Proof. Set v- 2, k-n in Theorem 2.1 and apply Theorem 3.1.
Similarly, from the classical Bush bound, we can obtain the following corollary,

which was proved in [4] from first principles.
COROLLARY 3.3 (see [4, 28]). There exists an (n, m, t)-resilient function with

n m + t if and only if m-1 oft-1.

Proof. The cases t 1 and rn 1 were given earlier in examples. So, suppose
n-m+tand2<_t_<n-2. Apply Theorem 2.2 withv-2togetm+t_<t+l, or
m _< 1, a contradiction. [:]

The upper bounds based on the Rao bound for orthogonal arrays are stronger
than the ones obtained using the trivial bound of equation (2). However, we can
often do better by using Delsarte’s linear programming bound. In view of Theorem
3.1, an (n, m, t)-resilient function exists if and only if an LOA. (t, n, 2) exists.
Clearly, an LOA2 (t, n, 2) exists only if an OA (t, n, 2) exists. The number
of rows in this orthogonal array is given by

(3) M- 2n--m--t2 2n-re.

In view of the bound of inequality (1) of 2.2, this immediately implies that

m _< log(1 + W).

Thus we have an upper bound for the optimal value of rn, given n and t. The
upper bound for the optimal value of t for a given n and rn can be trivially computed
once we have a table of upper bounds for the optimal value of m. The upper bounds
depicted in Table 2 are obtained in this manner using MAPLE V to do the necessary
computation.

In a forthcoming book [16], Hedayat, Sloane, and Stufken provide a compilation
of a table of minimal possible index of orthogonal arrays with 2, 3, and 4 levels, k
factors, and strength t. Upper bounds for the optimal value of t can also be obtained
from these tables.

We now have three upper bounds on the optimal value of t, viz., the trivial bound
of equation (2), the bound based on the Rao bound for orthogonal arrays, and the
bound based on Delsarte’s linear programming (LP) bound. In Table 1, a comparison
of these three bounds for some values of n and m is provided. This table illustrates the
relative strengths of the various bounds. The improvements provided by the stronger
bounds are more marked for larger values of n.

ORTHOGONAL ARRAYS 431

n m
18 2
19 2
20 2
18 3
19 3
20 3
18’ 4
19 4
20 4

TABLE 1
A comparison of the bounds.

Trivial bound Rao bound LP bound
16 14 11
17 15 11
18 15 12
15 12 9
16 13 9
17 13 10
14 10 8
15 11 9
16 12 9

4. Lower bounds for resilient functions. Obviously, any method of construc-
tion of resilient functions yields a lower bound on the optimal value of t. The most im-
portant construction method for resilient functions uses linear error-correcting codes,
which are discussed in 4.1. Recently, Stinson and Massey [29] constructed resilient
functions from nonlinear codes as well. This construction is discussed in 4.2. Some
constructions of new resilient functions from old ones are developed in 4.3. Finally,
a table of bounds for resilient functions is presented in 4.4

4.1. Constructions using linear codes. The most basic and well-known con-
struction method for resilient functions uses linear error-correcting codes, and there-
fore we will explore the connection between t-resilient functions and error-correcting
codes in this section. A resilient function constructed in this way is said to be a linear
resilient function.

An In, m, d] linear code is an m-dimensional subspace C of [GF(2)]n such that
the Hamming distance between any two vectors in C is at least d. Let G be an m n
matrix whose rows form a basis for C; G is called a generating matrix for C. The
following construction for resilient functions was given in [9, 4].

THEOREM 4.1. Let G be a generating matrix for an In, m, d] linear code C.
Define a function f: [GF(2)]n [GF(2)]" by the rule f(x) xGT. Then f is an
(n, m, d 1)-resilient function.

This result can easily be seen to be true using the orthogonal array characteriza-
tion of Theorem 3.1. The inverse image f-l(0, 0,..., 0) is in fact the dual code C+/-.
Any d- 1 columns of the generating matrix for C+/- the parity check matrix for C)
are linearly independent, since the minimum distance of C is d. This implies that any
set of d- 1 columns of C+/- contains each d- 1 tuple exactly IC+/-1/2d-1 2n-m-d/l

times, and hence it follows that C+/- is an orthogonal array OA2 d+l (d- 1, n, 2).
Now, any other inverse image f-l(y) is an additive coset of C+/-, and thus is also an

OA2 +1 (d- 1, n, 2). Hence we obtain 2" OAs that form a large set. By Theorem
3.1, it follows that f is an (n, m, d- 1)-resilient function.

Thus, whenever an In, m, d] linear code exists, so does an (n, m, d- 1)-resilient
function. Brouwer and Verhoeff [6] provide a compilation of the best known linear
binary codes. These provide lower bounds for the optimum value of t for a given n
and m.

4.2. Constructions using nonlinear codes. Often the lower bounds derived
from the constructions based on linear codes do not match the upper bounds. In some
such cases, constructions from nonlinear codes might be of help.

An (n, M, d) code is said to be a systematic code if there exist m coordinates
such that every possible m-tuple occurs in exactly one codeword within the m spec-

432 J. BIERBRAUER, K. GOPALAKRISHNAN, AND D. R. STINSON

ified coordinates (of course, this implies M 2m). These m coordinates are called
information bits and the remaining n- m coordinates are called parity-check bits.
Clearly, any linear code is a systematic code. However, there are several well-known
classes of nonlinear codes (for example, Preparata codes and Kerdock codes) which
are systematic codes. The following theorem was proved by Stinson and Massey in

THEOREM 4.2. If there exists a systematic (n,M,d) code, C, having a dual
d’distance d’ then there is an (n, n m, 1)-resilient function, where M 2".

Note that this result subsumes Theorem 4.1, since any linear code is a systematic
code.

It was conjectured in [9] and [4] that if there exists a resilient function with certain
parameters, then there exists a linear function with the same parameters. However,
this conjecture was disproved by Stinson and Massey [29]. They constructed a class
of nonlinear resilient functions from the Kerdock codes; further, there are no linear
resilient functions with the same parameters. The proof of the following theorem can
be found in [29].

THEOREM 4.3. For any odd integer r >_ 3, a (2r+l, 2r+l 2r- 2, 5)-resilient
function exists, but no linear resilient function with these parameters exists.

The first member of the above infinite class will be of special interest to us. It is
the (16, 8, 5)-resilient function constructed from the Kerdock code K:(4), which, is also
known as the Nordstrom-Robinson code. This resilient function is optimal since the
upper bound for t is 5 when n 16 and m 8.

4.3. New resilient functions from old. We now proceed to describe some
constructions of new resilient functions from old. When we apply these constructions
to the (16, 8, 5)-resilient function, we obtain new resilient functions which are optimal.

THEOREM 4.4. Suppose there is a linear (n, m, t)-resilient function. Then there
exists an (n- 1, m, t- 1)- and an (n- 1, m- 1, t)-resilient function.

Proof. Since the (n, m, t)-resilient function is linear, it must have been derived
from an In, m, t + 1] linear code C. The punctured code is obtained by deleting a fixed
coordinate from every codeword in C, thus producing a linear In- 1, m, t] code. From
this punctured code, we obtain an (n- 1, m, t- 1)-resilient function.

If we choose a coordinate, say i, of C which is not always zero, then there will be
2m-1 codewords in
"1" in the ith coordinate. If we delete the codewords with a "1" in the ith coordinate,
and then delete the ith coordinate, then we obtain the shortened code, which is an

In- 1, m- 1, t+ 1] linear code. From this shortened code, we obtain an (n- 1, m- 1, t)-
resilient function.

Unfortunately, Theorem 4.4 is not of much use for us, as the only (16, 8, 5)-resilient
functions are nonlinear. Let us see if we can generalize these constructions to the case
of an arbitrary (nonlinear) resilient function. In one case, we can always do so.

THEOREM 4.5. Suppose there is an (n, m, t)-resilient function. Then there is an

(n 1, m, t 1)-resilient function.
Proof. Let f {0, 1}n

__
{0, 1}’ be an (n, m, t)-resilient function. Define

g: {0, 1}n- --, {0, 1}m by the rule g(x,...,xn_) f(x,...,x_,O). It is easy
to see that g is (t- 1)-resilient. [:l

Let us recast this procedure in terms of large sets of orthogonal arrays. Suppose
A is an OA(t, n, v). Let x be a symbol. Delete all rows in which x does not occur in
the last column, and then delete the last column. In this way we obtain an OA(t-
1, n- 1, v) (this operation is called "derivation" [30]). If we have a large set of OAs,

ORTHOGONAL ARRAYS 433

then the set of derived arrays also forms a large set. Hence, we obtain the following
general result (which holds for arbitrary "v").

THEOREM 4.6. Suppose there is a large set of OA(t, n, v). Then there is a large
set of OA(t 1, n 1, v).

On the other hand, it does not appear that the existence of an (n, m, t)-resilient
function automatically implies the existence of an (n- 1, m- 1, t)-resilient function.
Again, it is useful to think of this in terms of orthogonal arrays. Suppose A is
an OA(t, n, v), and we delete the last column. Then it is clear that we get an

OA(t, n- 1, v) (this operation is called "restriction" [30]). Unfortunately, the set of
restricted arrays of a large set of OAs is never a large set, since every possible row
occurs v times in the set of restricted arrays.

However, in certain special cases we can obtain an (n- 1, rn- 1, t)- resilient func-
tion from an (n, m, t)-resilient function. One such case is when the original (n, rn, t)-
resilient function is obtained from a systematic code.

THEOREM 4.7. Suppose there is an (n, m, t)-resilient function derived from a
systematic code. Then there is an (n- 1, rn- 1, t)-resilient function (which is also
derived from a systematic code).

Proof. Let C be the (n, 2-’, d) systematic code from which the (n, m, t)-resilient
function is derived. Then the dual distance of the code is t / 1. If we choose a parity-
check coordinate, say i, of C and delete the ith coordinate from every codeword in C,
then we obtain the punctured code, which is an (n- 1, 2n-’, d- 1) code. It is easy
to see that the punctured code is also a systematic code. The deletion of a column
of an orthogonal array does not change its strength, and so the dual distance of the
punctured code is still t + 1. Hence we can obtain an (n- 1, rn- 1, t)-resilient function
from the punctured code. [:]

A (16, 8, 5)-resilient function exists by virtue of Theorem 4.3. Applying Theorem
4.7 repeatedly, starting with the (16, 8, 5)-resilient function, we get resilient functions
with parameters (15, 7, 5), (14, 6, 5), and (13, 5, 5). Applying Theorem 4.5 to each of
these resilient functions, we get resilient functions with parameters (15, 8, 4), (14, 7, 4),
(13, 6, 4), and (12, 5, 4). All these resilient functions are optimal, as they match the
upper bounds derived from the linear programming bound.

4.4. A table of bounds. In Table 2 upper and lower bounds for the optimal
value of t when 1 _< n

_
25 and 1 <_ m < n are given. The rows are indexed by values

of n and the columns are indexed by values of m. Suppose that the ordered pair
(u, l) is the entry in the mth column of the nth row. This indicates that there is no

(n, m, u/ 1) resilient binary function. (Specifically, such a function is ruled out by the
linear programming bound of 2.2.) It also means that there exists an (n, rn,/)-resilient
binary function. Specifically, there exists an In, m, + 1] binary linear code from which
we can obtain the (n, m,/)-resilient binary function unless the entry is marked with a
*. The (n, m,/)-resilient functions corresponding to the entries marked with a * are
obtained from constructions using nonlinear codes discussed in this section. If there
is a single entry in the rnth column of the nth row, then it indicates that u 1. In
other words, the entry is the optimal value of t. It is clear from the table that the
optimal value of t is determined exactly for all cases where 1 <_ rn < n _< 17.

5. Properties of Krawtchouk polynomials. The Krawtchouk polynomials
were introduced and defined in 2.2. In the rest of the paper, we will be using several
properties of Krawtchouk polynomials extensively, and so we list them together in
this section. This is not intended to be an exhaustive list of their properties; we list

434 J. BIERBRAUER, K. GOPALAKRISHNAN, AND D. R. STINSON

ORTHOGONAL ARRAYS 435

only those properties which we need in the sequel. All these properties can be found
either as theorems or as problems in [22, Chap. 5, 7].

Recall that for any positive integer n, the Krawtchouk polynomial P(x)
is defined by

k

j=O

k O, 1, 2,

The first few Krawtchouk polynomials are shown below.

Po(x) 1,
pl(x) n- ,
P2(x)= ()-2nx+2x2.

The following two simple properties deal with the values of Krawtchouk polynomials
under certain special situations.

/4/

(5) Po(i) 1.

From the definition of the Krawtchouk polynomials, it immediately follows that

n

(6) E P(k)z= (1 + z)n-(1 z) k.
i--0

Setting z 1 in the identity (6) gives

n

() P() :5,0,
i----0

where 5r,8 is the Kronecker symbol defined by 5r,8 1 if r s and 5, 0 if r s.
There is also some sort of symmetry among the values of the Krawtchouk poly-

nomial which are captured in the following identities.

(8)
(9)

P(i) (-1)kPc(n i),
Pc(i) (--1)iP,-k(i).

Actually, identity (9) can be inferred from identity (8) using the following more general
identity, which we refer to as the inversion identity.

(10)

Finally, we will need the following simple identity which follows at once from the
identity (6):

(11) p+l(i) P(i) + Pkn_l(i).

436 J. BIERBRAUER, K. GOPALAKRISHNAN, AND D. R. STINSON

6. Self-complementary orthogonal arrays. In this section we shall consider
a theorem concerning the construction of orthogonal arrays of strength t + 1 from
arrays of strength t when t is even. This result seems to have been rediscovered
several times over the years (see [26], [1], [17], and [19]). We present the proof of this
theorem (for the ske of completeness) and then discuss its implications to resilient
functions.

THEOREM 6.1. Let t be even. Then an OAf(t, n, 2) exists if and only if an

OA(t + 1, n + 1, 2) exists, and hence the minimum size N(n, t) of an OA of strength
t and length n satisfies the equality

2N(n, t) g(n + 1, t + 1).

Proof. We will first show that an OA(t + 1, n + 1, 2) exists if an OAa(t, n, 2)
exists. Suppose an OA(t, n, 2) exists. Let A be such an OA. Let M denote the
number of rows in A. Let P be an array formed by adding a column of zeroes to the
array A. Now define the array B to consist of all the rows of the array P and their
complements. More formally, a binary vector x of length n + 1 is a row of B if and
only if either x or 1 + x is a row of P, where 1 is the all-ones vector of length n + 1.
We shall prove that the array B is indeed an OA(t + 1, n + 1, 2).

Let (Ao, A1,...,A) be the distance distribution of the OA A considered as a
code, and similarly let (B0, B,..., Bn, B+) be the distance distribution of the OA
B. As we saw earlier, it is always the case that B0 1. Also

1
B,+, -l{(u,v)’u,v e B,d(u,v) n + 1}[

=1,

since for every row u of B, there is exactly one row v of B such that d(u, v) n + 1
(v is simply the complement of u), and B has 2M rows. Let us now express Bi in
terms of the Ai’s. By definition,

1
Bi -- I{(u, v) u, v e B, d(u, v)

The number of ordered pairs (u, v) such that d(u, v) and both u and v are
rows of P is simply AiM since the last elenent is zero for all the rows of P. We will
denote by P the complements of the rows of P. As P is merely a translate of P,
the number of ordered pairs (u, v) such that d(u, v) and both u and v are rows of
P is once again AiM.

Now suppose u P and v P. Then clearly 1 + v P and d(u, v) if and
only if d(u, 1 + v) n + 1 i. So it follows that the number of ordered pairs (u, v)
such that u P, v P, and d(u, v) is simply An+-iM. By symmetry we also
have that the number of ordered pairs (u, v) such that u e P, v e P, and d(u, v)
is also A,+_M.

Altogether, the number of ordered pairs (u, v) such that d(u, v) and both u
nd v are rows of B is simply 2M(A + An+-), nd so, by definition, we hve for
l<i<n

B A + An+-.
Thus the distance distribution of B is completely determined by that of A.

Let (A’0, A’,..., A’,) be the transform of the distance distribution of A and let
(B’0, B’,..., B’) be the transform of the distance distribution of B. It is always the

ORTHOGONAL ARRAYS 437

case that A0 B0 i. As A is an orthogonal array of strength t, we also have
that A 0 for 1

_ _
t by Theorem 2.3. We now compute Bk in terms of the

values of A using the properties of the Krawtchouk polynomials developed in 5.
The computation proceeds as follows:

n+l

E ,-n+lB (i)
i=0

BoP+I(o)+ Bn+lP+l(n + 1)+ EBiP+(i)
i--1

()n + 1
[1 + (-1)] + (A + A+_)P+

using ideniies (4) and (8)

()+1 [1+(--1)k]+NiP+l(i)+An+I_in+lk (i)
k

i=1 i=1

()+1 [1+(-1)k]+AiP+l(i)+(-1)kAn+_iP+(n+l-i)k
i=1 i=1

using identity (8)

()n + 1] +
k

[1 + (-1) + (i) + (-1) Aip+I(i)
i=1 i=1

=[l+(--1)k] ((+1) +i=in+l (i)

+

using ideniy (4)

i=0

using idengity (11)
-[1 + (-1)](A’ + _)

As A is an orthogonal array of strength t, its dual distance is t + 1 and so A 0
for 1 _< _< t. This fact implies, in view of the above expression for Bk, that Bk 0
for 2_< k_< t. Also B 0, as [1+(-1)k] =0when k 1. Finally Bt+ =0, as

[1 + (-1)TM] 0 when t is even (which is a hypothesis in the theorem). Thus Bk 0
for 1 _< k <_ t + 1, and hence it follows that the strength of B as an orthogonal array
is at least t + 1 by Theorem 2.3. Thus, when t is even, an OAx(t + 1, n + 1, 2) exists
if an OAx (t, n, 2) exists.

The fact that an OAx(t, n, 2) exists if an OAx (t + 1, n + 1, 2) exists is easy and
follows immediately from the proof of Theorem 4.6. Note that we do not need the
assumption that t is even for this part. A simple consequence is that the minimum
size N(n, t) of an OA of strength t and length n satisfies the equality

2N(n, t)= N(n + 1, t+ 1).

438 J. BIERBRAUER, K. GOPALAKRISHNAN, AND D. R. STINSON

The above constructions easily extend to large sets of orthogonal arrays as well
and hence an equivalent statement can be made about resilient functions.

THEOREM 6.2. Let t be even. Then an (n, m, t)-resilient function exists if and
only if an (n + 1, m, t + 1)-resilient function exists. Hence, if the optimal resiliency
t is even for parameters (n, m), then the optimal resiliency is t + 1 for parameters
(n + 1, m).

Note further that an (n, m, t)-resilient function always exists if an (n+ 1, m, t + 1)-
resilient function exists, as stated in Theorem 4.5; i.e., the assumption that t is even
is not required.

Using Theorems 4.5 and 6.2, we can make the following comments about Table
2. For each fixed m, the optimal resiliency increases by at most 1 when n is increased
by 1. So all the integers appear in each column in their natural order. An integer
may appear several times in a column, but any even integer can appear exactly once
in each column as dictated by Theorem 6.2. Stated in another way, for each m the
probability that the optimal resiliency t is odd for a randomly picked n is at least
half.

7. Explicit bounds for orthogonal arrays and resilient functions. For
large values of t, the orthogonal array bounds obtained by the linear programming
technique are usually much better than the Rao bound. The disadvantage of the
linear programming bound is that one needs to solve a different linear program for
every parameter situation. Of course, this can be done in polynomial time by using
Karmarkar’s algorithm, among others. Nonetheless, the linear programming bound
is fairly difficult to compute as compared to the Rao bound. Thus it is of interest to
try to derive explicit bounds as corollaries of the linear programming bound. We will
pursue this idea in this section.

Let us first form the dual of the linear programming problem LP1. We will refer
to the dual as DLP1.

Minimize
k=l

subject to

E xcPk(i) _< --1 for t + 1 to n
k=l

XlX2...Xn 0

It is a standard theorem in the theory of linear programming (see, for example,
[23]) that in a pair of primal-dual linear programs the optimal value of the maximiza-
tion problem will always be less than or equal to the value attained by the objective
function of the minimization problem at any feasible solution vector. So any feasible
solution to the dual linear program DLPI would yield a lower bound on the size of
the orthogonal array of strength t and length n and consequently an upper bound on
m of t-resilient functions on n-tuples. In fact, similar techniques were previously used
by Delsarte and others to obtain explicit bounds on the size of a code with a given
minimum distance [22, 4, Chap. 17] (see [19] for recent results in this vein).

ORTHOGONAL ARRAYS 439

Assume 2(t + 1) > n. Consider the solution vector

if k-12(t+l)--nxk 0 otherwise.

The nonnegativity conditions are certainly satisfied. As Pl(X) n- 2x, we have

n

E xkPk(i) Xl(- 2i)

__
--1

k=l

for _> t + 1. So this is indeed a feasible solution. The value of the objective function
at this solution vector is

n
xln 2(t+l)-n"

Hence it follows that

+
<1+W<1+2(t+1) n -n

(12) M 2(t + 1)
As a consequence, we get the following theorem, which was first proved by Priedman
[12] using very different methods.

THEOREM 7.1. Suppose an OA (t, n, 2) exists. Let M ,2 be the number of
rows in the OA. Then

n2n-1
M > 2

t+l

Note. The assumption that 2(t + 1) > n is not needed for the final statement
of the theorem as otherwise the right-hand side of the above equation is not positive
and hence the theorem will be trivially true.

This theorem along with equation (3) immediately yields an explicit bound on
resilient functions as well. We state this bound as the following corollary.

COROLLARY 7.2. If an (n, rn, t)-resilient function exists, then

Now we derive a second bound. Assume 2t > n- 3, t even. Consider the solution
vector

if k- 1 or n,2t+3--nxk 0 otherwise.

Again, the nonnegativity is obvious. The main condition is

1 n- 2i + (-1)+ P(i)) -1
2t + 3- n 2t / 3- n

for _> t + 1. This is trivially satisfied for > t + 1. For t + 1 it is satisfied with
equality as t / 1 is odd. The value attained by the objective function at this
feasible solution is

() (nn)_ n+l
x + x 2t + 3 n

440 J. BIERBRAUER, K. GOPALAKRISHNAN, AND D. R. STINSON

Hence it follows that

+< + w <
2t+3-n

As a consequence, we get the following theorem.
THEOREM 7.3. Suppose an OAx (t, n, 2) exists, where t is even. Let M 2 be

the number of vws in the OA. Then

(15) M >_ 2n
2n-l(n + 1)

t+2

Note. The assumption that 2t > n- 3 is not needed for the final statement of
the theorem since otherwise the right-hand side of the above equation is not positive,
and so the theorem will be trivially true.

The bound of Theorem 7.3 is exactly half of the bound given by Theorem 7.1 if
(n, t) is replaced by (n + 1, t + 1). So when t is even, the above bound is also implied
by Theorem 7.1 in light of Theorem 6.1. This observation is made by Levenshtein

We have the following corollary obtained by combining Theorems 7.1 and 7.3.
COROLLARY 7.4. Suppose an OAx(t, n, 2) exists. Let M A2 be the number of

rows in the OA. Then

(16) M >_ 2n
it+l-{

Proof. Note that when t is odd,

2n 2n--2(n + 1) 2n 2n--l(? -- 1)
[t+ll t + 12

The above bound is inferior to the bound given by Theorem 7.1 and hence is valid.
On the other hand, when t is even,

2n. 2-2(n + 1) 2 2n-l(n + 1)
[t+l I t+22

This bound is valid in view of Theorem 7.3.
Corollary 7.4, together with equation (3), yields a second explicit bound on re-

silient functions. We state this bound as the following corollary.
COROLLARY 7.5. If an (n, m, t)-resilient function exists, then

"-2(n + 1)Jt_<2
2m--1

Several remarks are now in order. The statement in Corollary 7.2 was conjectured
in [9]. It was shown to be true for m I, 2 (and in these cases, the bound is tight).
The conjecture was also proved for arbitrary m in the special case of linear resilient
functions, i.e., one where every output bit is a linear function of the input bits.
Corollary 7.2 establishes that the conjecture is true for arbitrary m and for arbitrary
resilient functions.

ORTHOGONAL ARRAYS 441

As stated earlier, Theorem 7.1 and Corollary 7.2 were previously proved by Fried-
man [12] in a different setting. His proof involved a study of colorings of the n-
dimensional boolean cube and can be interpreted as bounds for orthogonal arrays as
well. As shown in this section, these bounds can be derived in a straightforward way
from the well-known linear programming bounds of coding theory.

Further, the classical Rao bound can also be obtained as the objective function of
an appropriate feasible solution to the dual linear programming problem DLPI. Thus
the linear programming technique gives a unified approach to prove the known general
bounds on orthogonal arrays and resilient functions as well as new better bounds.

8. The power of explicit bounds. It is clear that the explicit bounds of in-
equalities (13) and (15) are trivial to compute. One might ask if these explicit bounds
are weaker than the bounds computed by the linear programming technique. It turns
out that for many parametric situations, these two bounds are as powerful as the
linear programming bound itself. We will pursue this issue in this section.

THEOREM 8.1. When t is odd and t + 1 <_ n

_
2t + 1, the bound of equation (13)

is as powerful as the linear programming bound.
Proof. It has already been shown in equation (12) that

2(t + 1)I+W_<
2(t+l)-n"

If we can also show that

2(t + 1)I+W_
2(t+ 1)-n

when t is odd and t/ 1

_
n

_
2t+ 1, then the proof is completed. We can indeed do so

by exhibiting a feasible solution for the primal linear programming problem. Observe
first that because of equation (10) the main condition in LP1 may equivalently be
written as follows:

>-1 for 1 <k<n.

Consider the solution vector given by

ifi-t+l2(t+!)wi 0 otherwise.

Because we are assuming 2(t + I) > n, the nonnegativity is certainly satisfied. The
main condition has been reformulated above. It says

or equivalently,

t+l

That this is true is the content of the following lemma.

442 J. BIERBRAUER, K. GOPALAKRISHNAN, AND D. R. STINSON

LEMMA 8.2. When t is odd and t + 1 <_ n <_ 2t + 1, 1 <_ <_ n, it is the case that

Pt+l (i) >_ (+ l) 1-2(t +1)

Clearly the value of the objective function is as claimed. Although this lemma can
be viewed as yet another property of the values of Krawtchouk polynomials at certain
points, it does not seem to be known. The proof of this lemma is fairly technical
and is not relevant to the main theme of this paper, and hence it is omitted here.
However, the proof is made available in Appendix A for the interested reader.

Note that we are using the assumption that t is odd only in the proof of this
lemma and not anywhere else.

A similar statement is made about the bound of equation (15) in the following
theorem.

THEOREM 8.3. When t is even and t + 1 <_ n <_ 2t + 2, the bound of equation
(15) is as powerful as the linear programming bound.

Proof. The proof will be along the same lines as that of Theorem 8.1. It has
already been shown in equation (14) that

I+W< 2(t+2)
2t+3-n

If we can also show the reverse inequality when t is even and t + 1 <_ n _< 2t / 2, then
the proof is completed. Once again, we can do so by exhibiting a feasible solution for
the primal linear programming problem. Consider the solution vector given by

t+2 if t + 1,2t+3--n
n-t-1 if t + 2,Wi 2t+3--n

0 otherwise.

Again nonnegativity is obvious by our assumptions. The value of the objective func-
tion is just right as

n + 1 2(t + 2)
l + wt+l + wt+2 l + 2t + 3 n 2t + 3 n

We have to check the main condition of the primal problem in the reformulation given
above. As

Wt+ Wt+2 t / 2
n n n+

this condition is

t+2

n""’l’)_) (P+(k) + P+2(k)) >_ -1.
(et + 3

As Pt+(k)+ Pt+2(k) P++2(k) by equation (11) and

t+l + n+l’

ORTHOGONAL ARRAYS 443

this is equivalent to

II-
This is just another instance of Lemma 8.2 proved in Appendix A.

We end this section with the following corollary, which is a simple consequence
of Theorem 8.3.

COROLLARY 8.4. When t is even and n t + 1, the bound given by equation
(13) is the same as the one given by (15), and hence is also as powerful as the linear
programming bound.

9. Optimal resilient functions for fixed m. Let us now focus on the special
cases where rn is a small fixed integer. When rn 1, the trivial upper bound of
equation (2) says that t _< n- 1. The function f" {0, 1} {0, 1} defined by the
rule f(x,..., x) x +... + xn is clearly an (n, 1, n 1)-resilient function. Thus,
the optimal value of t is indeed n- 1, when m 1 (see [9]). When m 2, it was

2nproved in [9] that an (n, m, t)-resilient function exists if and only if t < []. Partial
results for m 3 were found by iedman [12]. As a consequence of our new bounds,
we have completed the determination of the optimal resiliency of resilient functions
with m 3, and we have also done most of the cases for m 4.

The simplex code S is the dual of the Hamming code .. The generator matrix
of S is of size m 2 1 and has all nonzero binary m-tuples as its columns. It
is not too difficult to see that each nonzero codeword of the simplex code has weight
2m-1. Thus S is a linear constant-weight code with parameters [2 1, m, 2m-l].
We shall make use of the simplex code in the proof of the following theorem.

THEOREM 9.1. Suppose there exists an (n, m, t) linear resilient function which is
optimal by virtue of meeting one of the two bounds of Corollaries 7.2 and 7.5. Then
there exists an (n + 2 1, m, t + 2-1) linear resilient function which is also optimal
by virtue of meeting the same bound.

Proof. Since the (n, m, t)-resilient function is linear, it must have been constructed
from an In, m, t + 1] linear code C. Now consider the linear code whose generating
matrix is obtained by pasting the generating matrices of the code C and the simplex
code , i.e.,

Clearly C is a linear In + 2" 1, m, t + 1 + 2"-] code, and from this code we can
construct a linear resilient function with parameters (n + 2" 1, m, t + 2m-).

By assumption, the (n, m, t)-resilient function is optimal as the parameters meet
one of the two bounds derived in 7. If we increase n by 2 1, both the bounds
go up by 2m-l, and so it immediately follows that the linear resilient function with
parameters (n + 2" 1, m, t + 2"-) is also optimal by virtue of meeting the same
bound.

The simplex code itself yields a (2"- 1, m, 2m- 1) linear resilient function,
which meets the bound of Theorem 7.2 and hence is optimal. Applying Theorem 9.1,
we see that optimal linear resilient functions exist whenever n _= 0 mod (2"- 1), a
result first shown by Friedman [12].

Let us now consider resilient functions with rn 3. The bound of Corollary 7.2
gives t _< [4n/7j 1 and the bound of Corollary 7.5 gives t _< 2[(2n + 2)/7J 1. The
two bounds are tabulated in Table 3.

444 J. BIERBRAUER, K. GOPALAKRISHNAN, AND D. R. STINSON

TABLE 3
A comparison of the two explicit bounds when m--3.

7A]. 4h 1
7A 2 4h
7h +3 4h
7h+4 4h+ 1
7h+5 4h+1
7h+6 4h+2

.L4n/7J 1 2L(2n+2)/TJ-1
4h- 1 4h- 1

4h- 1
4h- 1
4h+1
4h+l
4h+1
4h+3

We see from the table that Corollary 7.2 gives the strongest bound for n
3, 6 mod 7, Corollary 7.5 gives the strongest bound for n 2 mod 7, and the two
bounds are equal for n =_ 0, 1, 4, 5 mod 7.

Of course these are only upper bounds on t. But matching lower bounds could be
obtained as follows. In view of Theorem 4.1, whenever a linear In, m, d] code exists,
so does an (n, m, d- 1)-resilient function. When m 3 and 4 _< n _< 10, it so happens
that the linear resilient functions constructed from the best known linear codes are
optimal by virtue of meeting one of the two bounds of Corollaries 7.2 and 7.5. In fact,
the bound of Corollary 7.2 is always met except when n 9, in which case the bound
of Corollary 7.5 is met. This fact coupled with Theorem 9.1 completely determines
the optimal resiliency of resilient functions with m 3. We record the result as the
following theorem.

THEOREM 9.2. The optimal resiliency t of resilient functions with m 3 is

[-. -1 if n 2 rood7 and, mode.

Similar analysis settles the question for m 4 in all cases except for two congru-
ence classes modulo 15, as described in the following theorem.

THEOREM 9.3. The optimal resiliency t of resilient functions with m 4 is

8n-fJ 1 if n 2, 3, 4, 6 or 10 rood 15 and

TJ 2 if n=2,6 or 10 mod15.

Here, it turns out that the bound of Corollary 7.2 is met in those cases when n
2, 3, 4, 6, 10 mod 15, and the bound of Corollary 7.5 is relevant for n 2, 6, 10 mod 15.
The two congruence classes n 3, 4 mod 15 are unsolved at present.

9.1. Optimal resilient functions from anticodes. It is also possible to de-
termine other infinite classes of optimal resilient functions by using the method of
anticodes [22, Chap. 17, 6], and we do so in the following.

A well-known technique for constructing good linear codes is to take several copies
of the generator matrix of the simplex code $, and delete certain columns from it.
The columns to be deleted constitute the generator matrix of an anticode. An anticode
is a code which has an upper bound on the distance between its codewords. Note that
an anticode may contain repeated codewords, since even a distance of zero between
the codewords is allowed.

Consider an anticode whose generator matrix is of size m k and whose maximum
distance is . Suppose s is the maximum number of times any column occurs in the
generating matrix of the anticode. Then we can form a new code whose generator
matrix can be obtained by deleting the columns of the generator matrix of the anticode

ORTHOGONAL ARRAYS 445

from s copies of the generator matrix of , placed side-by-side. The new code has
length s(2m I) k, dimension

_
m, and minimum distance s2m-1 -.

Using the above general technique and anticodes formed from subspaces, Solomon
and Stiffler [27, 2] constructed a large class of good linear codes. Let Vm denote a
m-dimensional vector space over GF(2). Let BI,B2,... ,Bp be subspaces of Vm of
dimensions u, u2,..., Up such that no nonzero element of Vm is contained in more
than s of the B. Let m > U >_ u2 >_ >_ Up _> I. Then they showed that there
exists an In, m, d] binary linear code, where

p

a s(2m 1)- E(2"- 1),
i=l

p

d k 82m--i E2ui--l"
i=l

Belov, Logachev, and Sandimirov [2] showed that a necessary and sufficient condition
for the existence of such subspaces is

min(s+l,p)

(17) E ui <_ sin.

i=1

We now proceed to determine the parametric situations where the resilient func-
tions constructed from the linear codes obtained by the above construction meet the
bound of Corollary 7.2 or 7.5, and so are optimal.

The resilient functions so constructed will meet the bound of Corollary 7.2 if and
only if

ui--

i=
’m’"" 1J

2m-1 s(2m-1)-E(2-l)
i=1

2 1

82m-1

s2m-

p

2m-1E (2ui 1
i=1

P

2m-1E (2ui 1
i=1

2’rn 1

446 J. BIERBRAUER, K. GOPALAKRISHNAN, AND D. R. STINSON

So, the bound of Corollary 7.2 will be met if and only if

p
--1 E (2u])2TM

i--1

2" 1

p

2ui-1

i=1

This could be equivalently expressed as

p

-1<

p

2"-1E (2 1
i=1

2m 1

p

The right inequality holds if and only if
p

2m-1E (2 1
i--1

p

E 2m-l+u p2m-1

i--1

p

< (2 1) E2-
i--1

p p
_

E2m-l+u E
i--1 i--1

p

E 2ui-1 p2,-1.
i=1

But the last statement indeed holds as ui < rn for 1 < < p.
The left inequality holds if and only if

p p

E2m-l+u-E2u-l-2m+ l <
i---1 i--1

p

2m-lE (2u 1
i--1

p

2 +.u p2m-

i=1
p

2-I 1.
i=1

The last statement clearly holds if p- 1 or p 2, and so we will focus on them.
When p 1, the feasibility condition (17) reduces to Ul _< rn, which is indeed the
case. When p 2, the feasibility condition (17) reduces to u + u2 <_ srn. This is
always satisfied for s _> 2 and satisfied only if u + u2 <_ rn for s 1. Thus for each
fixed rn, we get many infinite classes of optimal resilient functions. We summarize
the above discussion as the following theorem.

THEOREM 9.4. Let rn be a fixed integer. Let rn > Ul >_ u2 >_ 1. Then for the
following values of n, the upper bound on resiliency given in Corollary 7.2 is tight and
it can be attained by linear resilient functions.

n-s(2"-1)-2l+lfors>_l,
n s(2" 1) 21 2 + 2

for s l if u + u2 <_ rn and lots>_2.

A similar analysis yields the parametric situations where the bound of Corollary
7.5 is met by the resilient functions constructed using the above technique. We omit
the details and record the final result as the following theorem.

ORTHOGONAL ARRAYS 447

THEOREM 9.5. Let m be a fixed integer. Let m > ul >_ u2 >_ u3 >_ 1 and let
the number of ui 1 be even. Then for the following values of n, the upper bound
on resiliency given in Corollary 7.5 is tight and it can be attained by linear resilient

functions.

+ for s >
1)- e"’ + e

for s l if ul + u. <_ m and for s >_ 2,

s(2 1) 2 2 2 + 3

for s l if u + u2 <_ m, for s 2 if ul + u. + u3 <_ 2m
and for s >_ 3.

As an example, consider m 4. Then the dimensions of the subspaces must be
I, 2, or 3. The number of nonzero vectors in these subspaces are, respectively, I, 3, and
7. Taking one at a time, we get optimal resilient functions when n 8, 12, 14 mod 15.
Taking two at a time (with possible repetition), we get optimal resilient functions when
n 1,5, 7, 9, II, 13 mod 15. These resilient functions meet the bound of Corollary
7.2. Taking three at a time (with possible repetition), we get the additional optimal
resilient functions corresponding to n 2, 6, I0 mod 15, which meet the bound of
Corollary 7.5. Note that in this case, we are not allowed to use subspaces of dimension
one.

It should be noted that originally the theory of anticodes was developed to con-
struct optimal linear codes which meet the (riesmer bound [15]. But, we used the
theory here to construct linear optimal resilient functions.

Analogous results can be found in [12, Prop. 2.2] and [5, Thm. 5]. However,
they were obtained from first principles without using the theory of anticodes. The
above discussion is intended to illustrate the application of the existing theory of
anticodes in the construction of linear optimal resilient functions and is not meant to
be exhaustive.

I0. Concluding remarks and open problems. In this paper, upper and
lower bounds on the largest value of t such that an (n, m, t)-resilient function exists
are derived. The upper bounds are derived from linear programming techniques and
the lower bounds come from constructions based on error-correcting codes. Although
we have determined exactly the optimal value of for 1 <_ m < n <_ 17, it is evident
from Table 2 that there are still many parameter situations where the upper bounds
and the lower bounds differ. It would be interesting to determine the optimal values
in those cases as well. It is possible that constructions from some other nonlinear

codes, augmented with our constructions of new resilient functions from 4.3, might
do the trick. For example, if we could construct a (21, 12, 5)-resilient function from a

systematic code, it would imply that (20, ii, 5)-, (19, I0, 5)-, (20, 12, 4)-, (19, ii, 4)-,
and (18, I0, 4)-resilient functions exist and are optimal.

We derived two explicit bounds on the size of the orthogonal arrays using linear
programming techniques in 7. It was also proved in 8 that these bounds are as

powerful as the LP bound itself for certain parameter situations. But we still need to
use the original LP bound to get tighter bounds for other parametric situations. It
would be interesting to determine whether a set of explicit bounds could be developed
using the LP bounds such that for any parametric situation at least one of them is

448 J. BIERBRAUER, K. GOPALAKRISHNAN, AND D. R. STINSON

as powerful as the LP bound itself. If this can be done, then the original LP bound
could be completely eliminated.

By applying our new bounds, we have completed the determination of the opti-
mal resiliency of resilient functions with rn 3 in 9. Most of the cases for rn 4
were also done. One question pertinent to the remaining cases is whether (18, 4, 8)-
and (19, 4, 9)-resilient functions exist or not. Actually, an (18, 4, 8)-resilient function
exists if and only if a (19, 4, 9)-resilient function exists in view of Theorem 6.2, and
so we will restrict our attention to one of them. Even if an (18, 4, 8)-resilient function
exists, we cannot immediately extend it to an infinite class of optimal resilient func-
tions using Theorem 9.1 since it has to be a nonlinear resilient function. Note that
an (18, 4, 7)-resilient function is the best possible linear resilient function for this pa-
rameter situation. On the other hand, if an (18, 4, 8)-resilient function does not exist,
then the linear (18, 4, 7)-resilient function would be an optimal one. Unfortunately,
once again, we cannot extend it to an infinite class of optimal resilient functions using
Theorem 9.1 since it is not optimal by virtue of meeting one of the two bounds of
Corollaries 7.2 and 7.5 (which happens to be 8 and 9, respectively, in this case).

Although we have confined our discussion throughout this paper to binary orthog-
onal arrays and resilient functions for the sake of simplicity, most of the techniques
used in this paper are applicable mutatis mutandis to nonbinary orthogonal arrays
and resilient functions. As an example, the following bound on nonbinary orthogonal
arrays was proved by Bierbrauer [5] by an algebraic method based on characters of
homocyclic groups.

THEOREM 10.1. If there exists an OAa(t, n, v), then

M>_v 1-
v(t+l)]"

Several other results about nonbinary resilient functions can be found in [14].
Appendix A. A property of Krawtchouk polynomials. In this appendix

we shall prove Lemma 8.2, which was used in 8 to prove the power of the explicit
bounds derived in the paper. First we will state it in a slightly different form.

THEOREM A.1. Let k be an even integer, let k <_ n <_ 2k- 1, and let 1 <_ <_ n.
Then

Pk(i)>_ ()[1-2k
The right-hand side can be written in a handier combinatorial form"

(;) [1-2-k ()-2(-1)= (n-i)_ (-1)n 1 k 1

The number Pk(i) can also be expressed in a combinatorial fashion in the following
way [21, Chap. 5, p. 64]"

Pk(i) E(-1)<x’Y>.
y

Here x is a fixed binary vector of length n and weight and the sum is over all the
binary vectors of length n and weight k. This invites the following combinatorial
interpretation.

ORTHOGONAL ARRAYS 449

Let S be an n-element set. Let X be a fixed subset of S of size i. Denote by
g g(n,k,i) the number of subsets Y of S of size k such that IX YI is even.
Similarly, denote by u u(n, k, i), the number of subsets Y of S of size k such that
X YI is odd. Then clearly

Using these relations the claim of Theoren A.1 can be equivalently expressed in
terms of the function g.

THEOREM A.2. Let k be an even integer, let k <_ n <_ 2k- 1, and let 1 <_ <_ n.
Then

g(n,k i)> /n-1)
LEMMA A.3. The statement of Theorem A.2 is true when i- n.

Proof. When n, any k-subset intersects X in k elements. As k is even, the
number of k-subsets intersecting X in an even number of elements is simply (), which
is clearly greater than or equal to (n-l). [-]

So we may assume 1 _<

_
n- 1 in the sequel. For these cases, instead of proving

the claim of Theorem A.2, we shall prove the following stronger claim.
THEOREM A.4. Let k < n < 2k- 1 and let 1 < < n- 1. Then

Proof. The proof is by induction on all three of the parameters n, k, and i. As
_< n- 1, the set S- X is nonempty. Let x E S- X. Considering those subsets Y

of size k which exclude and include x, we can form the following recurrence relation.

g(n, k, i) g(n 1, k, i) + g(n 1, k 1, i).

Then using the induction hypothesis we get

9(n, k, i) >
k +

(n;l).
As long as the recurrence relation is applicable, it gives exactly what we want. It

is also easy to see that the recurrence relation is not applicable exactly when either
n k or n 2k- 1. So we have to take care of these two limiting cases.

LEMMA A.5. The statement of Theorem A.4 is true when k n.

Proof. When k n, g(n, k, i) g(n, n, i) is 1 if is even and 0 if is odd. But
(nl) 0. Hence the statement of Theorem A.4 is true when k n.

The case of n 2k- 1 is a little bit more laborious and will be done through the
following sequence of lemmas.

Let n 2k. If is odd, then of each complementary pair of k-subsets, precisely
one will intersect X in even cardinality. Thus we get the following lemma.

450 J. BIERBRAUER, K. GOPALAKRISHNAN, AND D. R. STINSON

LEMMA A.6.

1(2:) (2k- 1)g(2k, k, i) - k if is odd.

Using the same trick in the case of odd n (n 2k- 1), we get the following
lemma.

LEMMA A. 7.

g(2k l, k l, i) + g(2k l, k, i) (2k- l) for oddi.

As _> 1, the fixed subset X is nonempty. Let x E X. Considering those subsets
Y of size k which exclude and include x, we can form the following recurrence relation.

9(n,k,i) 9(n- 1, k,i- 1)+ u(n- 1, k- 1, i- 1)

g(n- 1, k- 1, i- 1) + g(n- 1, k,i 1).

LEMMA A.8. If is even, then

g(2k, k, i) 2g(2k 1, k, 1).

Proof. By the second recurrence relation, we have.

g(2k, k, i) + g(2k 1, k, 1) 9(2k 1, k 1, 1).

As i- 1 is odd, we can use Lemma A.7 to get

g(2k- 2, k- l,i-1) (2k-1) (e 1,,i 1).

Further simplification establishes the lemma. D
LEMMA A.9. If is even, then 9(2k, k, i)>_ 2(2-2).
Pro@ By Lemma A.8 we have

9(2k, k, i) 29(2k 1, k, 1).

Using the first recursion, we get

9(2k, k,i) 2{9(2k- 2, k,i 1) + 9(2k- 2, k- 1,i- 1)}.

Since i- 1 is odd, we can use Lemma A.6 to get

29(2k 2, k 1, 1)

It follows that

ORTHOGONAL ARRAYS 451

We can now use induction on to assume the validity of the claim of Theorem A.4
in the case of the last term (note that the parameter k also satisfies the desired
conditions) and get

This is exactly what was claimed.
The above lemma immediately yields the following corollary in view of Lemma A.8.
COROLLARY A.10. The statement in Theorem A.4 is true in the case n 2k-- 1

when i is odd.
LEMMA A. 11. The statement in Theorem A.4 is true in the case n 2k- 1 when

is even.

Proof. By the second recurrence relation, we have

+ g(2k 2, k,i 1) g(2k 2, k 1,i- 1).

Since i- 1 is odd, we can use Lemma A.6 to get

It follows that

+ g(2k 2, k, 1).

Once again, we can use induction on to assume the validity of the claim of Theo-
rem A.4 in the case of the last term and get

g(2k 1, k, i) >_ + k k

Finally, we need to take care of the case I. This is to assure the basis of
induction since it is done over also.

LEMMA A.12. The statement of Theorem A.4 is true when 1.

Proof. When i 1, clearly

g(n,k,i)=g(n,k 1)- (n-1/
Thus the claim of Theorem A.4 is trivially satisfied. D

It would be nice to have a combinatorial proof of Theorem A.4 instead of the
above lengthy proof by induction through multiple parameters. We leave this as an
open problem.

Acknowledgments. We would like to thank V. Levenshtein for several helpful
discussions and the referee for carefully reading the manuscript and making some
helpful suggestions.

452 J. BIERBRAUER, K. GOPALAKRISHNAN, AND D. R. STINSON

REFERENCES

[1] T. ATSUMI, A study of orthogonal arrays from the point of view of design theory, J. Combin.
Theory A, 35 (1983), pp. 241-251.

[2] B. I. BELOV, V. N. LOGACHEV, AND V. P. SANDIMIROV, Construction of a class of linear
binary codes achieving the Varshamov-Griesmer bound, Problems Info. Trans., 10 (1974),
pp. 211-217.

[3] C. H. BENNETT, G. BRASSARD, AND A. K. EKERT, Quantum cryptography, Scientific American,
267 (1992), pp. 26-33.

[4] C. H. BENNETT, G. BRASSARD, AND J. M. ROBERT, Privacy amplification by public discussion,
SIAM J. Comput., 17 (1988), pp. 210-229.

[5] J. BIERBRAUER, Bounds on orthogonal arrays and resilient functions, J. Combin. Designs, 3
(1995), pp. 179-183.

[6] A. E. BROUWER AND T. VERHOEFF, An updated table of minimum-distance bounds for binary
linear codes, IEEE Trans. Inform. Theory, 39 (1993), pp. 662-677.

[7] K. A. BUSH, Orthogonal arrays of index unity, Ann. Math. Statist., 23 (1952), pp. 426-434.
[8] P. CAMION, C. CARLET, P. CHARPIN, AND N. SENDRIER, On correlation-immune functions, in

Advances in Cryptology- CRYPTO ’91, Springer-Verlag, Heidelberg, 1992, pp. 86-100.
[9] B. CHOR, O. (OLDREICH, J. H/STAD, J. FRIEDMAN, S. RUDICH, AND R. SMOLENSKY, The bit

extraction problem or t-resilient functions, in Proc. 26th IEEE Symp. on Foundations of
Computer Science, IEEE Computer Society, Piscataway, NJ, 1985, pp. 396-407.

P. DELSARTE, Bounds for unrestricted codes, by linear programming, Philips Research Reports,
27 (1972), pp. 272-289.
, Four fundamental parameters of a code and their combinatorial significance, Inform.

and Control, 23 (1973), pp. 407-438.
J. FRIEDMAN, On the bit extraction problem, in Proc. 33rd IEEE Symp. on Foundations of

Computer Science, IEEE Computer Society, Piscataway, NJ, 1992, pp. 314-319.
K. GOPALAKRISHNAN, D. a. HOFFMAN, AND D. R. STINSON, A note on a conjecture concerning

symmetric resilient functions, Inform. Process. Lett., 47 (1993), pp. 139-143.
K. GOPALAKRISHNAN AND D. R. STINSON, Three characterizations of non-binary correlation-

immune and resilient functions, Designs, Codes and Cryptography, 5 (1995), pp. 241-251.
J. H. ORIESMER, A bound for error correcting codes, IBM J. Res. Develop., 4 (1960), pp. 532-

542.
A. S. HEDAYAT, N. J. A. SLOANE, AND J. STUFKEN, Orthogonal Arrays: Theory and Practice,

nanuscript.
A. S. HEDAYAT AND J. STUFKEN, Two-symbol orthogonal arrays, in Optimal Design and Anal-

ysis of Experiments, Y. Dodge, V. V. Federov, and H. P. Wynn, eds., North-Holland,
Amsterdam, 1988, pp. 47--58.

V. LEVENSHTEIN, Krawtchouk polynomials and universal bounds for codes and designs in Ham-
ming spaces, IEEE Trans. Inform. Theory, 41 (1995), pp. 1303-1321.
, Bounds for self-complementary codes and their applications, in CISM Courses and

Lectures- Eurocode 92, Springer-Verlag, Berlin, 1993, pp. 159-171.
, Private communication, 1994.
J. n. VAN LINT, Introduction to Coding Theory, Springer-Verlag, Berlin, 1982.
F. J. MACWILLIAMS AND N. J. A. SLOANE, The Theory of Error-Correcting Codes, North-

Holland, Amsterdam, 1977.
C. H. PAPADIMITRIOU AND K. STEIGLITZ, Combinatorial Optimization- Algorithms and Com-

plexity, Prentice-Hall, Englewood Cliffs, NJ, 1982.
C. R. RAO, Factorial experiments derivable fvm combinatorial arrangements of arrays, J.

Royal Statist. Soc., 9 (1947), pp. 128-139.
R. A. RUEPPEL, Analysis and Design of Stream Ciphers, Springer-Verlag, Berlin, 1986.
E. SEIDEN AND R. ZEMACH, On orthogonal arrays, Ann. Math. Stat., 37 (1966), pp. 1355-1370.
a. SOLOMON AND J. J. STIFFLER, Algebraically punctured cyclic codes, Inform. Control, 8

(1965), pp. 170-179.
D. R. STINSON, Resilient functions and large sets of orthogonal arrays, Congr. and Numer., 92

(1993), pp. 105-110.
D. R. STINSON AND J. L. MASSEY, An infinite class of counterexamples to a conjecture con-

cerning non-linear resilient functions, J. Cryptology, 8 (1995), pp. 167-173.
L. TEIRLINCK, Large sets of disjoint designs and related structures, in Contemporary Design

Theory- A Collection of Surveys, J. H. Dinitz and D. R. Stinson, eds., John Wiley, New
York, 1992, pp. 564-567.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[is]

[19]

[2o]
[21]
[e]

[23]

[24]

[25]
[26]
[e]

[2s]

[29]

[3o]

SIAM J. DISCRETE MATH.
Vol. 9, No. 3, pp. 453-491, August 1996

() 1996 Society for Industrial and Applied Mathematics

008

SECOND-ORDER RIGIDITY AND PRESTRESS STABILITY FOR
TENSEGRITY FRAMEWORKS*

ROBERT CONNELLY AND WALTER WHITELEY$

Abstract. This paper defines two concepts of rigidity for tensegrity frameworks (frameworks
with cables, bars, and struts): prestress stability and second-order rigidity. We demonstrate a hier-
archy of rigidity--first-order rigidity implies prestress stability implies second-order rigidity implies
rigiditymfor any framework. Examples show that none of these implications are reversible, even for
bar frameworks. Other examples illustrate how these results can be used to create rigid tensegrity
frameworks.

This paper also develops a duality for second-order rigidity, leading to a test which combines
information on the self stresses and the first-order flexes of a framework to detect second-order rigidity.
Using this test, the following conjecture of Roth is proven: a plane tensegrity framework, in which
the vertices and bars form a strictly convex polygon with additional cables across the interior, is rigid
if and only if it is first-order rigid.

Key words, tensegrity frameworks, rigid and flexible frameworks, stability of frameworks,
static stress, first-order motion, second-order motion

AMS subject classifications. Primary, 52C25; Secondary, 70B15, 70C20

1. Introduction. A fundamental problem in geometry is to determine when
selected distance constraints, on a finite number of points, fix these points up to
congruence, at least for small perturbations. We rephrase this as a problem in the
rigidity of frameworks. From this point of view, we do the following:

(i) provide methods for recognizing when a given framework is rigid;
(ii) find ways of generating rigid frameworks;
(iii) explore the relationship among these methods;
(iv) solve a conjecture of Roth, in [29], concerning the rigidity of a specific class

of frameworks in the plane.
Many of the concepts here are inspired by techniques used in structural engineer-

ing, such as the principle of least work and energy, but our treatment is independent
of any such concepts. Broadly speaking our objective in this paper is to investigate
the geometric properties of configurations of points in Euclidean space. However, our
results clarify and justify mathematically some of the techniques used by structural
engineers to analyze certain tensegrity structures. (See [5, 27, 28] for example.) Our
techniques extend those of [21] and are related to the questions posed by Tarnai [31].
A summary of these results, for engineers, was presented in [13].

1.1. Terminology. A tensegrity framework is an ordered finite collection of
points in Euclidean space, called a configuration, with certain pairs of these points,

*Received by the editors April 13, 1992; accepted for publication (in revised form) October 10,
1995.

Department of Mathematics, Cornell University, Ithaca, NY, 14853-7901 (connelly@math. cor-

nell.edu). The work of this author was supported in part by National Science Foundation grant MCS-
790251, Distinguished Visitorship, Centre de Recherches Mathematiques, Universit de Montreal, and
the Humboldt research award program.

:Department of Mathematics and Statistics, York University, 4700 Keele Street, North York,
Ontario M3J-1P3, Canada (whiteley@mathstat.yorku.ca). The work of this author was supported in
part by grants from Fonds pour la Formation de Chercheurs et l’Aide k la Recherche (Quebec) and
Natural Sciences and Engineering Research Council of Canada.

453

454 R. CONNELLY AND W. WHITELEY

called cables, constrained not to get further apart; certain pairs, called struts, con-
strained not to get closer together; and certain pairs, called bars, constrained to stay
the same distance apart. Together, struts, cables, and bars are called members. If
each continuous motion of the points satisfying all the constraints is the restriction of
a rigid motion of the ambient Euclidean space, then we say the tensegrity framework
is rigid. See [9] and [29].

For the recognition problem (i) there has been much work done using the concept
of first-order rigidity. A tensegrity framework is first-order rigid (or infinitesimally
rigid) if the only smooth motion of the vertices, such that the first derivative of each
member length is consistent with the constraints, has its derivative at time zero equal
to that of the restriction of a congruent motion of Euclidean space. See 2.2 for more
details. An equivalent dual concept says that a tensegrity framework is statically rigid
if every equilibrium load can be resolved. See [10] or [29] for more details and a precise
definition. Our working definition will be that of first-order rigidity as above.

A stress in a tensegrity framework is an assignment of a scalar to each member.
It is called a self stress if the vector sum of the scalar times the corresponding member
vector is zero at each vertex. It is called proper if the cable stresses are nonnegative
and the strut stresses are nonpositive (with no condition on the bars). It is called
strict if the stress in each cable and strut is nonzero.

1.2. First-order duality. The interplay between first-order motions and self
stresses yields a test for first-order rigidity. Every first-order rigid tensegrity framework
has a strict proper self stress, by a result of Roth and Whiteley [29]. We state the first-
order stress test as follows: There is a first-order flex of a framework which strictly
changes the length of a strut or cable if and only if every proper self stress is zero on
the given member.

cable

S
bar

strut
c

FIG. 1. Two first-order rigid tensegrity frameworks (a, b) where cables and struts are reversed.

In addition, if a first-order rigid bar framework has any nonzero self stress at all, one
can change these members to cables or struts following the sign of the self stress to get
another statically rigid tensegrity framework. In the spirit of (ii), this is a first-order
method for generating examples of statically rigid tensegrity frameworks. See [29]
and [35] for examples. Note that any first-order rigid tensegrity framework can have
its cables and struts reversed to struts and cables, respectively, and it will remain
first-order rigid. Figure 1 shows a pair of frameworks which are infinitesimally rigid
in the plane.

1.3. Prestress stability and second-order rigidity. In .this paper, we define
two other classes of frameworks, those that are prestress stable and those that are
second-order rigid. We call a tensegrity framework prestress stable if it has a proper
strict self stress such that a certain energy function, defined in terms of the stress and
defined for all configurations, has a local minimum at the given configuration, and this

SECOND-ORDER RIGIDITY AND PRESTRESS STABILITY 455

minimum is a strict local minimum up to congruence of the whole framework. (See
3.3 for the precise formula for this energy function.)

Prestress stability is a concept we have borrowed from structural engineering.
The "principle of least work" is the motivation behind the definition of our energy
functions. If a certain configuration of a framework corresponds to a local minimum
(modulo rigid motions) of an energy function, which is the sum of the energies of all
the members, then it is clear that the framework is rigid. When the usual second
derivative test detects such a minimum, this corresponds to prestress stability. Pel-
legrino and Calladine [28] describe certain matrix rank conditions that are necessary
but not sufficient for prestress stability. However, their condition essentially ignores
the basic positive definite conditions. See [5] for an improved version, though. For
engineering calculations, the stress-strain relation in each member is given, and this
information determines the corresponding energy function. On the other hand, for
the simpler mathematical recognition problem (i), one is free to choose the member
energy functions at will.

A tensegrity framework is second-order rigid if every smooth motion of the ver-
tices, which does not violate any member constraint in the first and second derivative,
has its first derivative trivial; i.e., its first derivative is the derivative of a one parameter
family of congruent motions.

Nonrigid

Figure 3a

i!Ii J)ii Figure 16d

FIG. 2. A diagram of the hierarchy of "rigidity" (numbers refer to illustrative examples).

A series of basic results shows that for any tensegrity framework, first-order rigid-
ity (i.e., infinitesimal rigidity) implies prestress stability, which implies second-order
rigidity, which implies rigidity, and none of these implications can be reversed. See
Figure 2, where the figure numbers refer to examples seen later in this paper that lie
only in that region of the diagram. This extends the second-order rigidity results of [6]
for bar frameworks and places prestress stability between first-order and second-order
rigidity.

1.4. The second-order stress test. Information about a framework, or a
class of frameworks, may come in various forms, and it can be useful to relate these
different forms for the situation at hand. For example, to test the first-order rigidity
of a tensegrity framework we may use both the self stresses and the first-order flexes,
as in the first-order stress test.

We extend this first-order duality to the second-order situation. Regard any stress
as the constant coefficients of a quadratic form on the space of all configurations as well
as the space of first-order flexes. This is a "homogeneous" energy function. Suppose
we have a fixed first-order flex of a given framework, and we wish to know when that
first-order flex extends to some second-order flex. Our second-order stress test states
the following: A second-order flez exists if and only if for every proper self stress of
the framework the quadratic form it defines is nonpositive when evaluated at the given

456 R. CONNELLY AND W. WHITELEY

first-order flez. Thus information about proper self stresses of a framework, as well
as first-order flexes, can provide information about second-order rigidity. The proof
amounts to observing that the (inequality and equality) constraints of second-order
rigidity and our dual stress condition is a special case of the "Farkas alternative" (as
used in linear programming duality).

It is also possible to sharpen the second-order stress test to provide necessary
and sufficient conditions to detect when the second-order inequalities are strict. This
sharpening is a generalization of the first-order stress test. The sharpened second-
order stress test can be helpful not only in detecting second-order rigidity but also
quite often in detecting when there is an actual continuous flex that has the cable and
strut conditions slacken at the second-order.

1.5. Roth’s conjecture. As an application of these methods we verify a con-
jecture of Roth about polygons in the plane in [29]. In their Lectures on Lost Mathe-
matics [18, 19], Griinbaum and Shepard conjectured that if one has a framework G(p)
in the plane with the points as the vertices of a convex polygon, bars on the edges, and
cables inside connecting certain pairs of the vertices (Figure 3a, c) in such a way that
the framework is rigid in the plane (Figure la), then reversing the cables and bars to
get ((p) (Figure lb) preserves rigidity. (They also observed that starting with cables
on the outside and bars inside does not necessarily preserve rigidity (Figure 3b, a).)

If Griinbaum and Shephard’s polygonal frameworks are rigid because they are
infinitesimally rigid, then it follows that the reversed framework is also infinitesimally
rigid and therefore rigid. Roth’s conjecture was that all rigid convex polygons with
cables on the inside were indeed infinitesimally rigid. For example, Figure 3c shows a
regular octagon with bars on the edges and fourteen cables on the inside. It is easy to
check that this framework is not infinitesimally rigid. Thus Roth’s conjecture implies
that this framework is not rigid since if it were rigid, it would be infinitesimally rigid.
The reader is invited to find the motion of the vertices in the plane directly. (See
Remark 6.2.1.)

FIG. 3. Framework (b) is rigid, but framework (a), where cables and struts are reversed, is not.
Framework (c) is not first-order rigid and is not rigid, illustrating Roth’s conjecture.

Meanwhile, Connelly [7] showed that any proper self stress coming from one
of Griinbaum and Shepard’s polygonal frameworks G(p) had an associated negative
semidefinite quadratic form with nullity three. Equivalently the reversed framework
((p) had a positive semidefinite quadratic form with nullity three. Then it is easy
to show that (p) is rigid by showing that (globally) there is no other noncongruent
configuration satisfying the bar and cable constraints. This global type of rigidity
is somewhat different from infinitesimal rigidity. Neither infinitesimal rigidity nor
global rigidity implies the other. However, the energy functions used to prove the
global rigidity also imply prestress stability. Thus Griinbaum’s conjecture was proved

SECOND-ORDER RIGIDITY AND PRESTRESS STABILITY 45?

and generalized in one direction, but Roth’s conjecture, a generalization in another
direction, was not proved.

1.6. The proof of Roth’s conjecture. The idea behind our proof of Roth’s
conjecture is the following. We observe that the conditions for a strict second-order
flex, in the second-order stress test, are satisfied by any one of Griinbaum and Shep-
ard’s frameworks G(p), since any proper self stress defines a negative semidefinite
quadratic form which is negative definite on any space of nontrivial first-order flexes.
Thus if there is any nontrivial first-order flex, it will extend to a strict second-order flex
which in turn implies that there will be a nontrivial continuous flex of the framework.
Thus (the contrapositive of) Roth’s conjecture is verified: if G(p) is not infinitesimally
rigid, then G(p) is not rigid. In particular, if any one of Griinbaum and Shepard’s
frameworks G(p) is rigid, the reversed framework (p) is both infinitesimally rigid
and globally rigid.

In an appendix we summarize a series of "replacement principles" which describe
when and how one can switch between bars and cables or struts and preserve the
various levels of rigidity or flexibility.

2. Review of tensegrity frameworks. Throughout this paper the word
tensegrity is used to describe any framework with cables--each cable determines a
maximum distance between two points, struts--each strut determines a minimum dis-
tance between two points, and bars--each bar determines a fixed distance between
two points. Statically, cables can only apply tension and struts can only apply com-
pression. We partition the edges of our graph into three disjoint classes E_ for
cables, E0 for bars, and E+ for struts, creating a signed graph G (V; E_,Eo, E+).
In our figures, cables are indicated by dashed lines, struts by double thin lines, and
bars by single thick lines (see Figure 1). General references for this chapter are [8, 9,

2.1. Rigidity.
DEFINITION 2.1.1. A tensegrity framework in d-space G(p) is a signed graph

(V; E_, E0, E+), and an assignment p E IRdv such that each pi IRd corresponds
to a vertex of G, where p (pl,...,pv) is a configuration. The members in E_

are cables, the members in Eo are bars, and the members in E+ are struts. A bar
framework is a tensegrity framework with no cables or struts; i.e., E Eo.

DEFINITION 2.1.2. A tensegrity fumework G(p) dominates the tensegrity frame-
work G(q), written G(p) _> G(q), if

]Pi Pjl -> Iqi

IPi PJl Iqi

IPi PJl -< Iqi

when {i, j } E_

when {i, j} Eo,
when {i, j} e E+

A tensegrity framework G(p) is rigid in]Rd if any of the following three equivalent
conditions holds [9] or [29]"

(a) there is an > 0 such that if G(p) >_ G(q) and IP-ql < then p is
congruent to q; or

(b) for every continuous path, or continuous flex, p(t) e IRd, p(0) p, such
that G(p) _> G(p(t)) for all 0 <_ t <_ 1, then p is congruent to p(t) for all 0 <_ t <_ 1;
or

(c) for every analytic path, or analytic flex, p(t) E IRd, p(0) p, such that
G(p) _>_ G(p(t)) for all 0 <_ t <_ 1, then p is congruent to p(t) for all 0 <_ t <_ 1.

458 R. CONNELLY AND W. WHITELEY

2.2. First-order rigidity.
DEFINITION 2.2.1. A first-order flex, or an infinitesimal flex, of a tensegrity

framework G(p) is an assignment p’ V - IRn, p’(vi) p, such that for each edge
{i, j} e E (Figure 4),

(pj p) (p p) _< 0

(p pi) (p p) 0

(pj pi) (p p) _> 0

for cables {i, j} E E_,

for bars {i, j } E E0,

for struts {i, j} E+.

The dot product of two vectors X, Y is indicated by XY or X. Y.

cable bar strut

FIG. 4. Some first-order motions (velocities) permitted by cables, bars, and struts.

DEFINITION 2.2.2. A first-order flex p’ of a tensegrity framework G(p) is trivial

if there is a skew symmetric matrix S and a vector t such that p Sp + t for all
vertices i.

DEFINITION 2.2.3. A tensegrity framework G(p) is first-order rigid (or infinites-
imally rigid) if every first-order flex is trivial and first-order flexible otherwise.

Let

p;

be regarded as a column vector in Ia, where each p IRa, 1,..., v. Then R(p)
is the e-by-dv matrix defined by

R(p)p* (pj p) (P; p)

See [9] or [29]. R(p) is called the rigidity matrix for the framework G(p). Notice that
a first-order flex of a bar framework is a solution to the linear equations

n(p)p* 0.

Remark 2.2.1. A basic theorem of the subject says that first-order rigidity for a

tensegrity framework implies rigidity for the framework. (See [9, 29].)
DEFINITION 2.2.4. A first-order flex p is an equilibrium flex if p. q 0 for all

trivial first-order flexes q.
Physically, a first-order flex is a velocity vector field associated with the configu-

ration, and it turns out that an equilibrium flex is a vector field such that the linear
and angular momentum is preserved (Figure 5).

SECOND-ORDER RIGIDITY AND PRESTRESS STABILITY 459

a b
FIG. 5. The cable (Pl, P2) in example (a) is unstressed because it can be shortened, while the

strut (P3, P4) in (b) is unstressed because it can be lengthened.

2.3. Stresses.
DEFINITION 2.3.1. A stress w on a tensegrity framework G(p) is an assignment

of scalars wj ozj to the edges of G, where (... ,wj,...) E IRe, and e is the
number of edges of G.

A stress w on a tensegrity framework is a self stress if the following equilibrium
condition holds at each vertex i"

E oij (pj p) O,
J

where the sum is taken over all j with {i, j} E E.
A self stress w is called a proper self stress if (a) j _> 0 for cables {i, j} E_

and (b) j <_ 0 for struts {i, j} E+.
There is no condition for a bar.

A proper self stress is strict if the inequalities in (a) and (b) are strict.
With this notation a self stress w is a solution to the linear equations wR(p) 0,

and w is a proper self stress if each of the wj corresponding to cables and struts have
the proper sign. The following is shown in [35].

THEOREM 2.3.2 (first-order stress test). Let G(p) be a tensegrity framework,
where {i, j} is a fixed cable or strut. There is a first-order flex p’ for G(p) such that

(pi- p). (p- p}) : 0,

which means that a cable {p, pj} is shortened or a strut {p, pj} is lengthened, to
first-order, if and only if for every proper self stress w for G(p) has ozj O.

It is helpful to change the presentation of a stress. Let w (..., wj,...) IR
be a stress for G(p). Define a v-by-v symmetric matrix, the reduced stress matrix

by se{ting the (i, j) entry to be

{ -wj if = j,
ij EkWk if j

Denoting by pk the kth coordinate of p]ad, k 1,..., d, the expression

k=l Pvk

460 R. CONNELLY AND W. WHITELEY

is a quadratic form on the vd-dimensional space of coordinates of all points of the
configuration. Reordering the coordinates by the order of the points yields

IPll
where)T represents the transpose operation. This defines the stress matrix , which
is, up to permutation of the coordinates of p, just k "copies" of f. It is easy to check
that if p, q E IRvd, w E IRe, then

(1) wR(p)q- pTfq EWi (pi- pj). (qi- q).
ij

Thus Ft is just the matrix of a bilinear form in the coordinates of p and q, and it turns
out that w is a self stress if pT 0.

3. Prestress stability.

3.1. The energy principle. If a cable is stretched, the energy in the cable
increases. Similarly, if a strut is shortened, or a bar is changed in length, the energy
increases. We put these together in the following energy function"

(2) H*(q) E fJ (IqJ q12),
j

where

for each cable {i, j},
for each strut {i, j},
for each bar {i, j}, fij

is strictly monotone increasing,

is strictly monotone decreasing,

has a strict minimum at]pj pi] 2.

See Figure 6.

f.j

Iqi.qjl
cable Lij Iqi-qj

bar Lij Iqi-qjl
strut Lij

FIG. 6. At the given configuration, the energy function is increasing on cables, a local minimum
on bars, and decreasing on struts.

We have the following Theorem 3.1.1.
THEOREM 3.1.1 (energy principle). If such an H* has a local minimum at p

which is strict up to congruence in some neighborhood ofp in IRdv, then the framework
G(p) is rigid.

Proof. Any nearby q with G(q) _< G(p) will have fi. ([q[2)
for all members. Since this makes H*(q) _< H*(p), we conclude that q is congruent
to p. This makes G(p) rigid, by Definition 2.1.2(a) of rigidity.

SECOND-ORDER RIGIDITY AND PRESTRESS STABILITY 461

Remark 3.1.1. It turns out that any rigid tensegrity framework G(p) will have
"some" energy functions that make H* a minimum at p, but they would only satisfy
certain "relaxed" conditions (2). Later it will be necessary to use conditions (2) as
they stand.

3.2. Stiffness matrix, stress matrix decomposition. We apply the energy
principle for functions H*(p) which have their minimum by the second derivative
test. Let equation (2) define an energy function, where each fij is twice continuously
differentiable and chosen so that the first derivative fj (IPj- Pil 2) ij for each
member, wij : 0 are scalars for all cables and struts, and the second derivative
f" (IPJ Pil 2) cij > 0 for all members. Note that (3) insures that is a strict and
proper stress. We suppose that p is a fixed particular configuration.

To find a local minimum, the first step is to find a critical point. Note that p
is a critical point for H* if and only if the directional derivative at p is zero for all
directions p*. Hence, we compute the directional derivative of this energy function in
the direction p* starting from p.

Let p(t) p + tp*. So Dt(p(t)) p*, where Dt represents differentiation with
respect to t. We compute the derivative of H*(p(t)) with respect to t,

Dt(H*(p(t))) E fi(Ipj(t)12) [2(pj (t) pi(t)) (p; p’)].
ij

The directional derivative is then the above function evaluated at t- 0.

Dt(H*(p(t)))[t= Efij(Ipj pil 2) [2(pj pi) (p; p)].
ij

Since fij(IPj- PI) a;ij, using (1) we have

Dt(H*(p(t))) [t:o 2E wij(pj Pi) (P P) 2wR(p)p*.
ij

By the above calculation p is a critical point for H* if and only if 2wR(p)p* 0
for all p* if and only if wR(p) 0 if and only if w is a self stress for G(p).

If w is a self stress on G(p), we use the second derivative test to check whether
H* has a strict minimum at p, up to congruences. For each direction p* we calculate
the second derivative along the path p(t) and then evaluate when t 0 and p(0) p.

Dt [H*(p(t))]
t=O

The constant cij is often called the stiffness coefficient for the member {i, j} and in
physics it is normally a function of the Young modulus of the material forming the
member, the rest length of the member, and the cross-sectional area of the member.

462 R. CONNELLY AND W. WHITELEY

The rigid congruences of p form a submanifold in the space of all configurations,
and it is clear that H* is constant on this set. Thus when p* is a trivial infinitesimal
flex of G(p) it is easy to see that both the first and second derivative of H* along a
path in the direction of p* are zero. (This can also be seen by a direct calculation.)
We conclude with Proposition 3.2.1.

PROPOSITION 3.2.1. The energy function H* has a strict local minimum, up to
congruence, if the quadratic form

H(p*) E 2wij (p; p’) (p; p’) + E 4cj[(pj pi) (p; p’)]2
ij ij

regarded as a function of the coordinates of p*, satisfies H(p*) >_ 0 for all p*, and
H(p*) 0 if and only if p* is a trivial infinitesimal flex of G(p). In other words H
is positive definite on any complement of the trivial infinitesimal flexes.

Note that each fj for each cable and strut is a monotone function with nonzero
derivative. For that reason we know that the self stress is strict and proper. In other
words the self stress w is nonzero with the correct sign on each cable and strut.

What we have done is calculate the Hessian H as a quadratic form for the function
H*. Note, however, that H itself is not the sum of energy functionals of the members
of G. Thus the energy principle does not apply directly to H but applies only because
H* is locally approximated by H.

We now rewrite the formula for H in terms of the rigidity matrix. Let C denote
the dv-by-dv diagonal matrix with entries cj, where its rows and columns correspond
to the members of G. If {i, j} is a member of G, then the corresponding diagonal
entry is cj.

H 2R(p*)p* / 4(p*)Tn(p)TCR(p)p*
2(p*)Ttp* / 4(p*)TR(p)TCR(p)p*
(p*)T[2 / 4R(p)TCR(p)]p*.

In structural engineering, the matrix R(p)TCR(p) is called the stiffness matrix of
the framework, t is the geometric stiffness matrix or the stress matrix, and 2[+
2R(p)TCR(p)] is the tangential stiffness matrix. The matrix R(p)TCR(p) is clearly
positive semidefinite with the first-order flexes in its kernel. If the framework is in-
finitesimally rigid, then t 0 can be used in the above. The interesting cases for
us occur when there are some nontrivial infinitesimal flexes and some nonzero self
stresses.

Remark 3.2.1. The condition of Proposition 3.2.1 is a particular kind of stability
which corresponds to the engineer’s concept of first-order stiffness [30]. If we take
gradients of this energy function, we find that if the force at the ith joint is F, then
this set of forces is resolved, at first-order, by a displacement p* of the joints, where

Fi- AH 2Ewij(p; p)+ 4E cij [(pj Pi) (P; P’)] (Pj P).

Regarding the forces as one column vector F (FT,..., FT)T, we get

F [2a + 4R(p)TCR(p)]p*.

All equilibrium loads are resolved if and only if the matrix [2t + 4R(p)TCR(p)] is
invertible when restricted to the orthogonM complement of the trivial motions. In this

SECOND-ORDER RIGIDITY AND PRESTRESS STABILITY 463

case, the deformation p* resolves the load [2t) + 4R(p)TCR(p)]p*. This is a feasible
physical response of the structure, corresponding to positive work by the force, if and
only if p* is in the same direction as F or p*. F >_ 0, with equality only if F 0. This
is a restatement of the fact that H is positive definite on a complement of the trivial
motions.

If H is only positive semidefinite on a complement of the trivial infinitesimal
motions, then there is a direction p* for which there is no change in the energy up to
the second derivative. It may turn out that there will still be third- or higher-order
effects of a real energy which produce rigidity. However, if H is indefinite there is a
direction p* in which the energy strictly decreases.

Remark 3.2.2. Looking at this discussion in terms of the physics we can also
understand the rule of the energy functions. If H strictly decreases in the direction
p*, then any smooth energy function H* with the equilibrium stresses coij as the first
derivatives and the cij as the second derivatives for each member will have a local
maximum at p along the line p / tp*. If released with this energy in the direction
of p*, the framework will continue to move while seeking a smaller overall energy.
It is also possible to interpret the behavior of the framework in terms of Lagrange
multipliers.

3.3. Definition of prestress stability. Recall that if Q is a quadratic form
on a finite-dimensional vector space, then there is a symmetric matrix A such that
Q(p) pTAp, where p is a vector written as coordinates with respect to some basis
of the vector space. If Q(p) _> 0 for all vectors p, then Q (or A) is called positive

semidefinite. The zero set of Q is the set of vectors p such that Q(p) 0. If Q is
positive semidefinite and the zero set consists of just the zero vector, then Q is called
positive definite.

DEFINITION 3.3.1. We say a tensegrity framework G(p) is prestress stable if
there is a proper self stress w and nonnegative scalars cij (where {i, j} is a member of
G) such that the energy function regarded as quadratic form in the coordinates of p*

wij(p p)2 + cij [(pi pj). (p p)]2
ij ij

is positive semidefinite, cij 0 when coij 0 and {i, j} is a cable or strut, and only the
trivial infinitesimal flexes of p are in the kernel of H. In this case we say w stabilizes
G(p). The cij are called the stiffness coefficients as in 3.2. We have dropped the
constants 2 and 4 that appeared in 3.2 for simplicity.

Remark 3.3.1. If, for some member {i, j}, H has wiy 0 but cij > 0, then for
the energy principle to apply, the member must be a bar. Imagine a single cable,
which has no nonzero self stress. It is certainly not rigid, but it would be prestress
stable with the zero self stress if we did not insist that cij 0 when wij 0. This
is why the definition insists that each cable or strut which appears with a zero stress
does not appear in the formula at all.

Thus if any G(p) is prestress stable, stabilized at w, then we might as well change
G(p) to have struts only for those members where wij < 0 and cables only for those
members where wij > 0, deleting any cables or struts with a zero stress.

Note also that if we regard unstressed members as not being in G, then increasing
any cj keeps H positive definite (if it already was) and so we may assume they are all
equal to each other, assuming that we are only interested in recognizing the rigidity
of the framework. Thus if co stabilizes G(p) with all cables and struts stressed, with

464 R. CONNELLY AND W. WHITELEY

stiffness coefficients cij, then axcj} stabilizes G(p) with all the stiffness coefficients
equal to one.

PROPOSITION 3.3.2. If a tensegrity framework G(p) is prestress stable for a self
stress w, then G(p) is rigid.

Proof. The positive definite property of H guarantees a strict local minimum
modulo trivial first-order flexes of p. Since v2ij 0 for all the cables and struts of G
that appear in H*, we have the strictly monotone property of their energy functions,
near p. Thus the energy principle applies to show G(p) is rigid.

Remark 3.3.2. We will. see, by Theorem 4.4.1, that if G(p) is prestress sta-
ble, then G(p) is second-order rigid and, by Theorem 4.3.1, G(p) is rigid. However,
the present proof is much simpler since it is a direct application of the energy prin-
ciple.

PROPOSITION 3.3.3. If a tensegrity framework G(p) is first-order rigid, then it
is prestress stable.

Proof. The underlying bar framework G(p) is certainly first-order rigid; thus
R(p)TR(p) has only the trivial infinitesimal flexes in its kernel. In other words
R(p)TR(p) is positive definite on the equilibrium infinitesimal motions perpendic-
ular to the trivial infinitesimal motions in IRd. By [29] there is a proper self stress
w which is nonzero on each cable and strut. By choosing w sufficiently small, then
t2 + R(p)TR(p) also will be positive definite on the equilibrium infinitesimal flexes
restricted to the compact unit sphere. Thus G(p) is prestress stable. I:]

Often it is convenient to assume that a proper stress o for G(p) is strict; i.e.,
wij 0 for every cable or strut. If we are willing to consider subframeworks of G(p),
we need only consider strict self stresses for prestress stability.

Remark 3.3.3. Pellegrino and Calladine [28] use a different analysis of the rigid-
ifying effect of a prestress. (See also [4].) Given a framework G(p) with a self stress w
and a set of generators p,..., p for a complementary space of nontrivial first-order
flexes, they add k new rows to the rigidity matrix wR(pl),OzR(p2),... ,wR(p). If
this extended matrix R*(p w) has rank vd a(d+l) they say that the prestress2
"stiffens" the framework, modulo the positive definiteness of an unspecified matrix.

If R*(p, w) does not have rank vd-d(d + 1)/2 (assuming the vertices span IRa),
then there is a nontrivial first-order flex p’ apj satisfying wR(p)p’ 0 for all
i 1,..., k. Thus wR(p’)p’ 0 and G(p) is certainly not prestress stable for this
self stress w. In fact, it is easy to see that their condition for stiffening is equivalent
to requiring that the rank of a2f + R(p)TR(p) be vd d(d+l) for all sufficiently2
small a (assuming that the affine span of p is at least (d- 1)-dimensional). The
matrix that they have in mind, which must be positive definite, must be equivalent
to t2 + R(p)TR(p) restricted to some space complementary to the space of trivial
first-order flexes. If no positive definiteness is required, many mechanisms, such as
collinear parallelograms, would be declared "stiff."

On the other hand, if there is a one-dimensional space of equilibrium first-order
flexes, then we will see that prestress stability, the rank of R*(p) dv d(d+l) and2
second-order rigidity will all coincide. It is interesting that in the paper [28], most
examples have a one-dimensional space of equilibrium flexes. See [5] for corrections, as
well as [22-26] for a discussion of the problem of how to do the second-order analysis.

3.4. Interpretation in terms of the stress matrix and quadratic forms.
We now present some simple facts about quadratic forms that we will find useful later.

LEMMA 3.4.1. Let Q1 and Q2 be two quadratic forms on a finite-dimensional
real (inner product) vector space. Suppose that Q2 is positive semidefinite with zero

SECOND-ORDER RIGIDITY AND PRESTRESS STABILITY 465

set K, and Q1 is positive definite on K. Then there is a positive real number a such
that QI + aQ2 is positive definite.

Proof. Let X denote the compact set (a sphere) of unit vectors in the inner
product space.

X={plp’p=l}.

Recall that the zero set of Q2 is

K={plQz(p)-0}.

Let K N X C N c X be an open neighborhood of K in X such that

Q (p) > o for all p N.

Such an open set N exists since K 7)X is compact, Q is positive on K \ {0} D K N X,
and thus Q restricted to K U X must have a positive minimum rn. Then take

mN {p E XIQ(p) > }. For similar reasons there are real constants Cl, c such
that

Ql(p)>cl for all pEX,
e(p)_>>0 orl pX\N.

Then we define We calculate for p N 7)X,

Q (p) + cQz(p) > Q (p) > o.

For p X\N,

ICzlQQ1 (p) + cQ:(p) Q (p) + (p) > c + Icl > o,
82

Thus Q1 + oQ2 is positive on all of X, and hence it is positive definite. [:]

Remark 3.4.1. Note that Q1 is allowed to be an indeterminate term on the
whole vector space. It is only required to be positive definite on K. Note also, for
any quadratic form given by a symmetric matrix A,..where Q(p) pTAp, certainly
the kernel of A is contained in the zero set of Q. If Ap 0, then Q(p) pTAp O.
However, the converse is not true unless A is positive semidefinite. In particular the
converse is true when A R(p)TCR(p), the stiffness matrix. Then

(P*)TR(p)TCR(p)P* E cij [(p p’). (pj pi)]
j

and the kernel of A, assuming all the Cij > 0, is the same as the zero set of its quadratic
form. It is also clear from the above that the kernel of A is precisely the space of all
first-order flexes of the corresponding bar framework.

For any tensegrity framework G(p) we recall that G(p) is the corresponding bar
framework with all members converted to bars. We denote

=I((p))={p’eIRvd (Pi-Pj)’(P-P)-O, {i,j} amemberof G}.

In other words is the space of first-order flexes of (p), a linear subspace of IRyd.
Recall also that Tp is the space of trivial first-order flexes at p. (So Tp I.) Note

466 R. CONNELLY AND W. WHITELEY

that if G(p) has a strict proper self stress, then the first-order stress test implies that
I-I.

We now give a way of checking the prestress stability of a tensegrity framework
which is useful for calculations later. Recall a stress o: is strict if it is nonzero on every
cable and strut.

PROPOSITION 3.4.2. A tensegrity framework G(p) is prestress stable for the
strict proper self stress v if and only if the associated stress matrix ft is positive

definite on any subspace K c I complementary to Tp.
Proof. Assume that [+ R(p)TCR(p)] is positive semidefinite with only Tp as

the kernel, where C is a diagonal matrix with positive stiffness coefficients. Let p E I.
Then R(p)p’--0 and so

0 _< (p,)T [+ R(p)TCR(p)]p,- (p,)Tp,,

with equality if and only if p E Tp..Thus on K, 2 is positive definite.
Before proving the converse we remark that if p is any trivial first-order ilex at

p, then by Definition 2.2.2 there is a d-by-d (skew symmetric) matrix S and a vector
t IRd such that p Spi + t, 1,...,v. Thus

Ewij(P-P}) Ewi(SP- SEwJ(P--PJ) _0.
J

Now suppose t2 is positive definite on K. Let pt IRvd be arbitrary. Write
pt PT+PK +PE, where PT Tp, PK K, and pe E E, the (orthogonal)
complement of I in IRyd. Since t2pT 0 R(p)pT, we have

(4) (p,)T [+ R(p)TCR(p)]p,- (PK + p)T [+ R(p)TCR(p)](pK + p).

By Remark 3.4.1, the kernel of R(p)TCR(p) is I Tp + K. Now apply Lemma 3.4.1
to the inner product space K + E, where Q1 is the quadratic form corresponding to
gt, and Q2 is the quadratic form corresponding to R(p)TCR(p). The kernel of Q2 is
precisely K, and we have assumed that Q1 is positive definite on K. Thus by possibly
multiplying C by a positive constant we can assume that Ft + R(p)TCR(p) is positive
definite on K + E. By (4), this implies that t2 + R(p)TCR(p) is positive semidefinite
with kernel Tp, and G(p) is prestress stable.

3.5. Examples of prestress stable frameworks. The following are examples
of tensegrity frameworks that are prestress stable, but not first-order rigid. Thus the
converse of Proposition 3.3.3 is false.

In Figure 7a there is a self stress such that the outside members have a positive
self stress. A nontrivial first-order flex is given so that one can apply Proposition
3.4.2. Figure (Tb) is stable by a result in [7] concerning spider webs. In Figure 7b it
is the inside members we can choose to be positive. In both of these examples there
is a strict proper self stress such that the indicated first-order flex is nonzero only
on vertices of members that have a positive self stress, and the given first-order flex
generates a complementary space to the trivial flexes in the space of all first-order

SECOND-ORDER RIGIDITY AND PRESTRESS STABILITY 467

a b
FIG. 7. Examples of prestress stable bar frameworks that are not first-order rigid. (Nontrivial

first-order motions are indicated).

\\ y i
I \----I

\\ il I
I

\\,//
b

FIG. 8. Corresponding examples of prestress stable tensegrity frameworks, where the bars have
been replaced by cables and struts following the stabilizing self stress.

flexes. Hence the stress matrix on this space is positive definite and the framework is
prestress stable.

Following Remark 3.3.1, we can change appropriate members to be cables or
struts and preserve prestress stability, as in Figure 8.

Can a framework be rigid but not prestress stable? Consider the next two exam-
ples. Note that any first-order rigid bar framework with no self stress at all must have
0 as its stabilizing self stress. But the example in Figure 9a has a self stress on part of
the framework, and the bar can have no stress other than 0. It still is prestress stable.

However, the example of Figure 9b is not prestress stable, because the short
horizontal cable and the horizontal strut are unstressed and the framework becomes
nonrigid upon their removal. Nevertheless the framework is clearly still rigid. In fact,
built with all bars, it is prestress stable.

b
FIG. 9. Example (a) is first-order rigid, and thus prestress stable. Example (b) is rigid but not

prestress stable.

Suppose we fix (or pin) certain vertices. For our purposes this can be accomplished
by adding some first-order framework that contains these vertices and none of the other
original vertices. If the original framework has only cables with a proper self stress
(where the equilibrium condition only holds at the vertices that are not fixed), then
we say that the framework is a spider web. There is a discussion of this in [9] and [36]
as well as [7]. It is clear that .spider webs are prestress stable. See Figure 10.

468 R. CONNELLY AND W. WHITELEY

FIG. 10. This example is a spider web and thus prestress stable.

a b
FIG. 11. Two prestress stable tensegrity frameworks in three-space.

In three-space there are many examples of prestress stable but not necessarily
infinitesimally rigid tensegrity frameworks, such as in Figure 11.

Figure 11a is a regular cube with its main diagonals as struts and its edges as
cables. Examples such as in 11b can be obtained by taking any convex polyhedron
with a triangular face (in this case a cube with its near upper corner truncated),
choosing a point p0 close to that face, and joining p0 to all the other vertices of the
polyhedron with struts and making all the edges of the polyhedron cables except the
triangle which is composed of struts. Again it turns out that there is a strict proper
self stress w, and t is positive semidefinite with only the affine motions in the kernel.
This example is closely related to three-dimensional spider webs. (See [36].)

Another three-dimensional example can be obtained by taking a tetrahedron and
putting struts on each of the six edges and some prestressed spider web on the inside
of each triangular face, as in Figure 12.

Each face is prestress stable even in IRa so the sum of the energy functions is
positive semidefinite with only the first-order flexes that are trivial on each face in the
kernel. But since the tetrahedron itself is first-order rigid, flexes which are trivial on
each face are trivial on the whole framework. The framework is prestress stable.

3.6. Roths conjecture. Suppose G(p) has its points as the vertices of a
convex polygon in the plane. If the exterior edges of G are cables, and all of the other
members are struts, say, then we call it a cable-strut polygon or a c-s polygon.

It follows from [7] that any c-s polygon that has a proper self stress w =fi 0 has Ft
as positive semidefinite with only the affine motions in the kernel. It turns out that
the affine motions are never a first-order flex of such a framework [36]. Thus such an

SECOND-ORDER RIGIDITY AND PRESTRESS STABILITY 469

FIa. 12. A prestress stable tetrahedvn with cables in the faces and struts on the edges.

FIG. 13. A cable-strut (c-s) polygon.

w also stabilizes G(p), and thus G(p) is prestress rigid. Note that such a c-s polygon
need not be first-order rigid. In the case of Figure 13, the six vertices lie on an ellipse,
and by a classical result (see [3] and [34]), the framework has a strict proper self stress
and a nontrivial first-order flex. So this framework is prestress stable, but it is not
first-order rigid.

On the other hand Roth conjectured that any rigid b-c polygon (bars on the
outside, cables inside) was first-order rigid. In 6.2 we show that this is true. In Figure
14 we show three examples of nonrigid b-c hexagons with first-order flex indicated.

a b c

FIG. 14. Examples of bar-cable (b-c) polygons, with nontrivial first-order motions indicated.

For the three frameworks in Figure 14, the six vertices of each configuration form
a regular hexagon. For the first two cases, there are certain other configurations for
the same tensegrity graph (but still a convex b-c polygon) such that the framework
is rigid. This is not true for the last case, though. The reader is invited to find the
continuous nontrivial flex of each of these frameworks. But see 6.2 for a proof that
the flex exists.

Following [29] we see that there are many cabling schemes that guarantee first-
order rigidity, as in Figure 15.

470 R. CONNELLY AND W. WHITELEY

a Cauchy Polygon b Griinbaum polygon C generalized Grtinbaum polygon

FIG. 15. Examples of first-order rigid bar-cable polygons.

Consider a b-c hexagon with four cables. One can see that either it contains one
of the examples of Figure 15 and thus is always first-order rigid, or it is contained in
one of the examples of Figure 14 and thus, at least for some convex configurations, it
is not rigid.

4. Second-order rigidity for tensegrity frameworks.

4.1. The definition of second-order rigidity. Our definition of second-
order rigidity for tensegrity frameworks comes from differentiating the equation
Ipj(t) pi(t)l 2 Li twice. This generalizes the previous definition of second-order
rigidity for bar frameworks in [7].

DEFINITION 4.1.1. A second-order flex (p’, p") for a tensegrity framework G(p)
is a solution to the following constraints, where p and p" are configurations in IRa
(each regarded as an associated pair of vectors p and p’ to each point pi).

(a) For {i,j} a bar, (pi-pj).(p-p}) 0 and Ip-p12+(pi-pj).(pT-py) 0.
(b) For {i,j} a cable, either (pi- pj). (p- p}) < 0 or (pi- pj). (p- p}) 0

and IP Pj + (P- Pj)" (P’- Pj) < 0.
(c) For {i,j} a strut, either (pi pj). (p- p}) > 0 or (pi- pj). (p- p) 0

and]p- pj] + (p pj). (p’- py) >_ 0.
A tensegrity framework is second-order rigid if all second-order flexes (p,

have p as a trivial first-order flex. Otherwise G(p) is second-order flexible.
Figure 16 shows second-order flexes of some tensegrity frameworks (double arrows

for p", single arrow for p). The flex in Figure 16a is nontrivial for p. The flex in
Figure 16b is trivial for p, but (p, p") is not the first and second derivative of a rigid
motion of p. The flex in Figure 16c is the derivative of a rigid motion of p. Figure
16d shows a nontrivial second-order flex in a framework which is still rigid.

a

FIG. 16. Examples of bar frameworks with first-order (single arrows) and second-order (double
arrows) motions indicated.

Since the second-order extension p is the solution of an inhomogeneous system of

SECOND-ORDER RIGIDITY AND PRESTRESS STABILITY 471

equations and inequalities, we can add any solution q of the corresponding homoge-
neous system to p.

PROPOSITION 4.1.2. If (p, p’) is a second-order flex of a tensegrity framework
G(p) and q’ is any first-order flex of G(p/, then (p’, p"+ q’) is a second-order flex
of G(p).

Proof. Assume that for each cable {i, j} (respectively, each bar, strut) with
(pi pj). (p p.) O,

(pi- pi). (p- p) + (pi- p). (p- p) _< 0 (respectively, O, _> O)

and
(pi p). (q q) <_ 0 (respectively, O, _> 0).

Therefore by adding these inequalities we obtain

(p- [(ppj).(p-pj)+(p pj)., +qi)-(py+qj)] <_0 (respectively, --0, >_0).

These are the inequalities required for Definition 4.1.1. E]

If we add a multiple of p itself to any second-order extension p we can make
the second-order extension also satisfy the second-order inequalities even for those
members with (p- pj). (p- p) 0.

4.2. Trivial higher-order motions. In the following p(t) (p(t),...), 0 _<
t _< 1 will be an analytic path in the configuration space, so p(t) IRd, 1,..., v.
Following [6] we say that p(t) is a trivial flex if

p(t) T(t)p(0) (T(t)p (0), T(t)p2(0),..., T(t)p(0)),

where T(O) I, T(t) is a rigid motion of IRd, and T(t) is an analytic function of t. In
particular, this means that we can write T(t)pi A(t)pi + b(t), 1,..., v, w.here
A(t) is an orthogonal matrix, b(t) E IRd, and all the coordinates are real analytic
functions of t.

We next say that p, p",..., p(k), each p(J) E IRd for j 1,..., k, is a k-trivial
flex of p if there is a trivial flex p(t) such that

p(J) for -1 2 k.Dtp(t)
t=0

j

Recall that D represents the jth derivative with respect to t.
It is easy to check that if p,..., p(k) is a k-trivial flex of any framework G(p) in

IRd, then the analogue of equations (a) in Definition 4.1.1 holds for j 1,..., k, since
clearly edge lengths are preserved up to any order k.

in fact we will give a fairly explicit description of k-trivial flexes. Although this
description is long, it seems important to be precise, given the long history of confusion
in this area.

We already know that 1-trivial flexes p are given by

p Spi + b’ 1 v

where S -ST is a d-by-d skew symmetric matrix and b’ IRd. See [6] or [9]. In fact
every orthogonal matrix A sufficiently close to the identity matrix I can be written as

1
$2

_
$3A eS l + S - + -. +...,

472 R. CONNELLY AND W. WHITELEY

where S is a skew symmetric matrix, and the above infinite series converges. It is well
known that the exponential map

S -- eS

takes the tangent space of the Lie group to orthogonal matrices, which is the Lie
algebra of the Lie group, into the Lie group itself. This exponential map is a local
analytic diffeomorphism near I, the identity. Thus any analytic path A(t) with A(0)
I pulls back to a path S(t) in the Lie algebra, which is itself analytic. Thus

A(t) eS(t).

On the other hand since e I and thus S(0) 0 we can write

t2 t3
s(t) tSl + +

where each $1, $2,... is skew symmetric. Thus

t2 t3
A(t) I + tl + -2 + --_3 +...

t2 t3 2

Rearranging terms, which is possible since we have an absolutely convergent power
series, we get

t2 t3 (3 3
(5 A(t) I + tS1 + (Se + S) + Ss + -SS + -SS + $3 +

Thus each of the matrix coefficients of gives a parametric description of the jth
derivative of A(t), and thus a description of a k-trivial flex of p. In particular p, p"
is a 2-trivial flex of p if and only if there are skew symmetric matrices S, S and
b, b"]ad such that

p’ Sp + (b’,..., b’),

p"= (S + $12)p + (b",..., b").

Later it will be convenient to be able to "cancel" initial parts of a kth order flex,
with a k-trivial flex. Thus we state the following. See [6].

PROPOSITION 4.2.1. Let p(t), p(0) p, be an analytic path in configuration
space such that

p(J) Dtj [p(T)],[t:0, j 0, 1,..., k

is k-trivial. Then there is a rigid motion T(t) of IRd, analytic in t, such that T(O) I
and

=0 for j=l k.Dt[T(t)p(t)]
t=0

Proof. We proceed by induction on k. For k 0, there is nothing to prove. So
we assume

D{[p(t)]
t=o 0 if j 1,...,k,

and we wish to find T(t) such that the (k / 1)st derivative is 0 as well, assuming that
the first k + 1 derivatives are k-trivial.

SECOND-ORDER RIGIDITY AND PRESTRESS STABILITY 473

We restrict to the space spanned by pl, p2,..., pv. By adding a translation we
have, using (5),

b(J) 0, j 1,..., k + 1,
Sy-O, j-1,...,k.

Note then that Dt+lp(t)lt=o k+lP. Define T(t) by

_tk+l

() e r) S+l I-
tk+l

(k + 1)! Sk+l +

We then observe, for all j 1, 2,...,

(6)

But

Thus

-S+

{ Sk+lP Sk+lp 0, for j=k+l }DJt[T(t)p(t)]t=o 0 for j=l,...,k
-0. E]

Remark 4.2.1. There are several ways of handling the problem of "normalizing"
the first few derivatives. One way is the above technique; another way is to use "tie
downs" as in [33] and discussed in [9]; a third way is to use the method described by
[20]. (See also [9].) This normalizing is a nuisance but it is convenient to have for the
argument used to show that second-order rigidity implies rigidity.

The following is an immediate consequence of the definition of k-trivial and the
formula (5).

LEMMA 4.2.2. Let pt,...,p() be such that pt p" p(k-1) 0. Then
p(k) is a l-trivial flex at p if and only if p, p’,..., p(k) is k-trivial at p.

It is also useful to have the following.
LEMMA 4.2.3. Let p(t) be any analytic path in configuration space such that

p’= Dtp(t)lt=o,... p() Dtp(t)lt=o Let T(t) be any rigid motion of lRd, analytic
in t; T(O) I. Then Dt[T(t)p(t)]lt=o,...,Dt[T(t)p(t)]lt=o is k-trivial at p if and
only if pt,..., p(k) is k-trivial at p.

Proof. Since T(t) is invertible it is enough to show that if p,..., p() is k-trivial,
then Dt[T(t)p(t)]lt=o,... ,Dt[T(t)p(t)]lt=o is k-trivial. But then p(e)_
for g- 1,..., k for some rigid notion T(t) of IRd, analytic in t, T(0) I. But then
clearly for t- 1,..., k,

Dt [T(t)(t)p(t)]Dt [T(t)p(t)] [t:o t:o’

by expanding both sides by the product rule (6). But T(t)T(t) is again a rigid analytic
motion of]ad and we are done. FI

4.3. Second-order rigidity implies rigidity. We have generalized the notion
of second-order flex (see [6] for bar frameworks) to general tensegrity frameworks. In
the next theorem we will show that a nontrivial analytic flex of a tensegrity framework

474 R. CONNELLY AND W. WHITELEY

gives rise to a second-order flex (p, p’) whose first-order part p is nontrivial. The
natural idea is to take the first and second derivatives of the analytic flex evaluated
at the starting point. Unfortunately, this may not work because the first derivative of
the analytic flex may be trivial, and we may have to wait for some higher derivative
to be nontrivial. For cables and struts we use the principle that the first nonvanishing
derivative of the member length squared has the correct sign.

THEOREM 4.3.1. If a tensegrity framework G(p) is second-order rigid, then it
is rigid.

Proof. Assume G(p) is not rigid. Then we will show that G(p) is not second-order
rigid by finding a second-order flex (q, q’) such that q is not l-trivial at p.

Since G(p) is not rigid we know that G(p) has a nonrigid analytic flex p(t) by
Definition 2.1.2 (c). (See [6] or [9].) Define, for g- 1, 2,...,

p() DTP(t)lt=o.
Suppose for all k 1, 2,..., p,..., p(k) is k-trivial. Then for any {i, j}, not just

those members of G, for all k 1, 2,...,

-0Dt [[p(t) pj(t)l=] it=0
which implies that lp(t) pj(t)l is constant in t, which implies that p(t) is rigid
nMytic flex, contradicting the choice of p(t). Thus for some k 1, p,..., p(k) is not
k-trivial.

Now let k be the smallest positive integer such that p,..., p() is not k-trivial,
fixing k. (If k 1, life is especially easy.) Applying Proposition 4.2.1, we can alter
p(t) so that not only is p’,..., p(k-) (k- 1)-trivial, but p’ p(k-) 0. (If
k 1 we do nothing.) Note that by Lemma 4.2.3, 0 p,..., p() is still not k-triviM.

We observe that for any {i, j},
k

2(pi- pj)" (p}) pa)).
Hence p() is a first-order flex for G(p). By Lemma 4.2.2, p(a) is not l-trivial. Now
we define

q p().
We now proceed to find q’. We still must pay attention to conditions analogous

to first-order conditions. Recall that E0 is the set of bars of G, E_ is the set of cables
of G, and E+ is the set of struts of G. For every n k, k + 1,..., 2k 1, define

E={{i,j}EoUE_UE+ (pi-pj).(pe)-p))=O for=l,...,n-1}
Note that when m 1,..., n, and {i, j} E, or when {i, j} is a bar,

Dp[Ip(t) p(t)l] (pe pe). (, ’t--O

=2(pi P) (m) _()
"tP -Pj

--0 if {i,j}eEo
-0 if m=l,2,...,n-1 and {i,j}E
< 0 if m n and {i, j} En E-
>0 if m=n and {i,j}EE+

SECOND-ORDER RIGIDITY AND PRESTRESS STABILITY 475

since either p(e) 0 or p(m-e) 0 if t 1,..., m- 1 _< 2k- 1. (Note that only cables
or struts are in any En.) In other words, for just those members in E, p(’) acts as
a strict first-order flex of G(p).

We will next find a sequence of real numbers 1 >> 2 >>- 0 and define

r p() + p(+) + p(+) +... + _p(-),
where >+ means that + is chosen suciently small such that later inequal-

it)es will remain satisfied. We see that r’ is also a (nontrivial) first-order flex of G(p).
In fact we require that for {i, j} a member of G,

{ <0 if {i,j}(E...E_)E_}(7) (pi-p)-(r-r}) >0 if {i,j}(EU UE-I)E+
0 otherwise

To see that this is possible we proceed by induction. Define tbr n k, k + 1,..., 2k + 1,

r(n) p(k) + ep(k+) +... + e_kp(),

where r’(k) p(k). We require that for {i,j} a member of G,

{ <0 if {i,j}e(EkU...UE)E_}(8) (pi-pj).(r(n)-r}(n)) >0 if {i,j}e(EkU...UE)E+
0 otherwise

But this is true for n k, and if e+l > 0 is chosen small enough we can satisfy (8)
for n + 1, assuming it is true for n.

In other words for every cable and strut of G, either r is strict or r and p,...,
p(2k-) act as if {i, j} were a bar for the first-order conditions.

We now choose a large real number B > 0 and define

2
q"= ()p() + Br’.

Recalling that q’ p(k), we claim tha.t (q’, q") is a second-order flex of G(p) for B
large enough. For {i, j} E U.-. U E_ we calculate

(P- Pj)" (q’-q.)+ Iq- qj]2
2 () _()

() (, ,). , . + (, ,). (r r}) + ,U

{>0 if {i,j} E- (Ek U U E2k-1) }<0 if {i,j} E+ (Ek U Ek_)

if B is chosen large enough by (7).
For {i,j} a member of G but {i,j} E ... Ek_, then (pi- py). (r- r}) 0

and (pi- pj)" (pe) pe)) 0 for e 1,..., 2h 1. Then

2k

p). (p -t=0
g=0

(k) _() p}) ()=2(pi-pj).[pi -Pj)+(k)l -Pj
()[(p- p). (.- w.)+ q;-
0 if {i,j}E_(EkU...UEk_I)
-0 if {i,j}Eo (EkU’"UEk-)
k0 if {i,j}E+(EkU...UEk_).

476 R. CONNELLY AND W. WHITELEY

Thus in either case the second-order conditions are satisfied, (q’, q’) is a second-
order flex of G(p), and q is not 1-trivial. D

Remark 4.3.1. The general outline for the above proof is the same as in [6],
except that the cables and struts can cause complications. Differentiating the edge
length condition allows us to detect any cable or strut, but its occurrence causes an
appropriate sign somewhere from the level k to 2k. The intermediate levels from k + 1
to 2k- 1 must be introduced into the (q, q’) carefully.

4.4. Prestress stability and second-order rigidity. We observe that pre-
stress stability is stronger than second-order rigidity.

THEOREM 4.4.1. If a tensegrity framework G(p) is prestress stable, then it is
second-order rigid.

Proof. Let co be the prestress that stabilizes G(p). Then from the comments
following the definition of prestress stability, co also stabilizes that subframework of
G(p) consisting of the same bars and all cables and struts with wij O. Thus, without
any loss of generality, we can assume that co is strict. For example, wij 0 on all the
cables and struts of G.

Suppose (p’, p’) is a second-order flex of G(p), where p’ is not a trivial first-
order flex. We wish to find a contradiction. By the first-order stress test we see that
(p- pj). (p- pj) 0 for all members of (because wj # 0 on all cables and
struts). Thus, by the second-order condition,

IP- pj 12 + (p pj)" (p’- pj) 0
_>0

{i,j}= cable
{i,j} bar
{i,j}= strut

for all members {i, j) of G. In any case, since co is proper for all members {i, j} of G,

(pi- pj). (pi- pj) < 0.COij IPi pj [2 ._ COij

But since p is a nontrivial first-order flex of G(p) and since co is a stabilizing self
stress for G(p),

wR(p’)p’- E wij p- pl -(p,)Tp, > 0
ij

by Proposition 3.4.2. Recalling that coR(p) 0,

0 < coR(p’)p’ coR(p’)p’ + coR(p)p"

E wij (p pj)2 + coij (Pi Pj)" (P’ Py) _< 0,
ij

a contradiction. Thus G(p) is second-order rigid.
Remark 4.4.1. It turns out that there are tensegrity frameworks that are not

prestress stable for any prestress yet are still second-order rigid. For instance, the
example of Figure 9b has this property. The two "tetrahedral" blocks are prestress
stable. Therefore, all second-order flexes are trivial on these blocks. Any such second-
order flex must extend to a rotation about the common point 0. However, this violates
either the strut or the cable condition on the unstressed connecting members at first-
order.

However, in 5.3 we will see that if the space of first-order flexes or the space
of proper self stresses is one-dimensional, then second-order rigidity and prestress

SECOND-ORDER RIGIDITY AND PRESTRESS STABILITY 477

stability are the same. This will also help us to find examples of bar frameworks
which are second-order rigid but not prestress stable in 5.3.

5. The stress test.

5.1. Duality from linear algebra. We now formulate some well-known prin-
ciples of duality in linear algebra which we will later interpret as a "stress" test for
second-order rigidity. These duality principles are a special case of the duality princi-
ples used in linear programming.

In the following, let A be a d-by-e real matrix, where we write A in block form

A= [AoA+]’
where Ao and A+ are some designated subsets of the rows of A. In our applications
A will correspond to the rigidity matrix, A0 will correspond to the rows indexed by
the bars of G, and A+ will correspond to the rows indexed by the struts and cables of
G, with the strut rows multiplied by -1. However, for the general statements in this
section we will not need any special properties of A.

We can now restate the first-order stress test in this somewhat more general
context. We use the notation [Xl,X2,...] < 0 for vectors to mean xi < 0 for all
i= 1,2,

PROPOSITION 5.1.1. There is a column vector x E IRd such that

Aox =0,
A+x < 0,

if and only if for all row vectors y E IRe, y [y0, y+], such that

y0A0 + y+A+ 0,

y+ _> O;

then y+ 0.
This is a special case of the duality principle for homogeneous linear equalities,

for instance, as found in [32, Thin. 6]. Note that the "only if" implication is easy, since
if Aox 0, A+x < 0, y0A0 +y+A+ 0, y+ >_ 0, then 0 yoA0x + y+A+x _< 0. If
y+ 0 this gives a strict inequality and thus a contradiction. The other implication
implicitly or explicitly uses the principle of "hyperplane separation." See, for example,
[17, p. 10].

An important point is the strictness of the inequalities. However, in the following
we instead concentrate on the duality principle itself, putting aside the strictness
properties for the moment.

Let

be a column vector.
PROPOSITION 5.1.2.

b= [bo IRb+]
There is a column vector x IRd such that

A0x bo,

A+x _< b+,

478 R. CONNELLY AND W. WHITELEY

if and only if for all row vectors y E IRe, y [y0, y+], such that

y0A0 + y+A+ 0,

y+ _>0;

then yob0 + y+b+ _> 0.
Note that again the "only if" implication is easy since if Aox bo, A+x _< b+,

y0Ao + y+A+ 0, and y+ _> 0 then 0 yoA0x + y+A+x _< yobo + y+b+, and again
the "if" implication follows from the hyperplane separation principle.

In the terminology of linear programming this proposition is an asymmetric form
of duality in the special case when the primal problem has the constant 0 objective
function. See [15] for instance for a discussion of various such forms of the Parkas
alternative as well as a proof.

We now sharpen this proposition to obtain an equivalent dual reformulation to
determine when we get strict inequality. We fix A and b.

PROPOSITION 5.1.3. There is a column vector x IRd such that

Aox bo,

A+x < b+,

if and only if for all row vectors y IRe, y [yo, y+], such that

y0Ao + y+A+ 0,
y+ >_ 0;

then yobo + y+b+ _> 0 with equality if and only if y+ 0.

Proof. Again, the only if implication follows easily. A0x bo, A+x < b+,
y0Ao + y+A+ 0, y+ _> 0 imply that 0 yoA0x / y+A+x _< yobo / y+b+ and we
have strict inequality, and a contradiction, if and only if y+ :fi 0.

To show the converse we use the two previous propositions. Assume that the
condition on the y vector holds. By Proposition 5.1.2 we know that there is an
x IRd such that A0x b0, A+x _< b+. If all of the b+ inequalities are strict
we are done. If not, throw out those strict inequalities from A to get the condition

Aox bo, A+x b+. Similarly, we can throw out the corresponding set of variables
in the y vector. Now it is still true that if y0A0 / y+A+ 0, then yoAox / y+A+x
yob0 + y+b+ 0. Thus Proposition 5.1.1 applies, and there is a (small) x .IRe

such that Aox 0, A+x < 0. ThenAo(x+x) bo, A+(x+x) < b+. Ifx
is snall enough then x / x still satisfies those inequalities that were thrown out as
well.

5.2. Interpretation as the stress test. We now specialize the results of

5.1 to the case of the rigidity matrix. Let G(p) be a tensegrity framework in]Rd,
and let R(p) be its d-by-e rigidity matrix. Let R0(p) denote those rows (regarded
as a smaller matrix) corresponding to the bars of G. Let R+(p) denote the matrix
obtained from those rows of R(p) corresponding to cables and struts of G, with the
rows corresponding to struts multiplied by -1.

Suppose w is a proper stress for G(p), so wR(p) 0. We then have a correspond-
ing [w0, w+], where 0 corresponds to the stresses on the bars and w+ to the stresses
on the cables and struts, but with the opposite sign for struts only. Thus being
proper translates into w+ _> 0, and being a self stress means w0R(p) + w+R+(p) 0.

SECOND-ORDER RIGIDITY AND PRESTRESS STABILITY 479

In this terminology p is a first-order flex if

Ro(p)p’ 0,
n+(p)p’ _< 0,

and p, p" is a second-order flex if in addition

no(p’)p’ + no(p)p" 0,

R+ (p’)p’ + R+ (p)p" <_ 0,

where an inequality need only hold when the corresponding inequality, in the first-
order system, is an equality. Recall that p" (or p’) is strict for {i, j} a cable or strut
if the corresponding inequality is strict.

We now have our strict second-order duality result.
COROLLAaY 5.2.1 (the second-order stress test). A first-order flex p’ of G(p)

extends to a second-order flex (p, p") if and only if for all proper self stresses w for
G(p), with stress matrix ft,

(p,)Tfp, _< 0.

Furthermore, p" can be chosen to be strict, on each cable and strut {i, j} where p is
not strict, if and only if for all proper self stresses co, pftp 0 implies wj O, for
each such {i, j }

Proof. We apply Proposition 5.1.3, where

p=x

Ro(p) Ao, Ro (p’)p’ bo,

R+(p) A+, -R+(p’)p’ b+,

w0=Y0, w+=Y+.

We may assmne, without loss of generality, that R(p)p 0, since any cable or strut
where p is strict can be disregarded as a cable or strut for the second-order conditions.

The second-order conditions translate into the hypothesis of Proposition 5.1.2,
and the conclusion translates into the condition that w is a proper self stress. Then

0 _< yobo + y+b+ -woRo(p’)p’- w+R+(p’)p’ -wR(p’)p’

is the condition desired. The strictness follows from Proposition 5.1.3. [:1

We can simplify matters even further when G consists only of bars. This is our
second-order duality result for bar frameworks.

COROLLARY 5.2.2 (second-order stress test for bars). A first-order flex p of a
bar framework G(p) extends to a second-order flex if and only if for all self stresses w
for G(p), with stress matrix f,

(p,)Tp, O.

Remark 5.2.1. In the appendix, we show that we can always replace a framework
(with a strict proper self stress) by an equivalent bar framework and use this to check
second-order rigidity. However, it seems simpler to use Corollary 5.2.1 directly, rather
than introduce so many extraneous members.

480 R. CONNELLY AND W. WHITELEY

5.3. Second-order rigidity and prestress stability. When does second-
order rigidity imply prestress stability? We begin with cases when the set of self
stresses or the set of equilibrium first-order flexes is one-dimensional, the natural first
cases to consider.

Note that for a fixed tensegrity framework G(p), the proper self stress and first-
order flexes each form a cone with the origin as the cone point.

PROPOSITION 5.3.1. If a tensegrity framework G(p) is second-order rigid with
either a one-dimensional cone of equilibrium first-order flexes or a one-dimensional
cone of proper self stresses, then G(p) is prestress stable.

Proof. Suppose p is any nontrivial equilibrium first-order flex of G(p) generating
the one-dimensionM cone of all equilibrium first-order flexes. If for all proper self
stresses with stress matrix t we have

t(p’)Tgtp’- (tp’)Tgttp

_
0

for all first-order flexes tp’ of G(p) (t a real scalar), then by Corollary 5.2.1 p’ extends
to a second-order flex (p’, p") of G(p), which contradicts G(p) being second-order
rigid. Thus for some proper self stress w, (p’)Ttp’ > 0, w stabilizes G(p) (by Propo-
sition 3.4.2) and G(p) is prestress stable.

Suppose w is a proper nonzero self stress in the one-dimensional cone of proper
self stresses. Suppose there is a nontrivial first-order flex p such that (p}Tfp _< 0.
If --w is not a proper stress, then tw, t _> 0, are the only proper self stresses for G(p).
Then by Corollary 5.2.1 again G(p) would not be second-order rigid, contradicting
the hypothesis. Therefore either (p)Tgtp > 0 for all nontrivial first-order flexes p or
-w is a proper self stress. If -w is a proper self stress, then (p)Tp 0 and again
p’ would extend to a second-order flex. Thus (p’)T(:i:)p’ > 0 and +/-w stabilizes
G(p).

We have already seen an example of tensegrity framework in the plane, Figure
9b, which is easily seen to be second-order rigid, directly from the definition, but is
not prestress stable for any proper self stress. Here we present another example, but
one which is a bar framework in three-space. It also serves as an example of how to
calculate using the stress test.

If we have any bar framework G(p), let

p’(1),..., p’(n)

denote a basis for a space of nontrivial first-order flexes of G(p). Let

f(1),..., t(m)
denote a basis for the space of self stresses of G(p). If G(p) is prestress stable,
some linear combination of the stress matrices must be positive definite on the space
generated by the first-order flexes p’(1),..., p’(n). From Corollary 5.2.2, the second-
order stress test for bar frameworks, G(p) is not second-order rigid if and only if all
of the stress mtrices have a common nonzero vector on which they evaluate to be 0
in this same space generated by p’(1),..., p’(n). When n 2, both of these criteria
can be checked with certain easily calculated expressions.

Example 5.3.1. We define a specific example in three-space. Let G(p) be the
following bar framework in three-space with the following seven vertices:

Pl (0, 0, 0), p4 (1, 0, 0), P7 (1, 0, 0),
P2 (0, 1, 0), P5 (1, 1, 0),
P3 (0, 0, 1), P6 (0, 1, 0),

SECOND-ORDER RIGIDITY AND PRESTRESS STABILITY 481

and the following bars:

{1, 2}, {1, 3}, {1,4}, {1, 6}, {1, 7},
{,a}, {,}, {, },
{3, 4}, {3, 5},
{4,5},{4,6},
{,}, {,7},
{6, 7}.

See Figure 17a, where although p. p6 and p4 p7 we have separated them slightly
so that the framework can be more easily understood.

P3

a P b
FIG. 17. A bar framework (a) in 3-space that is second-order rigid but not prestress stable. A

portion of the planar base is shown in (b).

Note that this framework is made of the framework of Figure 17b and its sym-
metric copy, with appropriate identifications. Then pa is added along the z-axis.

We consider those first-order flexes p’(k), where p (k) p (k) p (k) 0,
which clearly determines a complement of the space of trivial flexes, since (pl, p., pa)
determines a bar triangle. Since (pl, p2, pT) and (p2, ps, p) are bar triangles in the
same plane, sharing a common bar pl, p, any first-order flex p’ must have

(Pl Ps)" (Pl P) O.

In other words, {1, 5} is an "implied bar." Thus the first-order rigid tetrahedron
(pl,p.,pa,p) is implied and p 0. Similarly p 0, from the implied tetrahedron
(pl, p3, p5, p4). See [9]. So the following first-order flexes are a basis for a comple-
mentary space:

{ (0,0,1) if i-6}p(1) (0, 0, 0) otherwise

(0,0,1) if i=7 }p(2) (0, 0, 0) otherwise

We can also find two independent stresses for G(p):

1
wij (1) -1

0

if {i, j} {2, 7}, {5, 6},
if {i,j} {2,5},{6,7},
otherwise

or {1,6}}or {2, 1}

482 R. CONNELLY AND W. WHITELEY

coy(2) -1 if {i,j) {1, 4}, {6, 7), or {4, 5) /0 otherwise

These are easy to see by looking at Figure 17b. Notice that e 15 3v- 6 and that
the space of first-order nontrivial (equilibrium) flexes must be of dimension 2, so the
dimension of the space of self stresses is 2 as well. Thus co(l) and w(2) generate all
the self stresses.

We next calculate the stress matrices (I), Ft(2) corresponding to w(1), w(2),
relative to the vectors pt(1), pt(2). Note that for a- 1,2, b- 1,2, k 1,2,

p’(a)Tt(k)p’(b) tab(k) E wj(k)(p(a) p.(a)). (p(b) p}(b)).
j

Then

Ew6{(1) -w67(1) 1t(1)
-w76 (1) E w{(1)

1 +1]+1 0

-w6(3) Ewi(2) +1

To see if any linear combination of these is positive definite, we calculate, for any real

AIdet[Al/(1) + A2(2)] det
)1 -1

t-

which is a negative definite quadratic form itself, since (-1)2 -4(-1)(-1) -3 < 0.
Thus for each choice of (A1,A2) (0,0), det[Alt(1)+ A2(2)] < 0, which implies
that none of the forms A1(1)+ A2t(2) are positive definite, and thus no stress
Alw(1) + A2w(2) can serve as a stable prestress.

On the other hand recall that the second-order stress test for bar frameworks,
Corollary 5.2.2, says that a first-order flex p will extend to a second-order flex if and
only if p is in the zero set of all the proper self stresses (regarded as quadratic forms)
of G(p). If some pl does extend, then so does pl plus any trivial first-order flex, and
so we can assume that p’ is in the space spanned by p’(1) and p’(2). Thus G(p) will
be second-order rigid if and only if t(1) and Ft(2) (and thus all)lt(1)+ A2t(2)) have
a common zero. The zeros of (i) (as a quadratic form) are scalar multiples of

(0, 1) or (2,-1).

For (2) we get
(1,0) or (-1,2).

None of the above four vectors are scalar multiples of any of the others, so G(p)
is second-order rigid but not prestress stable.

Remark 5.3.1. If the dimension of the space of nontrivial (equilibrium) first-order
flexes I is two, then it is easy to determine when the framework is prestress stable.
Calculate a basis of stress matrices restricted to I. Choosing an orthonormal basis for

SECOND-ORDER RIGIDITY AND PRESTRESS STABILITY 483

I, we see that there are at most three such distinct stress matrices (even if the space of
self stresses is higher-dimensional), since they correspond to symmetric 2 2 matrices.
If there are just two such matrices, one can perform an analysis similar to Example
5.3.1. If there are three such stress matrices, independent over I, there always is a
stabilizing self stress.

Also for Example 5.3.1 it is possible to vary the points by a small amount, keeping
all the points except p3 in a plane, and obtain many other examples of second-order
rigid but not prestress stable bar frameworks in three-space. [I

Note that the underlying graph of the example above is a triangulated sphere.
Figure 18a shows a realization of this graph as a triangulated convex surface. By
[6], this realization is also second-order rigid. In fact it is prestress stable as well. All
members adjacent to p6 and p7 have a positive stress in the stabilizing self stress. This
brings up the question: are all triangulations of a convex polyhedron in three-space,
with edges as bars, prestress stable? In [6] it is only shown that such frameworks are
second-order rigid. The answer is yes and will be shown elsewhere.

P3

P2

P4

a Pl b
FIG. 18. Example (a), with the same graph as Figure 17a, is prestress stable in three-space.

Example (b) is second-order rigid in the plane but not prestress stable.

In the plane, it turns out that if we take the bipartite graph K3,3 with its six
points on the line and { i, 2, 3}, {4, 5, 6} as the partition (Figure 18b), then this frame-
work K3,3(p) is second-order rigid but not prestress stable. We omit this nontrivial
calculation. It also turns out that K3,3(p) is a mechanism in R3.

In [26], as well as in [27, p. 50], there is another example of a second-order rigid
but not prestress stable bar framework in the plane. The calculation for that example
turns out to be quite simple.

5.4. Applications in b-c polygons. Here we apply the second-order stress
test to a special class of frameworks G(p): the b-c polygons of 3.5. That is, G(p) is
a convex polygon in the plane with bars as edges and only cables on the inside.

PROPOSITION 5.4.1. Let p be any nontrivial first-order flex of G(p), a b-c
polygon in the plane. Then p’ extends to a strict second-order flex (p’, p") of G(p).

Proof. Let f be any stress matrix coming from a proper self stress w of G(p).
Since p is nontrivial it is easy to check that p is not an affine image of p. By [7]

(p,)Tp, < 0,

since for the reversed polygon (with struts on the inside) the corresponding matrix
(-f) is positive semidefinite. Thus by Corollary 5.2.1, p extends to a strict second-
order flex (p, p"). [:]

484 R. CONNELLY AND W. WHITELEY

Remark 5.4.1. We will use this result in the next section to prove Roth’s conjec-
ture about b-c polygons. It is interesting (although painful) to calculate ptt directly
for the pt as indicated in Figure 14.

Note, however, with this result alone we can prove a weak form of Roth’s conjec-
ture. Namely, if p is a nontrivial first-order flex of a strut-cable polygon (the outside
edges are struts), then an argument similar to the one above can be used to find a

t2p" is a flex at G(p)strict second-order flex (p’ p") as well. Then p(t) p + tp’ +
as required.

The only problem left in the stronger form of Roth’s conjecture is to find a way
of handling the bars. We will treat this in 6.

5.5. Interpretation for triangulated spheres. For any triangulated sphere
G(p) in IR3, there is a natural correspondence between first-order flexes p’ of G(p)
(modulo trivial first-order flexes) and self stresses w of G(p). In fact for each edge
{i,j} there is a dihedral angle 0ij, which itself "varies" and thus there is a Oj defined
as. the derivative of 0ij. Then

0j
{i, j} and edge at G

serves as a self stress for G(p). Conversely, given a self stress it is possible to define a
first-order flex p’ with Oj as above. See [16] or [14] for a discussion of this.

Thus using Corollary 5.2.1 we can state the dual condition for a second-order flex.
COROLLARY 5.5.1. A first-order flex p of a triangulated sphere G(p) in IR3

extends to a second-order flex if and only if for every 0 (coming from a possibly
different first-order flex) we have

5.6. Interpretation in terms of packings. For the rigidity of packings as in
[11] or [12] we see that the associated framework has certain vertices pinned and all
the members are struts. For any proper self stress w, wj <_ 0 for all {i, j} struts, and
thus such a G(p) has for all p, a first-order flex,

(p,)Tp, Ewj(p- pj)2 _< 0,
j

since we can take p to be 0 on the pinned vertices. In fact, we get strict inequality
assuming G is connected and p’ 0. Thus there is a strict second-order flex (p, p’),
and it is easy to see that such a G(p) is rigid if and only if it is first-order rigid. This
was observed directly in [11].

6. Extending second-order flexes.

6.1. The general result. Some second-order flexes extend to continuous flexes
of the framework. For example, if a second-order flex shortens all cables and lengthens
all struts and there are no bars, then it is clear that we can complete these first two
derivatives to a real analytic path. We describe a less restrictive situation where we
can still extend the second-order flex. This result is an extension of and motivated by
some of the results in [1, 2]. A bar framework G(p) is called independent if the only
self stress for G(p) is the zero self stress.

SECOND-ORDER RIGIDITY AND PRESTRESS STABILITY 485

PROPOSITION 6.1.1. Let G(p) be any independent bar framework with a second-
order flex (p’, p") in IRd. Then there is an analytic flex p(t) of G(p) with

p(0) p,

Dt[p(t)]lt:o p’,

D2t [p(t)][t=o p,,.

Proof. Let

be the set of all configurations equivalent to p. By [1] or [29], since G(p) is inde-
pendent, Ma(p) is a smooth analytic manifold of dimension at least d(d + 1)/2 in a
neighborhood of p (when the dimension of the affine span of p is at least d- 1), and
we may naturally identify the tangent space Tp of Ma(p) at p with the first-order
flexes of G(p).

Let h Tp + Ma(p) be a smooth analytic map such that the following hold:
(a) On a neighborhood of p in Tp, h is a real analytic diffeomorphism onto a

neighborhood of p in Me(p).
(b) Identifying the tangent space of Tp with itself, h(p) p and dhp(p’) p’

for all p’ E Tp, where dhp is the differential of h at p.
For instance, the exponential map has these properties.
Let q(t) p + tp’ + 5t2q be a smooth analytic path in Tp where we see that

and Dt2[q(t)] q", which willq(0) p. Dt[q(t)]lt=o p’ It=Q be determined later.
Then define p(t) h(q(t)), which is a smooth analytic flex of G(p) with p(0) p.
Also

(9) Drip(t)] Dt[h(q(t))] dhq(t)(Dt[q(t)])

and

Dt[p(t)]]t=o dhp(p’) p’,

by condition (b). Since p(t) E Ma(p), p(t) is an analytic flex of G(p) and thus the
second derivatives of the squares of the edge lengths are zero. Restating this in terms
of the matrix R(p) we get

R(Dt[p(t)])Dt[p(t)] + R(p(t))D2t [p(t)] O.

Evaluating when t O, we get

R(p’)p’ + R(p)r" 0,

where r"- Dt[p(t)]lt=0
We must choose q such that r p" the preassigned vector.

(p,, p,,) is a second-order flex of G(p) we see that for any q",
Recalling that

n(p’)p’ + R(p)p" 0 R(p’)p’ + R(p)r".

So

(10) R(p) (p"- r")=0.

486 R. CONNELLY AND W. WHITELEY

Differentiating (9) again we obtain

Dt[p(t)] Dt[dhq(t)]Dt[q(t)] + dhq(t)Dt [q(t)].

Applying the chain rule to each entry of the matrix dhq(t), we see that Dt[dhq(t)]lt=o
depends only on p and not on q". Let s" be the value of the second derivative of p(t)
(that is r") when q" 0, evaluated when t 0. In other words

s- Dt[dhq(t)]Dt[q(t)]lt:o

is independent of the choice of q". We must then solve the linear equation

p" s" + dhp q" s" + q"

for q". Recall that dhp is the identity map by condition (b). By (10), (p’, s") is a
second-order flex of G(p) and p"-s" is a first-order flex of R(p) and thus is in Tp.
Thus we can define q" p"-s". Then p(t) as defined is the desired flex. [:]

Remark 6.1.1. One way of looking at the above proof is to think of adding some
curvature via q" to the curve q(t) to cancel the curvature in M(p) in order to achieve
the given second derivative p".

For our purposes we do not need p(t) to be real analytic. It only needs to be
twice differentiable. In the spirit of Definition 2.1.2 (c) we stated things in this more
general form.

It seems natural that there also should be a generalization of this result involving
any number of derivatives.

6.2. Roth’s conjecture. We can now prove Roth’s conjecture in its full gen-
erality.

PROPOSITION 6.2.1. A convex b-c polygon in the plane is rigid if and only if it
is first-order rigid.

Proof. Let p’ be any nontrivial first-order flex of a b-c polygon G(p). If G(p) has
no nonzero proper self stress, then by the first-order stress test, we can choose p such
that (pi- pj). (p- pj) < 0 for all cables {i,j}. If c is any proper nonzero self stress
for G(p), then, by [7], the associated stress matrix ft is negative semidefinite with
only the affine motions in the kernel. It is easy to check, due to the convex nature of
the polygon and the cabling, that (p’)TFtp’ : 0. Thus (p’)Ttp’ < 0. Thus by the
second-order stress test, Corollary 5.2.1, p extends to a second-order flex (p, p") that
is strict on all cables. But the subframework G0(p) of G(p) consisting of just the bars
is just a convex polygon and so is independent. Thus Proposition 6.1.1 applies to show
that there is a flex p(t) of G(p) such that Dt[p(t)]t=o p’ and D[p(t)][=o
But since (p’, p") is strict on all cables, p(t) is a nontrivial continuous flex of G(p) as
well. Thus G(p) is not rigid, and the result is proved.

COROLLARY 6.2.2. If a convex b-c polygon in the plane with v vertices has less
than v- 2 cables, then it is not rigid.

Proof. At least v- 2 cables are needed to make the tensegrity framework infinites-
imally rigid.

Remark 6.2.1. When one is attempting to show directly that a particular convex
b-c polygon is not rigid in the plane, one might be tempted to force some of the
stressed cables to be bars in order to decrease the "degrees of freedom" and simplify
the calculation. For example, the framework G(p) of Figure 19 is not rigid. It is

SECOND-ORDER RIGIDITY AND PRESTRESS STABILITY 487

FI(. 19. A flexible framework in the plane (a), with the corresponding first-order flex (b).

obtained by forcing two of the cables of Figure 14a to be bars. (If the horizontal cable
is changed to a strut (or bar), then the framework becomes rigid.)

The subframework G0(p), consisting of just the bars, is independent: G(p) has a
first-order flex, and from first-order considerations, as in [I], (0(p) has a continuous
flex. The length of the horizontal cable cannot increase under this flex (by [7]), and
the other cable lengths decrease strictly in their first derivative. Thus we obtain a
continuous flex of G(p).

However, one must be careful in deciding which of the cables to force to be bars.
For example, consider the framework of Figure 20a.

P8

P7 P2

P P4

P3

/
/

/

a b
FIG. 20. Framework (a) is rigid because subframework (b) is rigid.

We have changed three of the stressed cables of Figure 3c to bars, and we consider
only {I,6}, {4, 7}, and {3,8} from the rest of the cables of Figure 3c. There is a
proper stress w involving only members among the pairs of the first six vertices, since
pl,..., P6 lie on a circle. See Figure 20b for this c-b subframework, which is rigid by

Considering pl,p3,p4, and p6 as a pinned rigid subset, then the vertices
p,p3,p4,p6,pT,p8 determine an infinitesimally rigid framework. So the whole frame-
work G(p) in Figure 20a is rigid.

On the other hand, in G(p), the subframework determined by just the bars is
independent, as with our proof of Roth’s conjecture. Also, all the proper self stresses
of Figures 3c are proper self stresses of G(p) as well, and there is a nontrivial first-
order flex p of Figure 3c that is a nontrivial first-order flex of G(p). Why can’t we
then conclude, as we did with our proof of Roth’s conjecture, that G(p) is flexible by

488 R. CONNELLY AND W. WHITELEY

extending p’ to s strict second-order flex (p’, p") of G(p) (using the strict second-order
stress test, Corollary 5.2.1)? The reason we cannot apply the second-order stress test
is because we must consider all proper self stresses of G(p), not just those coming
from Figure 3c. In fact, G(p) has more self stresses to consider due to the added
bars. When the added stresses are considered, it turns out that G(p) is even prestress
stable.

The moral of the story is that if one wants to add interior bars, as in Figure 19,
and keep the framework flexible, then one must not only be careful that the added bars
keep the bar subframework independent and do not destroy the infinitesimal flexes,
but also be sure that the new bars do not introduce any new proper self stresses to
the whole framework.

A. Appendix on replacement principles.

A.1. From bar frameworks to cables and struts. Recall from 2.3 that if a
bar framework is infinitesimally rigid, with a nonzero self stress, we can replace some
of the bars with cables and struts, following the signs of the self stress. (See [29].)

Similarly, from 3.4, if a bar framework is prestress stable with a nontrivial self
stress w, then we are able to replace some of the bars with cables or struts, following
the signs of this self stress

For a second-order rigid bar framework, we have no such replacement principle.
If the framework is not prestress stable, we must check the signs of all stresses used
to block the cone of first-order flexes. If these all agree on a specific sign, then the
corresponding bar can be replaced, while preserving second-order rigidity.

For a framework which is rigid, by some other test, we know of no generM re-
placement principle. In the following, we show how to replace cables and struts with
bars.

A.2. Equivalent bar frameworks for prestress stability. Given a tenseg-
rity framework with cables and struts, we can always replace all members with bars.
This replacement will, of course, preserve any rigidity in the framework. In fact it
may increase the rigidity, turning a nonrigid framework into a rigid framework, a
second-order rigid framework into a prestress stable framework, or a prestress stable
framework into a first-order rigid framework. We would like a more delicate replace-
ment principle which leaves the rigidity, prestress stability, or second-order rigidity
unchanged.

We associate a special bar framework with a tensegrity framework, which does
not depend on fixing a self stress. Suppose some framework G(p) has a cable {i,j}
with p - pj. We can then replace the cable by two bars {i,k} and {k,j} and place
pk on the open line segment between pi and pj to get a framework as in Figure 21a.

Similarly, a strut {i, j} can be replaced by two brs {i, k} nd {k, j}, but now we
insist that pa be on the line through pi and pj but outside the closed line segment
between pi and pj as in Figure 21b.

We call the above processes splitting a cable and splitting a strut, respectively. It
is clear that such splittings do not change the rigidity of a framework in IRd for d >_ 2,
but any such splitting creates a framework that is not first-order rigid. In fact we can
split all the cables and struts of G(p) to create what we shall call an equivalent bar

rigid o. y is r g d.
We next look at the relation between splitting members and prestress stability.

Suppose w is a proper self stress for the tensegrity framework G(p), and {i, j} is

SECOND-ORDER RIGIDITY AND PRESTRESS STABILITY 489

FIG. 21. Replacing a cable (a) and a strut (b) with "equivalent" pairs of bars preserving pre-
stress stability.

cable or strut for G. Suppose G(p) is split along {i, j} at pk. Define

dik 02ij IP

wi]pi phi&JR IPj Pil if wij < 0

and &, Wm for {g, m} {i, k} and {g, m} =fi {j, k}, where py is between pi and
pa when wij < 0. It is easy to check that & defined above is a self stress for ((17)), the
split framework.

PROPOSITION A.2.1. Let G(p) be any tensegrity framework with a proper strict

self stress w. Let ()) be the framework split along any cable or strut. Then w
stabilizes G(p) if and only if & stabilizes ()).

Proof. By Proposition 3.4.2 we need only consider a space of first-order flexes pl
of G(p) that are complementary to the trivial first-order flexes and then evaluate them
on the form determined by . A similar statement holds for (15). By the first-order
stress test since wiy = 0 we know that (pi p). (p pj) 0. By adding a trivial
first-order flex to pl we may consider some space of first-order flexes of G(p) that has
p pjl 0. Similarly for (15) we may consider only those first-order flexes t5’ that
are the direct sum of p/ on the vertices of G(p) and p which is perpendicular to
pi pj, where k is the splitting vertex.

We evaluate (at 15/"

E IP Pml2 + Wik]Pl 2 + Wjc]PI :

--(p’)Tap’"

It is easy to check (even for struts) that wi + w > 0. Thus is positive definite
on its complementary space of nontrivial first-order flexes if and only if t is positive
definite on its corresponding space.

COROLLARY A.2.2. Let G(p) be any tensegrity framework and ()) the equiv-
alent bar framework obtained by splitting all the cables and struts of nonzero length.

490 R. CONNELLY AND W. WHITELEY

Then G(p) is prestress stable with a strict proper self stress if and only if ()) is
prestress .stable.

Thus, if we wish, we can "reduce" the problem of when a framework is prestress
stable to the case when all the members are bars.

A.3. Equivalent bar frameworks for second-order rigidity. If we have
a tensegrity framework with no strict proper self stress, such as in Figure 9b, then
replacing this with the equivalent pair of bars can destroy second-order rigidity (but
not rigidity). For example, a second-order flex is indicated on Figure 22.

FIG. 22. A second-order flexible (but rigid) bar framework equivalent to a second-order rigid
tensegrity framework.

If we restrict ourselves to tensegrity frameworks in which all cables and struts
have nonzero coefficients in some self stress, then we can switch to the equivalent bar
framework to check second-order rigidity. (Recall that for a tensegrity framework a
proper self stress is strict if wij 0 for every cable or strut.) We omit the proof, which
is not difficult. See 5.2 and the second-order stress test.

PROPOSITION A.3.1. A tensegrity framework with a strict proper self stress is
second-order rigid if and only if the equivalent bar framework is second-order rigid.

Acknowledgments. This work was provoked by the stimulating exchanges at
the workshops on tensegrity frameworks and rigidity of triangulated surfaces held at
the Universit de Montreal during February 1987. We thank all of the participants,
with particular thanks to Tibor Tarnai, Zsolt Gaspar, Tim Havel, and Ben Roth. We
also thank Gerard Laman for several corrections to an earlier draft.

REFERENCES

[1] L. ASIMOW AND B. ROTH, The rigidity of graphs, Trans. Amer. Math. Soc., 245 (1978),
pp. 279-289.

[2] , The rigidity of graphs II, J. Math. Anal. Appl., 68 (1979), pp. 171-190.
[3] E. BOLKER AND B. ROTH, When is a bipartite graph a rigid framework? Pacific J. Math., 90

(1980), pp. 27-44.

[4] C. R. CALLADINE, Buckminister Fuller’s "tensegrity" structures and Clerk Maxwell’s rules for
the construction of stiff frames, Internat. J. Solids Structures, 14 (1978), pp. 161-172.

[5] C. a. CALLADINE AND S. PELLEGRINO, First-order infinitesimal mechanisms, Internat. J.
Solids Structures, 27 (1991), pp. 505-515.

[6] R. CONNELLY, The rigidity of certain cables frameworks and the second-order rigidity of arbi-
trarily triangulated convex surfaces, Adv. Math., 37 (1980), pp. 272-299.

[7] , Rigidity and energy, Invent. Math., 66 (1982), pp. 11-33.

SECOND-ORDER RIGIDITY AND PRESTRESS STABILITY 491

[8] R. CONNELLY, Basic concepts of rigidity, in The Geometry of Rigid Structures, H. Crapo and
W. Whiteley, eds., manuscript.

[9] Basic concepts of infinitesimal rigidity, in The Geometry of Rigid Structures, H. Crapo
and W. Whiteley, eds., manuscript.

[10] Basic concepts of static rigidity, in The Geometry of Rigid Structures, H. Crapo and
W. Whiteley, eds., manuscript.

[11] ., Rigid circle and sphere packings Part I: Finite packings, Structural Topology, 14 (1988),
pp. 43-60.

[12] ., Rigid circle and sphere packings Part II: Infinite packings with finite motion, Structural
Topology, 16 (1991), pp. 57-76.

[13] R. CONNELLY AND W. WHITELEY, The stability of tensegrity frameworks, J. Space Structures,
7 (1992), pp. 153-163.

[14] H. CRAPO AND W. WHITELEY, Stresses in frameworks and motions of panel structures: A
projective geometry introduction, Structural Topology, 6 (1982), pp. 42-82.

[15] J. FRANKLIN, Methods of Mathematical Economics, Springer-Verlag, New York, 1980.
[16] H. GLiJCK, Almost all simply connected surfaces are rigid, in Geometric Topology, Lecture

Notes in Math 438, Springer-Verlag, Berlin, New York, 1975, pp. 225-239.
[17] B. GRONBAUM, Convex Polytopes, Interscience, New York, 1967.
[18] B. GRiJNBAUM AND G. C. SHEPARD, Lectures on Lost Mathematics, Mimeographed notes, Uni-

versity of Washington, Seattle, 1975.
[19] , Lectures on Lost Mathematics, Mimeographed notes, University of Washington, Seattle,

(reissued for the special section on rigidity at the 760th meeting of the A.M.S.), 1978
[20] N. H. KUIPEa, Spheres polyhedriques flexible dans E3, d’dpres Robert Connelly, Seminaire

Bourbaki, 541 (1978), pp. 1-22.
[21] E. KTTER, ber die MSglichkeit, n Punkte in der Ebene oder im Raume dutch weniger als

2n- 3 oder 3n- 6 Stiibe yon ganz unveriinderlicher Liinge universchieblich miteinander
zu verbinden, Festschrift Heinrich Miiller-Breslau, 1912, pp. 61-80.

[22] E. N. KUZNETSOV, Underconstrained structural systems, Internat. J. Solids Structures, 24
(1988), pp. 153-163.

[23] , On immobile kinematic chains and a fallacious matrix analysis, J. Appl. Mech., Brief
Notes, 56 (1989), pp. 222-224.

[24] , Letter to the editor, Internat. J. Solids Structures, 27 (1991), pp. 517-519.
[25] , Systems with infinitesimal mobility: Part I-Matrix analysis and first-order mobility,

J. Appl. Mech., 58 (1991), pp. 513-519.
[26] , Systems with infinitesimal mobility: Part II-Compound and higher-order infinitesimal

mechanisms, J. Appl. Mech., 58 (1991), pp. 520-526.
[27] , Underconstrained Structural Systems, Springer-Verlag, Berlin, New York, 1991.
[28] S. PELLEGRINO AND C. R. CALLADINE, Matrix analysis of statically and kinematically indeter-

minate frameworks, Internat. J. Solids Structures, 32 (1986), pp. 409-428.
[29] B. ROTH AND W. WmTELEY, Tensegrity frameworks, Trans. Amer. Math. Soc., 265 (1981),

419-446.
[30] J. SZABO AND L. KOLL.a, Structural Design of Cable-Suspended Roofs, Akademiai Kiado,

Budapest, 1984.
[31] T. TARNAI, Problems concerning spherical polyhedra and structural rigidity, Structural Topol-

ogy, 4 (1980), pp. 61-66.
[32] A. W. TUCKER, Dual systems of homogeneous linear relations, in Linear Inequalities and Re-

lated Systems H. W. Kuhn and A. W. Tucker, eds., Annals of Math Studies 38, 1956,
pp. 3-18.

[33] N. WroTE AND W. WHITELEY, The algebraic geometry of stresses in frameworks, SIAM J. Alg.
Disc. Meth., 8 (1983), pp. 1-32.

[34] W. WHITELEY, Infinitesimal motions of a bipartite framework, Pacific J. Math., 110 (1984),
pp. 233-255.

[35] , Tensegrity frameworks, in The Geometry of Rigid Structures, H. Crapo and W. White-
ley, eds., manuscript.

[36] , Second-order rigidity and global rigidity, in The Geometry of Rigid Structures, H.
Crapo and W. Whiteley, eds., manuscript.

SIAM J. DISCRETE MATH.
Vol. 9, No. 3, pp. 492-509, August 1996

() 1996 Society for Industrial and Applied Mathematics
O09

APPROXIMATION ALGORITHMS FOR THE k-CLIQUE COVERING
PROBLEM*

OLIVER GOLDSCHMIDT?, DORIT S. HOCHBAUM$, COR HURKENS, AND GANG YU

Abstract. The problem of covering edges and vertices in a graph (or in a hypergraph) was
motivated by a problem arising in the context of the component assembly problem. The problem
is as follows: given a graph and a clique size k, find the minimum number of k-cliques such that
all edges and vertices of the graph are covered by (included in) the cliques. This paper provides a
collection of approximation algorithms for various clique sizes with proven worst-case bounds. The
problem has a natural extension to hypergraphs, for which we consider one particular class. The k-
clique covering problem can be formulated as a set covering.problem. It is shown that the algorithms
we design, which exploit the structure of this special set covering problem, have better performance
than those derived from direct applications of general purpose algorithms for the set covering. In
particular, these special classes of set covering problems can be solved with better worst-case bounds
and/or complexity than if treated as general set covering problems.

Key words, approximation algorithms, clique covering, set covering, worst-case analysis

AMS subject classifications. 05C65, 05C85, 05C90

1. Introduction. The problem of k-clique covering (CCk) is defined on a graph
(or a hypergraph) and a given clique size k. The aim is to use the least number
of cliques--or subsets of k vertices--so that each vertex and each edge is contained
in at least one such clique. When all edges are covered then all vertices incident to
these edges are also covered, so the issue of covering vertices in addition to edges is
of interest only in graphs with isolated vertices.

The k-clique covering problem’s objective value differs from the clique covering
number of a graph (frequently used in literature related to perfect graphs) in that the
clique covering number of graph is a prtitioning of the edges of the graph into a
minimum number of complete subgraphs. Hence, for each clique used in the clique
covering number problem, all edges of the clique re present in the graph. As such,
each edge must belong to exactly one clique in the cover. In our problem, each clique
covers all edges contained in it. Contrary to the clique covering nunber, not every
edge of the clique must be present in the graph. Furthermore, an edge may be covered
by more than one clique.

One problem addressed in the literature that is related to the 3-clique cover-
ing problem is the partitioning of a graph into triangles. The feasibility decision
problemwhether the edges of a graph can be partitioned into triangles--was proved
NP-complete by Holyer [12]. Therefore, finding the minimum number of triangles to
cover the edges of a graph is NP-hard.

A general definition of the (CC) problem for hypergraphs is as follows. A hy-
pergraph H (V, F) is defined by a vertex set V {1,... ,n} and a hyperedge set
F _C 2V. A clique of size k in a hypergraph H is a subset of vertices K C_ V such

Received by the editors July 19, 1993; accepted for publication (in revised form) October 10,
1995. This research was supported in part by Office of Naval Research grant N00014-91-J-1241.

Department of Mechanical Engineering, University of Texas at Austin, Austin, TX 78712-1063.
Department of Industrial Engineering and Operations Research, University of California at

Berkeley, Berkeley, CA 94720.
Department of Mathematics and Computing Science, Eindhoven University of Technology, the

Netherlands.
Department of Management Science and Information Systems, University of Texas at Austin.

Austin, TX 78712-1175.

492

APPROXIMATION ALGORITHMS FOR k-CLIQUE COVERING 493

that the hyperedges representing all subsets of K exist in H and IKI k. In the case

Ill 2, for all f E F, each hyperedge is an edge containing a pair of vertices, and the
hypergraph is a graph. The k-clique covering (CCk) problem is to find the minimum
number of cliques of size no more than k such that all hyperedges of H are covered
by (included in) the cliques.

The k-clique covering problem can be viewed as a special case of the set covering
problem. In this context, approximation algorithms that apply to the set covering
problem are also applicable to the k-clique covering problem. The drawback of using
the set covering problem is that the input to the set covering problem includes all
possible subsets of size k and hence is exponential in k. We propose an approach
that exploits the special structure of the clique covering problem and delivers better
worst-case bounds than the ones using the set covering.

The main results in this paper are approximation algorithms for the problem
(CCk) on graphs and on a class of hypergraphs. We present approximation algorithms
based on the formulation of the problem as a set covering problem and algorithms
specifically derived for the clique cover problem. The latter algorithms have better
worst-case performance. Consequently, these classes of set covering problems can be
solved with better worst-case bounds and/or complexity than if treated as general set
covering problems.

The (CC) problem has many practical applications in flexible manufacturing
systems and component assembly in the semiconductor industry. In [9], Goldschmidt,
Hochbaum, and Yu provide a detailed description of some related applications.

In related literature, Tang and Denardo [22] developed a branch-and-bound pro-
cedure for solving the (CC) problem. The lower bound is generated by a so-called
sweeping procedure and it can be arbitrarily bad. Several heuristic procedures have
been proposed and tested for generating feasible solutions. These heuristics are simi-
lar to bin packing heuristics in that they select a starting seed hyperedge for a new bin
(clique) and sequentially fill it according to some precedence rule. Tang and Denardo
[22] and Whitney and Gaul [23] propose different rules for selecting the next hyper-
edge to add to the current clique. In these papers, no analysis or worst-case bounds
have been provided for the heuristic solutions.

Let zH and z* be, respectively, the number of cliques derived by an approximation
algorithm and the minimum number of cliques of a (CC) instance. An algorithm
is a &approximation algorithm if, for any family of instances of the problem, zH <_
5z* + o(z*). We call 5 the worst-case bound of the algorithm, and the algorithm a
5-approzimation algorithm.

Our results include approximation algorithms for the following cases. For the
triangle covering problem, the 3-clique covering, we present two approximation algo-
rithms with worst-case bounds of 1.4 and 1.5, respectively. For the 4-clique covering
our algorithm is a 21/2-approximation algorithm. For the general k-clique covering we
describe an algorithm that is a (} +

_
)-approximation algorithm. For this case the

greedy heuristic for set covering gives a bound of (()) 2 log k with running time

The harmonic seriesO(nk). 7-l(d) is a harmonic series defined as 7-/(d) E3d.__l 7"
is asymptotically equal to the natural logarithm of d (plus the Euler constant). For
the problem on hypergraphs, when each hyperedge to be covered is of size k- 1, we
describe two approximation algorithms and demonstrate that they compare favorably
with algorithms derived from setting the problem as a set covering problem.

In 2, we discuss the reduction of the k-clique covering problem to the set covering
problem. Once reduced to the set covering problem, the greedy heuristic [4] for set

494 O. GOLDSCHMIDT, D. S. HOCHBAUM, C. HURKENS, AND G. YU

TABLE 1
5-approximation algorithms.

Algorithm

HI
H2

H6

Case

(3,

_
2)

(4,_< 2)

(,k-)

Running time 5

O(m2"5) 1’4
o(.) .
O(m) 7/3
O(n) +

covering becomes applicable. Throughout this paper, we refer to the greedy heuristic
as the greedy. For a set covering problem on a hypergraph with n vertices and with
m elements to be covered, elements that are edges and vertices in a graph or hyper-
edges in a hypergraph, the greedy is a min{k log 2, log m}-approximation algorithm of
complexity 0(() min(k!, m)).

Section 3.1 includes th approximation algorithms for graphs with clique sizes 3
or 4. Section 3.2 contains two approximation, algorithms for solving the problem on
hypergraphs in which each hyperedge has exactly (k- 1) vertices.

Table 1 summarizes the results of 3. Case (k, q) denotes an instance for which
each hyperedge has cardinality q, and case (k, _< q), an instance for which a hyperedge
consists of at most q vertices.

In 4 we conclude with some future research directions.

2. Reduction to the set covering problem. The set covering problem (SC)
is defined for a universal set of rn elements, I {1... m}, and a collection of p sets
Sic I, 1... p. The problem is to find a smallest cardinality collection of sets, the
union of which is I.

Not only is the set covering problem NP-hard, but it was recently established that
an approximation algorithm for the problem with better than logarithmic bound is
impossible unless all NP problems are solvable in subexponential time [18]--a fairly
unlikely prospect.

The set covering problem may be generalized to a problem of covering sets with
sets, as opposed to covering elements with sets. A set S is said to be covered by a
set.S if S c_ S. The (CCk) is a class of instances of covering sets with sets when
the covering sets Si are cliques of size k and the elements are vertices and edges
(hyperedges) of a graph (hypergraph). As such it is a special case of the set covering
problem with all sets of fixed size k. As noted before, this set covering problem is
NP-hard since covering edges with a minimum number of triangles is a special case.

The (CCk) has a shorter input representation than the set covering. Let the k-
clique covering problem be defined on a hypergraph with n vertices. Since any subset
of k vertices must be considered as a potential clique, p () sets are listed as part
of the input. On the other hand, for the input of (CC) only the size limit, k, is
specified in addition to the graph (or hypergraph).

In order to reduce (CC) to (SC), we consider the union of the hyperedges (that
are sets of vertices) as the universal set. Any subset of vertices of size k can be
potentially used in a cover. So all such subsets are enumerated, and for each one we
list all the hyperedges and vertices that are contained in such a subset. This creates
a set covering problem with the number of sets p equal to (), where n is the number

APPROXIMATION ALGORITHMS FOR k-CLIQUE COVERING 495

of vertices in the graph, and rn is the number of elements equal to the number of
hyperedges and isolated vertices.

There are two known approximation algorithms available for (SC). One bounds
the worst-case error by the maximum number of sets that an element belongs to [10].
The other is the greedy with worst-case error bound equal to the harmonic series
where d is the largest set size [16, 17, 4]. The running time of the greedy is O(n log n),
where n is the number of sets. With the recent result of Lund and Yanakakis [18],
the greedy is, up to a constant factor, a best possible approximation algorithm for
the set covering problem, as it cannot be improved unless all NP problems are in
DTiME[npoly (logn)]. The greedy is also ideally suited to the input of (CCk), as the
largest set size is the maximum number of hyperedges covered by a k-clique, 2k. Con-
sequently, this reduction makes an T/(2k)-approximation algorithm readily available.
There are () potential covering sets. It takes O(rnk) to identify the hyperedges cov-
ered by a k-clique. At each iteration, we scan the list of cliques for the one that covers
the most hyperedges. At each iteration, at least one hyperedge gets covered and thus
removed. So the greedy iterates at most rn times. Therefore, the running time of the
greedy on an instance of (CC) is O(()m2k).

In a companion paper [9], we demonstrated an improvement to the greedy called
the modified greedy heuristic, or simply the modified greedy. The modified greedy is an

(d) -approximation algorithm. Its running time is O(n log n + rn2"5) on a general
set covering problem with n sets and m elements, and it follows that its running time
on an instance of (CCk)is O(()m +m2"5). This improvement is achieved by solving,
in addition to the greedy procedure, a matching problem in a graph. The modified
greedy is useful for instances of set covering with largest set size being bounded by a
small value, as in the clique covering problem.

The other approximation algorithms described here have either faster running
times or better bounds, or both, for various special cases.

3. Approximation algorithms. In this section, we present approximation al-
gorithms for the k-clique covering problem. We first examine the (CCk) problem on

graphs for the cases k 3 and k 4, and then for arbitrary k. We then describe
two approximation algorithms for covering a hypergraph with hyperedges all of size

(k 1) with k-cliques.
For the clique covering problem on graphs, all vertices that are not isolated get

covered when all edges are covered. Only isolated vertices may require additional
cliques to be covered. For simplicity’s sake, we are going to present the algorithms for
covering edges only and comment separately about the adjustments required to cover
isolated vertices as well. In all cases this adjustment does not modify the worst-case
bound.

We use the common notation for a graph G (V, E), IYl n and IEI m. In
case G has isolated vertices, rn denotes the number of edges and isolated vertices.

3.1. Covering graphs with k-cliques. The 2-clique covering problem on a

graph is trivially solvable: each edge is covered by a separate clique and the isolated
vertices are covered two per clique. For k 3, the problem is NP-hard. To see this,
notice that the number of triangles required to cover the edges of the graph is at least
[]. When rn is a multiple of 3, this is achievable only if the edges of G can be
partitioned into triangles. Recognizing whether a graph has a partition into triangles
was shown to be NP-complete by Holyer [12].

The rest of this section is organized as follows. We first analyze the cases k 3
and k 4. For the case k 3, we provide two algorithms, a 1.4-approximation algo-

496 O. GOLDSCHMIDT, D. S. HOCHBAUM, C. HURKENS, AND G. YU

rithm called (H1) and a 1.5-approximation algorithm called (H2), with running times
O(ma/2) and O(m), respectively. While (H1) has a better worst-case bound, (H)
has a faster running time. These are the first known approximation algorithms for
covering a graph with triangles. For the case of k 4, we present a }-approximation
algorithm, (Ha), with running time O(m). In the last subsection, we describe approx-
imation algorithms for arbitrary k.

3.1.1. The triangle covering problem. Both algorithms presented here are
adaptations of the greedy approach.

Algorithm (HI) runs in two phases. In the first phase, a maximal number of
edge-disjoint triangles of G are covered. To find a maximal number of edge-disjoint
triangles, we use the procedure by Itai and Rodeh [15] for determining whether a
graph contains a triangle. The complexity of this procedure is O(ma/). We adapt it
to find a maximal number of edge-disjoint triangles without increasing the complexity.
The edges of these edge-disjoint triangles are covered and deleted from the graph.

In phase 2 there is no remaining triangle in the graph. It is possible to solve
the 3-clique covering problem in a triangle-free graph in linear time. In a graph that
contains no triangles, each covering triangle covers either a 2-chain (two adjacent
edges) or a single edge. It is known [19] that if the number of edges rn of a connected
graph is even, then one can cover the edges with exactly -ffn 2-chains. Masuyama and
Ibaraki [19] provide a linear time algorithm for solving this problem optimally. If a
connected component of the triangle-free graph has an odd number of edges, then
exactly one triangle is necessary to cover a single edge of the component while all
others cover 2-chains. We call a triangle covering a single edge a 1-triangle.

Note that if the input graph G does not contain triangles or if the triangles are
edge disjoint, then the problem can be solved optimally in O(ma/) time.

The algorithm is given below.

ALaOPdTHM (Hi).
Input: Graph G (V, E).
Phase 1: Find a maximal collection of edge-disjoint triangles T. Set
T/ T. Let ET be the edges of T, E E \ ET.
Phase 2: While G (V, E) contains a nontrivial component Gi
(, E), do

Cover Ei with a set Ti of [l_J 2-chains and possibly a I-triangle (if

IEil is odd). Set TH - TH Ti and E E \ Ei.
end

Output TH
End of (H1).

In case graph G contains a set of isolated vertices to be covered, the following
adjustment is applied to (H1). At the termination of phase 2, we assign isolated
vertices, one for each l-triangle. In phase 3, the remaining isolated vertices are covered
three per triangle, with possibly one or two vertices in the last triangle used. TH
includes these additional triangles covering the isolated vertices.

LEMMA 1. The complexity of algorithm (H) is O(m3/2).
Proof. Phase 1 of the algorithm requires a maximal collection of edge-disjoint tri-

angles. The algorithm of Itai and Rodeh finds a triangle, if one exists, by constructing
a breadth-first-search tree and inspecting the nontree edges. That procedure runs in

APPROXIMATION ALGORITHMS FOR k-CLIQUE COVERING 497

O(rn3/2). We use this procedure, and whenever a triangle is identified, its edges are
removed from the graph and the data structure is updated in constant time. The
procedure is then continued with no backtracking required. It is therefore possible to
find a maximal collection of triangles with the same complexity as for finding a single
triangle.

In phase 2, we find a maximum packing of 2-chains in a triangle-free graph G. This
can be done in linear time by using the following procedure, which is an adaptation of
the one by Masuyama and Ibaraki [19]. The procedure is presented for one connected
component of G, Gi (V/, Ei). Consider any spanning tree in that component. All
nontree edges are appended to the tree, each with a new vertex assigned to one of its
endpoints. This creates a tree on levi edges and [E + 1 nodes. The tree is suspended
from any node, say 1, called the root node. While the tree contains more than one
edge, consider any pair of leaf nodes that share the same parent node and cover the
two edges incident to these leaf nodes with a 2-chain. Remove these two edges from
the tree. If no such pair exists, then there is a node of degree 2 adjacent to a leaf
node. The two edges incident to that node are packed in a 2-chain and removed from
the tree. This operation is repeated until the tree contains at Inost one edge. The
collection of 2-chains thus created forms a maximum packing.

If a single edge remains in the tree it is covered in phase 2 by a l-triangle.
The complexity of identifying a maximum packing is linear, as can be shown by a
straightforward inductive argument. The total number of triangles required to cover
each component G is

The complexity of algorithm (HI) is therefore dominated by phase 1 and is
0(m3/2), as stated.

We claim that algorithm (H1) is a -approximation algorithm.
7THEOREM 1. The number of triangles delivered by (H1), ITHI, is at most g times

the smallest number of triangles covering the graph.
Proof. Let zH denote the number of triangles found by the heuristic. Let T*

denote a triangle-covering of G of minimum cardinality z*. Note that in our context,
a triangle is defined as a graph A (Vzx,Ezx), with at most three vertices and at
most three edges..A triangle with three edges is called a proper triangle. Without loss
of generality we may assume that for each edge e E E there is exactly one triangle
A E T* for which e Ezx.

Let the graph remaining at the end of phase 1 be G (V, E). Let s denote the
number of components in G with an odd number of edges. Let W denote the set of
isolated vertices in the original graph G.

Case 1. Assume that s <_
Then ZH IEI-IE’I3 -- -’-IE’l+s [IWI-s]3 where, for 1, ,23 the ith term results

from phase of the heuristic. Obviously we have

z*>_ []EI+]WIJ3
as any triangle in T* contains at most three edges from E, at most three vertices from
W, or one edge from E and one vertex from W. Similarly,

z* >lEVI+s-
2 + [[Wl3-s]

as any triangle contains at most two edges from E, one edge from E, and one vertex
from W, or at most three vertices from W. At least s triangles contain one edge from

498 O. GOLDSCHMIDT, D. S. HOCHBAUM, C. HURKENS, AND G. YU

E’. Combining the bounds we find

zH [E[+ lEVI+s2 + [[W[-s13

3 3
4z* + 1

3

Note that equality holds only in the special case when IWI- s 1, IEI and IWI are
multiples of 3, and both bounds on z* are binding. For z* < 4 it is easily verified that
zH< z* Forz* >5wehavezH < 4z*+1 < 7

3 gZ
Case 2. Assume that s > IWI.
Then 6zH 2lEI / IE’l / 3.
in order to give an upper bound on this expression we derive three inequalities.

Let si denote the number of components in E with exactly edges. Then s- 81
83 85 87 is the number of components with an odd number of at least nine edges.
Hence 9(s- sl 83 85 87)

_
ISt] s 383 585 787, which is rearranged to

(1) 9s 881 6s3 4s5 2s7 [E’ _< 0.

The following two inequalities represent different lower bounds on the minimum
number of triangles in a triangle cover. The first one is by counting degrees. A vertex
v of degree 5(v) must occur in at least I1/25(v)] triangles. Define iF c_ V to be the set
of vertices v of even degree for which there exists at least one triangle A E T* such
that v E VA and (e EL,e S v) _< 1. Such avertex v V appears in at least
-5(v) + 1 triangles. Note that W C These considerations lead to the following"2

AT* vVA vV AT*, VAry

->21WI+ E (5(v) + l) + E 5(v) + E (5(v)+2).
veV, 6(v)odd vV, 5(v)even vW

Here the first inequality uses the fact that a triangle contains at most three vertices,
and the second one exploits the degrees of vertices. The result is reformulated as

(2) 6z* 21W +21E + 1 + 2.
v 6(v)odd vGW

In phase 1 of the heuristic the parity of the degrees of the vertices does not change
as only proper triangles are deleted from the graph. So odd degree vertices in G are
odd-degree vertices in G. Note that in G each component of size 1 or 3 contains at
least two vertices of odd degree. Hence these components give a total contribution
of 281 + 283 in the third term of inequality (2). A component of size 5 or 7 that
contains an odd-degree vertex must contain at least two of these, and so it also gives
a contribution of 2 in the third term of (2). If a component has only vertices of even
degree, and at least one of these is in , then such a component contributes at least
2 in the fourth term in (2). It follows that components of size 5 or 7 that do not

APPROXIMATION ALGORITHMS FOR k-CLIQUE COVERING 499

contribute 2 to (2) can only have vertices of even degree, and none of these vertices
can belong to V.

The second lower bound on z* is derived by counting triangles in T* around each
component in G. Let, for 0, 1, 2, T* denote the set of triangles in T* that cover
edges of E’. For a component C of G’, with vertex set V(C) and edge set E(C), and
for 1, 2, let T(C) denote the set of triangles A T*, with IE(C)CEAI i. Note
that IE(C)I IT{(C)] + 21T(C)I. Furthermore, note that a triangle in T* can share
edges with at most one component of G, as these components are pairwise vertex
disjoint.

A triangle A T with VA {a, b, c} is assigned to components Ca, Cb, C, for
one third each, where C denotes the component containing x.

A triangle A T is assigned completely to the component it shares two edges
with.

A triangle A T{ sharing one edge with component C is completely assigned to
C, if. IT{(C)I 1. On the other hand, if IT{(C)[> 1, then A is assigned to C for a
fraction of 29 and to C for the remaining 6 where C is the component containing
the third vertex of A. (Note that C may be equal to C, and it is also possible that C
contains an isolated vertex, or that C does not exist. In the latter cases, the fraction

is considered lost.)36
Let z*(C) denote the total number of triangles assigned to C. Then z* >_ z*(C),

where the sum is taken over all components C in G. We estimate the value of z* (C)
by distinguishing between the following cases.

[A] If IT{(C)I 0, then IE(C)] is even and z*(C) >_ ITS(C)[
[B] If IT{(C)I 1, then IE(C)] is odd and z*(C) >_ 1 + IT(C)I 1/2(IE(C)I + 1).

29[C] If IT{(C)I > 1, and IE(C)I is even, then z*(C) >_ IT(C)I + NIT{(C)I
2921(IE(C)1- IT(C)I) + -IT(C)I > 1/21E(C)I"

29[D] If IT(C)I > 1, and IE(C)I is odd, then z*(C) >_ IT(C)I + IT(C)I
29I(IE(C)I IT{(C)I) + IT{(C)I > [([E(C)I + 1)+ 1/2 as IT{(C)I > 3.2

Let D5 and D7 denote the set of components C of size 5 and 7, respectively, for
which the premise of [D] applies, that is, for which [T{(C)I > 1 and IE(C)I is odd.

Let B5 denote the set of components C of size 5, for which IT{(C)I 1, V(C)
Y , and 6(v) is even, for all v E V(C). Such a component C forms a 5-cycle, and
each vertex in C has degree two in each triangle of T* in which it appears. Moreover,
E(T(C))- E(C) {a,b} and E(T{(C))- E(C) {c,d} with 4 distinct edges
a, b, c, d which form a 4-cycle. Let Ta denote the proper triangle containing edge a
found by the heuristic in phase 1. Let the other two edges in Ta be {a’, a"}. By
symmetry between a and b we may assume without loss of generality that a’ and a"
are not in E(T*(C)). If a’ or a" is in E(T), then we have z*(C) :> 3 + 1/2. If not,
then they must both belong to E(T{(C’)) for some other component C’. But then

of a triangle. Again weIT{(C’)I > 1, and i? C has been assigned at least 2 x 6 > Z
1) 1, for eachfind z*(C) _> 3 + We conclude that z*(C) _> 3 + ([E(C)[+ +

C E B5 u Dh.
Let B7 denote the set of components C of size 7, for which IT{(C)I 1, Y(C)

Y , and 5(v) is even, for all v V(C). Such a component C must be a 7-cycle. Let
a be any edge from E(T(C))\ E(C), and let T denote the proper triangle containing
edge a found by the heuristic in phase 1. Let the other two edges in T be {a
If a’ and a" have both ends in V(C), then one of them is in E(T). If one of a’, a"
is in E(T), then C has been assigned at least 1/2 of a T-triangle, so z*(C) >_ 4 + 1/2.
It is easily verified that if the above does not apply, then E(T(C)) \ E(C) contains

500 O. GOLDSCHMIDT, D. S. HOCHBAUM, C. HURKENS, AND G. YU

FIG. 1. Illustration of the worst-case bound for Algorithm (H1).

an edge a, for which both edges a’ and a" are not in E(T)t2 E(T*(C)). Hence they
both belong to E(T{(C’)) for some other component C’. We proceed as in the case
for B5 and find that z (C) _> 4 + 1/2(IE(C)I + 1) + 1/2, for C e B7 tJ D7.

Combining these results we find

2 2
(a)

C C6BbD5 C6BTD7

for inequality (1)Tking a linear combination of the three inequalities, with weight
weight 1 for inequality (2), and weight for inequality (3), we find

6zH 2{E +]E’ + 3s

0.2

+l.0x

+l.2x

1WI +21El + E 1 + E 2)v:5(v) odd vEP’\W

5 +
CEB5tJD5 CB71JD7

_< 0.2 0 + 1.0 6z* + 1.2 2z* 8.4z*,

which concludes our proof. [:]

Figure 1 illustrates the tightness of the bound of Algorithm (H1): stars within
triangles indicate an optimal covering, H’s within triangles indicate the triangles
selected in phase 1. Five more triangles are needed in phase 2 to cover the peripheral
edges.

We now propose an alternative algorithm, (H2), that runs in linear time and
delivers a solution that is at most 1.5 times the optimum. (H2) should be selected
when running time is an important consideration.

ALGORITHM (H2).
Input: Graph G (V, E). Tg O.
Phase 1: For each nontrivial component Gi (V,Ei) of G (V, E)
with E[-- 3 modulo 6, do

Select a vertex v E V, and find a vertex w E V at maximum distance
from v. If there is a proper triangle A containing w, set TH +-- TH [.J/k

and E -- E\EA.

APPROXIMATION ALGORITHMS FOR k-CLIQUE COVERING 501

end

Phase 2" While G (V, E) contains a nontrivial component G
(V, E), do

cover E with a set T of [J 2-chains and possibly a 1-triangle (if levi
is odd). Set TH -- TH U Ti and E E \ E.
end

Output TH.
End of (H2).

In case the input graph contains a set of isolated vertices to be covered, the same
adjustment applied to (HI) is applied to (H2).

THEOREM 2. (H2) is a linear time 1.5-approximation algorithm.
Proof. Phase 1 of Algorithm (H2) is linear in m since it requires for each compo-

nent one breadth-first search starting from vertex v and one starting from w. Phase 2
is identical to phase 2 of Algorithm (HI) and its running time is likewise linear (see
the proof of Lemma 1).

In case there are no isolated vertices it suffices to prove the bound of 1.5 for each
nontrivial component of G. The reason is that no triangle in any optimal cover can
cover edges from different components of G. Hence, assume without loss of generality
that the input graph G is connected. Let zH ITHI and z* be, respectively, the
number of cliques used by Algorithm (H2) and the optimal number of cliques used to
cover the edges and vertices of G. Then

2 andS* _>

It follows that

1 3 IIEI1 1 3z,zH< IEI+I_ 31El - <
/3/

+ < +.
Note that if IEI 6k + 3, then equality cannot hold throughout, and so we find
zH <_ 1.5z*. In case IEI 6k + 3, phase 1 of the algorithm tries to detect a triangle
containing a vertex w. If such a triangle is not found, then we know that z* >_ / 1,
and again equality does not hold throughout. In the case when a triangle is detected,
its edges are deleted from E. Note that the resulting graph is still connected. Hence
the heuristic will find in phase 2 a number of triangles equal to IEI-3 As a result2

ZH 1 - 32 IEI-313 < , which settles this case.
Next we consider the case when there are isolated vertices to be covered. Let W

be the set of isolated vertices, and let s be the number of odd components in graph
G, at the start of phase 2. Obviously, if IWI _< s, then the heuristic finds the same
number of triangles as without the isolated vertices. It follows immediately that again
ZH 1.5z*. We only need consider the case when IW >_ s / 1. Let t and u denote
the number of components in graph G for which the number of edges is 1 modulo
3 and 2 modulo 3, respectively. Let E denote the set of edges of G at the start of
phase 1, and E the set of edges at the start of phase 2. Then the bound for z* can
be sharpened to

z* > IEI- IE’I + IE’I + et + + IWI- t
3 3 3

502 O. GOLDSCHMIDT, D. S. HOCHBAUM, C. HURKENS, AND G. YU

4 1

3 2

3 2

FIG. 2. Illustration of the worst-case bound for Algorithm (H2).

As in the proof of Theorem 1 we derive

zH--IEl-[E’[--
3 +IE’[2+s + f[W[3-s 1

<[EI-]E’I +[E’l +s [IW,-s]2 2 + 3

+2 2 2
Il- [E’[IE’I +]W[+ t ++2 2

3z, 1-t-u

-2 2

1
2
1-t-u

For t + u _> 1 this settles the proof. For t + u 0 equality can hold throughout
only wh(rl]E IE’I and IWI are multiples of 3, z* (IEI +]WI)/3 and IWI- s 1.
Hence each component can be partitioned into triangles. But then a contradiction
follows from the fact that s : 0, so there must be a component of odd size 6k + 3, for
which the algorithm fails to find a triangle in phase 1. I3

The bound is tight, as is shown by taking as input a graph, the components of
which are the union of an even number of triangles. See Figure 2 for an example.

One might think that the following postprocessing of phase 2 of Algorithm (H2)
could improve the outcome: consider the 2-chains of phase 2, one by one. If there is
an edge which forms a triangle with the two edges of the 2-chain under consideration,
one covers this edge together with the 2-chain and deletes it from its own 2-chain. At
the end of this post-processing, one eliminates the 2-chains which are now empty, i.e.,
the ones from which two edges have been deleted. The example in Figure 2 shows
that the bound is not improved by applying this postprocessing procedure.

APPROXIMATION ALGORITHMS FOR k-CLIQUE COVERING 503

3.1.2. The 4-clique covering. Here we consider the problem of covering the
edges and isolated vertices of a graph with 4-cliques. We present a linear time 5-
approximation algorithm, Algorithm (H3).

An alternative approximation algorithm is the modified greedy applied to the
problem presented as a set covering problem. The worst-case bound of the modified
greedy in this case is (see [9]), which is better than . The running time of the
modified greedy is O(n log n), where n is the number of vertices of the graph, which
is worse than the running time of Algorithm (H3), O(rn).

Algorithm (H3) runs in two phases. In the first phase we cover a maximal number
of edges with 4-cliques such that each 4-clique covers at least 3 edges. In the second
phase, the remaining edges and the isolated vertices W c_ V are covered optimally
with a minimum number of 4-cliques.

An iteration of phase 1 consists of covering a connected subgraph induced on 4
vertices by a 4-clique and then of deleting the covered edges. Phase 1 proceeds until
no connected component of G has more than 3 vertices. At the end of phase 1, all
isolated vertices in V \ W are deleted.

At the beginning of phase 2, the connected components of G, G1, G2,..., Gs are
triangles, isolated vertices of W, single edges, or 2-chains (two adjacent edges). The
single edges are covered two per 4-clique (if the number of isolated edges is odd, then
the extra edge is covered alone) and each 2-chain or triangle is covered by its own
4-clique.

The algorithm is given below.

ALGORITHM (H3).
Input: Graph G (V, E).
Set Cg O.
Phase 1"
Do until no connected component of G (V, E) has more than three
vertices:

Find a connected subgraph on 4 vertices, C.
Set CH - CH U C. Let Ec be the edge set of C. Set E -- E \ Ec.

enddo
Phase 2" Let T be the set of triangles and 2-chains of G. Set CH --CH T. Let CF be the set of 4-cliques required to cover the set F of
isolated edges of G (two per 4-clique). Set CH - CH U CF.
Output CH.

End of (H3).

In the case when the input graph contains a set of isolated vertices to be covered,
the following adjustment is applied to (H3). At the termination of phase 2, we assign
isolated vertices: one for each triangle or 2-chain in T, two for a single-edge clique.
The remaining isolated vertices are covered 4 per clique with possibly 1, 2, or 3 vertices
in the last clique used. We append these additional cliques to the set CH.

The complexity and worst-case performance of Algorithm (H3) are given by the
next theorem.

THEOREM 3. (H3) i8 a linear time -approximation algorithm.
Proof. Phase 1 can be implemented using a linear time depth-first-search tech-

nique. Phase 2 scans through the remaining edges once. The assignment of isolated
vertices will take linear time as well. Thus, the complexity of the algorithm is linear
in the number of edges and isolated vertices, O(m).

504 O. GOLDSCHMIDT, D. S. HOCHBAUM, C. HURKENS, AND G. YU

11

12 7

FIG. 3. Illustration of the worst-case bound for the clique size 4.

Let z* be the optimal number of 4-cliques and az* be the total number of 4-cliques
used during phase 1. Because at least 3 edges are covered by each 4-clique used in
phase 1, the total number of edges covered during phase 1 is at least 3az*. Also, no
more than 6 edges can be covered by a 4-clique. Therefore, the number of elements
which remain to be covered during phase 2 is at most (6- 3a)z*. The number of
4-cliques used during phase 2 is at most

min{[(6-a)z*] ,z*}.
The first term follows from the fact that a phase 2 4-clique covers at least two edges.
The second term is because the remaining edges and isolated vertices are covered
optimally and therefore must use at most z* 4-cliques. Hence, the total number of
4-cliques used by the approximation algorithm is at most

2 + , (1 + a)z*

7z, 1<-
-3

The last inequality is derived by setting (a-)z*.
2 + 1/2 (l+a)z.*

An example in Figure 3 illustrates the tightness of the bound. In this example,
there are 24 edges forming 6 cliques of size 4. The optimal solution is z* 6. By

APPROXIMATION ALGORITHMS FOR k-CLIQUE COVERING 505

applying algorithm (H3), edges are covered in the order in which they are labeled in
the graph. Numbers associated with each edge indicate which clique the corresponding
edge belongs to. Algorithm (H3) uses 14 cliques, with the first 9 cliques containing 3
edges each, the next 4 cliques containing 2 edges each and the last clique containing

Z
H

only one edge. Thus the ratio -- is 14 7
6--"

3.1.3. k-clique covering in a graph. We extend our discussion to the ger.eral
clique size, k, for the graph G (V, E). For this case the greedy for set covering gives
a bound of ((2k)) 2 log k with running time O(nk), and the modified greedy [9]
improves the bound to ((2)) . In this section, we present a linear time (1/2 + --f_)k-
approximation algorithm (H4) for the k-clique covering problem. Although the quality
of the bound is worse than that derived from the set covering representation of the
problem, the running time is significantly reduced.

Algorithm (H4) finds a cover with star-shaped components. Phase 1 of (Ha) finds
a sequence of vertices and edges, such that each edge and each vertex occurs once,
and such that all edges in the sequence between consecutive vertices vi and Vi+l are
incident with v. The isolated vertices are appended at the end of this sequence. In
phase 2 the sequence is broken into batches of size at most k- 1. Such a batch of
k- 1 edges and vertices induces a graph on at most k vertices, and forms a clique.
The algorithm is stated as follows.

ALGORITHM (H4).
Input: Graph G (V, E).
Phase 1" Set SEQ- 0, V V, E- E;
while V : 0 do begin

Select a vertex v V;
Set SEQ- (SEQ ,{v});
repeat

Find a vertex u V \ V such that (u, v) E
Set SEQ- (SEQ ,{u, v});
EE\{(u,v)};

until no such u can be found;
\

end;
Let SEQ- S1,S2,...,SN, where N-
Phase 2" Set CH , 0;
while k < N do begin

Let C denote the component with vertex set V(C)
S+k and edge set E(C) {S+1,..., S+_1} N E;
CH 2 CH [.J C;

end;
Output ZH --IcHI as the number of cliques used by the algorithm;

End of (H4).

The complexity and a bound on the worst-case performance of Algorithm (H4)
are given in the following theorem.

THEOREM 4. (H4) is a linear time (+ k---i_)-approximation algorithm.

Proof. Phase 1 can be realized in linear time by a simple breadth-first search.
Phase 2 is obviously linear in the length of the sequence, O(rn).

506 O. GOLDSCHMIDT, D. S. HOCHBAUM, C. HURKENS, AND G. YU

Let ZH be the number of cliques used for covering edges by heuristic (Ha), and
let z* be the number used by an optimal clique covering. Let w denote the number
of isolated vertices, V the set of nonisolated vertices, and E the set of edges. Then

and

zH._ [[E[----k_ l

kz* > w +

as each vertex v of degree (v) occurs in at least

cliques. The latter number is bounded from below by w + V-g, and also by w +
It follows that

zH < IEI + IVI + w + 1
k-1

1< =kz* + kz* + 1.
-2 k-1

Note that for k > 4, this gives ZH/Z* k and for increasing k, the bound goes to

The bound is tight, as can be seen by taking as input a graph consisting of N
k-cliques. Each clique has k(k-.1) edges and k vertices. The algorithm partitions these2
edges and vertices in

N(+ k -1
batches of size k- 1, whereas the optimal cover uses N cliques.

3.2. k-clique covering of hyperedges of size k 1. In this section, we con-
sider the k-clique covering problem for hypergraphs that have all hyperedges of size
k- 1. Following the notation introduced earlier, this is the case (k,k- 1). This
problem is a set covering problem with all sets of size < k. This is because at most k
hyperedges of size k 1 each fit in a clique on k vertices.

The complexity of applying the greedy or the modified greedy to this set covering
problem is ft(nk) since the number of sets to be considered is (). The purpose of
algorithm (H5) is to select a small collection of O(m2) sets to be considered.

Let the hyperedges to be covered be {El,..., Era}. Two hyperedges (elements)
E, Ej are called a spanning pair if IE 2 Ej[k. Any k-clique containing more than
one hyperedge must have a spanning pair.

ALGORITHM (H5).
Input: V;E {E1,...,Em}.
Phase 1: {Generate a collection of spanning pairs}
Set S E; {Include all singletons in the covering sets}
for all pairs Ei, Ej E E do

APPROXIMATION ALGORITHMS FOR k-CLIQUE COVERING 507

if IEi U Ejl- k then
S S {Ei Ej}; {Include all spanning pairs}

Phase 2:
Apply modified greedy to the set covering problem with a collection of
sets S and a collection of elements {El,..., E,};

End of (Hh).

)-approximation algorithm with running timeTHEOREM 5. (Hh)is an ((k)--
O(m k + m).

Proof. Algorithm (H5) reduces the computational complexity of the greedy set
covering heuristic by limiting the number of covering sets. The set covering matrix
developed in phase 1 has at most (,) + rn columns and m rows. To check if a
hyperedge is covered by a set, we need to scan the hyperedge’s vertex set, which takes
O(k) time. Since the modified greedy applied in phase 2 takes only O(m2"5) [9], the
overall running time of (Hh) is O((() + m)k + m2"5) O(m2k + m2"5).

As observed earlier, any clique containing more than one hyperedge must have a
spanning pair. Algorithm (Hh) has included all spanning pairs together with singleton
sets Ei, i 1,..., m in the collection of sets S. Thus all possible covering sets are
accounted for in solving the set covering problem. Therefore, using the modified greedy
for this reduced problem is the same as for the original problem, and the worst-case
bound is then 7-/(k) 6"

Now we provide another heuristic, (H6), based on graph matching. This algorithm
has better complexity than (Hh) if k > , but its bound quality is not as good.

ALGORITHM (H6).
Step 1: Construct the following undirected graph G (V, E): Each
vertex represents a hyperedge; Two vertices and j are connected by an
edge if and only if the corresponding hyperedges and j form a spanning
pair.

Step 2: Find a maximum cardinality matching in G.
Step 3: Put each pair of hyperedges corresponding to the end vertices
of a matching edge obtained in Step 2 in a single clique. Put the re-
maining unmatched vertices (hyperedges) in separate cliques. Output
the collection of cliques CH.

End of (H6).
The following theorem gives the worst-case bound of Algorithm (H6).
THEOPEM 6. Algorithn (H6) is a []-approximation algorithm with running

time O(m’5).
Proof. For two hyperedges to be packed together, their corresponding vertices

must be connected by an edge in G. It suffices to prove the bound for any connected
component of G, so assume that G is connected.

Let t be the number of hyperedges packed in the ith clique of the optimal solution.
These t hyperedges must form a t-clique in G. There exists a feasible matching with
[J edges in each of these t-cliques. If ti is odd, then the number of sets required to
cover these nodes is less than or equal to [k] Hence Step 3 results in a collection of

Z*’= [] cliques. Let zH IcHI and z* be the optimal number of cliques.
z* Z*Since t

The complexity of Algorithm (H6) is dominated by Step 2 for finding a maximum
matching. The complexity of Step 2 is O(m2"5)[20]. Therefore the overall running

508 O. GOLDSCHMIDT, D. S. HOCHBAUM, C. HURKENS, AND G. YU

a b c

a b d

a c d

b c d

a b e

a c e

b c e

FIG. 4. illustration of the worst-case bound for (k- 1)-hyperedges and cliques of size k.

time is O(rn2"5). D
Figure 4 illustrates the tightness of the bound of Theorem 6. The four hyperedges

on the left side can be packed in one clique of size 4. The same holds for the three
hyperedges on the right side. Therefore the optimal number of cliques is 2. The
maximum matching obtained by the heuristic are the three bold edges of the figure.
The last hyperedge ({a, b, c}) has to be packed in a clique by itself. It follows that the
number of cliques used by the heuristic is 4, which is times the optimal number of
cliques.

4. Concluding remarks. In this paper, we introduced the problem of covering
the edges of a hypergraph by k-cliques (CCk). The problem is shown to be NP-hard
and we describe a number of approximation algorithms. We identify the link between
the (CCk) problem and the set covering problem. The approximation algorithms
described here are the first such algorithms for the k-clique covering problem. We
describe a range of approximation algorithms applicable to various subclasses of the
problem, with several algorithms for the same subclass offering a trade-off between
the algorithm’s running time and the quality of the approximate solution.

One natural generalization of this problem is the case where each clique has a
different weight. If the occurrence of such a weighted case is practical, then there is a
need for extending the results to the weighted case. Indeed, the set covering heuris-
tic presented is immediately extendible, but such is not the case for every heuristic
presented and analyzed.

Our study still leaves open the challenging task of coming up with optimal solu-
tions to the (CC) problem. We believe that our approximation approach will prove
instrumental and useful in algorithms that derive such optimal solutions.

APPROXIMATION ALGORITHMS FOR k-CLIQUE COVERING 509

REFERENCES

[1] S. ARORA, C. LUND, R. MOTWANI, M. SUDAN, AND M. SZEGEDY, Proof verification and
intractability of approximation problems, in Proc. 33rd IEEE Symp. on Foundations of
Computer Science, Pittsburgh, PA, IEEE Computer Society Press, Piscataway, NJ, 1992,
pp. 14-23.

[2] M. L. BALINSKI, On a selection problem, Management Sci., 17 (1970), pp. 230-231.
[3] J. F. BARD, A heuristic for minimizing the number of tool switches on a flexible machine, IIE

Trans., 20 (1988), pp. 382-391.
[4] V. CHV.TAL, A greedy heuristic for the set-covering problem, Math. Oper. Res., 4 (1979),

pp. 233-235.
[5] D. A. COLLIER, The measurement and operating benefits of component part commonality,

Decision Sci., 12 (1981), pp. 85-96.
[6] Y. CRAMA AND A. OERLEMANS, A column generations approach to job grouping for flexible

manufacturing systems, European J. Oper. Res., to appear.
[7] M. DASKIN, P. C. JONES, AND W. J. LOWE, Rationalizing tool selection in a flexible manufac-

turing system for sheet-metal products, Oper. Res., 38 (1990), pp. 1104-1115.
[8] (. GALLO, M. D. (RIGORIADIS, AND R. E. TARJAN, A fast parametric maximum flow algorithm,

SIAM J. Comput., 18 (1989), pp. 30-55.
[9] O. (OLDSCHMIDT, D. S. HOCHBAUM, AND (. YU, A modified greedy heuristic for the set cover-

ing problem with improved worst-case bound, Inform. Process. Lett., 48 (1993), pp. 305-310.
[10] D. S. HOCHBAUM, Approximation algorithms for the weighted set covering and node cover

problems, SIAM J. Comput., 11 (1982), pp. 555-556.
[11] R. HIRABAYASHI, H. SUZUKI, AND N. TSUCHIYA, Optimal tool module design problem for NC

machine tools, J. Oper. Res. Soc. Japan, 23 (1984), pp. 205-228.
[12] J. HOLYER, The NP-completeness of some edge-partition problems, SIAM :]. Comput., 10

(1981), pp. 713-717.
[13] S. HWANG, A constraint-directed method to solve the part selection problem in flexible manu-

facturing systems planning stage, in Proc. 2nd ORSA/TIMS Conference on Flexible Man-
ufacturing Systems, Elsevier, New York, 1986, pp. 297-309.

[14] S. S. HWANG AND A. W. SHOGAN, Modelling and solution of an FMS part selection problem,
Internat. J. Prod. Res., 27 (1989), pp. 1349-1,366.

[15] A. ITAI AND M. RODEH, Finding a minimum circuit in a graph, SIAM J. Comput., 7 (1978),
pp. 413-423.

[16] D. S. JOHNSON, Approximation algorithms for combinatorial problems, J. Comput. System Sci.,
9 (1974), pp. 256-278.

[17] L. LovAsz, On the ratio of optimal integral and fractional covers, Discrete Math., 13 (1975),
pp. 383-390.

[18] C. LUND AND M. YANAKAKIS, On the hardness of aproximating minimization problems, in
Proc. 25th Annual ACM Symp. on Theory of Computing, 1993, ACM Press, New York,
pp. 286-293.

[19] S. MASUYAMA AND T. IBARAKI, Chain packing in graphs, Tech. Rep. 87014, Dept. of Applied
Mathematics and Physics, Kyoto University, Japan, 1987.

[20] S. MICALI AND V. V. VAZIRANI, An O(IVI1/21EI) algorithm for finding maximum matching in
general graphs, in Proc. 21st Annual IEEE Symp. on Foundations of Computer Science,
Long Beach, CA, 1980, pp. 17-27.

[21] J. M. W. RHYS, A selection problem of shared fixed costs and network flows, Management Sci.,
17 (1970), pp. 200-207.

[22] C. S. TANG AND E. V. DENARDO, Models arising from a flexible manufacturing machine, Part
II: Minimizing the number of switching instants, Oper. Res., 36 (1988), pp. 778-784.

[23] C. WHITNEY AND T. GAUL, Sequential decision problems for batching and balancing in FMSs,
Ann. Oper. Res., 3 (1985), pp. 301-316.

[24] G. Yu, D. NEHME, AND N. NAYAK, Designing and Managing Multiple Product Setups for
Electronic Circuit Board Assembly Process, IBM Internal Report TR51.0711, Austin, TX,
1992.

SIAM J. DISCRETE MATH.
Vol. 9, No. 4, pp. 511-528, November 1996

() 1996 Society for Industrial and Applied Mathematics

001

GRAPH ALGORITHMS FOR CONFORMANCE TESTING USING
THE RURAL CHINESE POSTMAN TOUR *

YINAN N. SHEN AND FABRIZIO LOMBARDI$

Abstract. This paper presents new results and graph algorithms for the automatic testing
of protocols using "unique input/output" (UIO) sequences. UIO sequences can be efficiently em-
ployed in checking conformance of protocols to their specifications by using transition testing. The
optimization of the test sequence is based on finding the rural Chinese postman tour of the state
transition diagram of a finite state machine (FSM).

The process of conformance test generation using a touring algorithm is valid provided that
certain connectivity properties of the graph are present. This implies that a weakly connected graph
must be constructed. It is possible that this connectivity condition may not be met when multiple
UIO sequences are used even if the reset capability and/or the self-loop properties are present.
The "weakly connected graph problem" consists of finding an edge-induced subgraph of the FSM
which is still weakly connected when multiple UIO sequences are used. The "multiple UIO tour
minimization problem" addresses the assignment of edges to UIO sequences for minimizing the
degree of the directed UIO graph. This process may not also minimize the length of the tour. The
above two problems, left open in previous papers, are solved in this paper. It is proved that by
appropriately changing the original assignment graph and using network flow techniques with a new
UIO generation process referred to as chaining, efficient solutions can be provided. The theoretical
approaches behind the solution to these problems are fully characterized.

Key words, graph algorithms, rural Chinese postman tour, finite state machine, protocol

AMS subject classifications. 68M15, 68R10

1. Introduction. A protocol is a precise set of rules which defines the possible
interactions among components of a communication system [1]. The complexity of
today’s communication systems makes the use of automated tools for the verification
and validation of protocols imperative. This process is commonly referred to as con-

formance testing. Conformance testing has been widely advocated for ensuring that
protocol implementations abide to their specifications when they are designed and/or
installed [9].

Protocol implementations consist of a combination of both hardware and soft-
ware components [1]. Users and manufacturers analyze and test protocols using a
black box approach [19, 20]; i.e., the protocol must behave according to the speci-
fications which outline its behavior by abiding to accepted standards (such as those
dictated by professional groups [9, 15]) independent of its physicaI implementation.
Such an approach is widely used because it yields to the certification process often
required by international governing bodies such as the International Telegraph and
Telephone Consultative Committee [15]. Conformance testing of protocols is there-
fore implementation independent and is based on a functional characterization; this
characteristic precludes the use of traditional testing techniques which are viable for
either hardware or software [19, 20].

Protocols are commonly tested using switching-based approaches [6, 10] in which

* Received by the editors October 19, 1992; accepted for publication (in revised form) Novem-
ber 10, 1995. This research was supported in part by grants from AT&:T, North Atlantic Treaty
Organization, and Texas Advanced Research Program.

Actel Corporation, Sunnyvale, CA 94086.
: Texas A&M University, Department of Computer Science, College Station, TX 77843-3112

(lombardics.tamu.edu).

511

512 YINAN N. SHEN AND FABRIZIO LOMBARDI

the protocol is functionally modeled as a Mealy machine [2]. Examples of these ap-
proaches are the checking experiment, the W-set, and the touring method [2, 4, 5,
17]. In these approaches, state and edge verification of the finite state machine (FSM)
is performed. Verification is accomplished using a so-called characterizing sequence
(CS) [17] such as the distinguishing sequence (DS) which provides a distinct signature
for each state of the FSM.

Recently, the use of unique input/output (UIO) sequences as characterizing se-
quences has been advocated for the purpose of testing a protocol [6]. A UIO sequence
is an input/output sequence which is unique to a state of the FSM. UIO sequences
are shorter than the DS of a checking experiment [6].

Testing of the protocol is accomplished by testing each edge in the graph repre-
sentation of the FSM. Using the UIO method, each edge is verified by constructing
a test subsequence. A test subsequence consists of the transition of the edge under
test (thus observing the desired output) followed (or concatenated) by the appropriate
UIO sequence with uniquely checks its end state. The test sequence of the protocol
is generated by concatenating all test subsequences. An optimization technique for
generating a test sequence using the UIO method has been proposed in [10]. This
technique generates the test sequence of a protocol using the rural Chinese postman
tour [12]. Since all edges of the FSM graph (i.e., the transitions of the FSM) must
be tested, each vertex must be visited a number of times equal to or greater than the
vertex in-degree. In [18], it was proved that there may exist multiple minimum-length
UIO sequences for any given vertex (or state). Thus, one must choose which UIO
sequence to use each time a state is visited. A proper assignment of UIO sequences to
edges (i.e., the visits) can result in a shorter test sequence. An algorithm for producing
such an assignment by means of network flow techniques has been given in [18]. The
assignment is based on the minimization of the degree of the graph, usually achieved
by augmentation [10]. Both real and randomly generated FSMs have been studied as
test cases and have indicated that the savings in reducing the length of the tour are
substantial.

Several issues are unsolved using the approach of [18]. First, the assignment of
UIO sequences to edges may not minimize the length of the tour. This is due to the
augmentation process which is employed in [18]. For example, a given UIO sequence
assignment may lead to two edges of unit cost being replicated while an "optimal"
assignment may lead to the replication of a single edge of high cost. The multiple UIO
tour length minimization problem consists of finding the minimum length of the tour
with multiple UIO sequences. In [10] it was also shown that a sufficiency condition
for the validity of the rural Chinese postman tour algorithm is that the edge-induced
subgraph derived from the FSM must be weakly connected. It has been proved [10]
that if the FSM has reset and/or self-loops, the weakly connected condition can be
satisfied; however, this condition is not met when multiple UIO sequences are used,
therefore increasing the cost of the tour. The weakly connected graph problem consists
of finding an edge-induced subgraph from the FSM which is still weakly connected
when multiple UIO sequences are used.

The objective of this paper is to extend the basic results of [6, 10] for automatically
testing communication protocols. The two problems discussed above will be addressed.
Their characterization and solutions will be presented. This paper is organized as
follows. Section 2 deals with a brief review of the approaches of [6, 8] as applicable
to the proposed approach. Notation and definitions are also introduced. Section 3
introduces the UIO method of [18]. Section 4 presents the solution to the weakly
connected graph problem. Section 5 deals with the analysis for the multiple UIO tour
length minimization. In Appendix A, the definitions of the various graphs used in the

GRAPH ALGORITHMS FOR CONFORMANCE TESTING 513

analysis are given for clarity.

2. Preliminaries. A protocol can be specified as a deterministic finite state
machine (FSM) [10]; FSM {S,I, O, NS, Z} where S {sl,..., sn} is a finite set of
states, I {i1,..., iM} is a finite set of inputs (or stimuli), and O {o,..., ON} is
a finite set of outputs. The FSM operates according to two functions" the next state
(NS) and the output functions (Z) are given by the two mappings NS: S I S
and Z: S I - O, respectively. Machines specified in a form such that the output
is a function of the current state and the applied input are commonly referred to as
Mealy machines [3].

An FSM is represented by a directed graph G (V, E), where the set V
{v,..., vn} represents the set of specified states S of the FSM and a directed edge
(v, vj) with label L ak/o (denoted as (v, vj; L)) represents a transition from state
s to state s (with an operation given by an input ak and an output oi to the FSM). A
cost is associated with each edge (v, v; L). This usually is the time taken to realize the
corresponding transition in the FSM. For clarity, in this paper it is initially assumed
that the cost of every edge is 1. The conclusions of this paper can be generalized to
the case with arbitrary cost. Hereafter, the terms FSM and graph G will be used
interchangeably.

An FSM implementation can be tested using a method commonly referred to as
the touring method [10]. In this method, a characterizing sequence (CS) is used: a
CS is a sequence of inputs and outputs which exhibit some distinctive signature for
each state of the FSM. The most common touring method is the checking experi-
ment [2]. In a checking experiment, there is a characterizing sequence of input/output
pairs (i/ol), (i2/o.)... such that the response of the implementation to i,i2,.., is
ol,o2,.., if and only if the implementation behaves according to its specification.
Checking experiments are based on the existence of an input sequence, called a dis-
tinguishing sequence (DS), as CS. A DS produces a distinct output sequence for each
initial state of the FSM [2].

3. The UIO method. A new approach for protocol testing has been proposed
in [6, 7]. This is based on the use of UIO sequences: a UIO sequence for a state
si is an input/output sequence UIOi (a1/o1)... (a/o) only to be observed
when s is the initial state such that there is no s : s for which UIO is a specified
input/output sequence for initial state s [6]. Note that if the cost of every edge is not
1, "minimum length" should be substituted by "minimum cost." The minimum-cost
test sequence for checking the correctness of a transition from state s to state sj with
input/output ak/o is denoted as TEST(v, v; ak/o).

The first step of a touring method using UIO sequences [10, 17] is to construct the
test subsequence set as follows: the test subsequence set (TSS) has as elements the test
subsequences of all transitions of the FSM. Let TAIL(E) (HEAD(E)) of a transition

E denote the target (source) state of E, and, for a sequence of S transitions, let
TAIL(S) (HEAD(S)) denote the TAIL (HEAD) of the last (first) transition in the
sequence. The generation of a test subsequence of a transition E (TSS) consists of the
following three steps (where the label of E is INPUT/OUTPUT and TAIL(E)=
NEXTSTATE if the FSM is fault-free):

1. Put the FSM in state HEAD(E).
2. Apply INPUTi and check if the output is OUTPUTs.
3. Apply a CS to check if the tail state is NEXTSTATE.
Therefore, TSS can check whether both the output of E and the nextstate

function of E are as expected. If UIO sequences are used as CS, then the test
subsequence for E is given by TSS E UIOk, where UIOk is the UIO sequence

514 YINAN N. SHEN AND FABRIZIO LOMBARDI

E6:b/y

E8:b/x

E :a/x

FIa. 1. The graph representation of an FSM. All edges have an equal cost, and the label ri/null
represents a reset edge.

for state k,. stands for concatenation, E is the edge under test, and k TAIL(E).
A test sequence must contain the test subsequences of all transitions (edges) re-

ferred to as the test subsequence set. To concatenate two test subsequences, TSS and
TSSj, a bridge sequence BSj is required to transfer the tail state of TSS to the head
state of TSSy. If TAIL(TSS) HEAD(TSSj) then BSj null sequence. The
total length of the test sequence is therefore the sum of all test subsequences and all
required bridge sequences.

The minimum-cost test sequence can be derived from the test subsequence set
by constructing a new graph. This graph has the same vertex set of the FSM, but
its edge set consists of two subsets: one is the transition set of the FSM and the
other is the TSS set of the FSM. The test sequence in the new graph is a tour which
traverses all the TSSs exactly once and the other edges as little as possible. This
tour is called the rural Chinese postman tour [10, 13, 16]. The algorithm is as follows:
first find the minimum-length UIO sequences of the FSM using a breadth-first search
[6, 10], then find the edge set Ec, Ec {(vi,vk;Ll. VIO)l(vi,vj;Ll) E E and
TAIL(UIOy) Vk}, where TAIL(UIOy) is defined as the final state of the sequence
UIOj. Ec directly corresponds to the TSS set. The cost of an edge ec E Ec is
defined as the sum of the costs of its components. A directed graph G (V, E)
is constructed from G such that V V and E E U Ec. For example, the graph
G for the graph G of Figure 1 is shown in Figure 2. (This figure describes the same
protocol as in [10].) Table 1 shows the UIO sequences for the FSM of Figure 1.

The solution to the rural Chinese postman tour problem on G consists of the
following two steps:

1. Construct a directed graph [10] (* (*,/*) from G’, where * V’, each
edge in E is included in/* zero or more times, and each edge in Ec is included in
once and only once. The graph (* is referred to as a rural symmetric augmentation
of G. The construction of E* in [10] ensures that the total cost of edges in E* is
minimum subject to the constraint that in the in-degree of each vertex v * is
equal to its out-degree. ((* is therefore a symmetric graph.) For example, the graph
(* of the graph G of Figure 2 is shown in Figure 3.

GRAPH ALGORITHMS FOR CONFORMANCE TESTING 515

)Ix

x

/ 2

a/x
,

r-] a/x b/x a/x r c/y c/z

[] b/x b/y [ri/null b/x a/x

[] c/y b/x c/y [a/x c/z

ri/null b/x a/x [] b/x b/x c/z

’]a/x c/z [ri/null b/x a/x

[] b/y b/x c/z r a/z b/x c/y

[] ri/null b/x a/x r c/z b/x a/x

[]b/x c/z] ri/null b/x a/x

FIG. 2. The graph G for the graph shown in Figure 1 (dotted edges represent E, solid fine edges
represent Ec, and reset edges are not shown).

TABLE
UIO sequences for the FSM shown in Figure 1.

State UIO sequence

vl b/x a/x
v2 b/y

v3 b/x c/z
va b/x c/y

V5 C/Z

2. Find an Euler tour [11, 13] of (*. As (* is symmetric, such a tour is guaranteed
to exist [13]. Note that only edges from E are used for augmentation. This is because
each edge ec E Ec is formed from a concatenation of a few edges in E; thus, the cost
of Ec is greater than or equal to the cost of E. Hence, a test sequence of minimum
cost can be generated only by using edges of E in the augmentation.

Define the index (vi) of a vertex vi E G as the difference between the num-
ber of edges in Ec into v (dEc (v)) and the number of edges in Ec out of v (doECt(vi))
and the degree A(G’) of G’ as i=ln](Vi) =.ln idEc (v) do,tEe (vi)l. If A(G’) 0,
then no edge in E needs to be included in/* in the first step of the above procedure;
however, if A(G/) 0, then the edges in E must be replicated for (* to be symmetric.
The optimal number of replications for each edge such that the resulting tour is of
minimum cost is computed by means of a minimum-cost maximum-flow algorithm
[14] on a graph GF (VF, EF) constructed from G’, where VF =-- V’ LJ (s, t} (s and
t are the source and target of GF), EF E’ LJ (s, v/).: vi E C LJ (vj, t): vj E D, and

516 YINAN N. SHEN AND FABRIZIO LOMBARDI

lx3

\ b/x
2

o
a/x

E] a/x b/x a/x c/y c/z

rlb/x b/y ri/null b/x a/x

!"3] c/y b/x c/y IT’{] a/x c/z

[] ri/null b/x a/x r b/x b/x c/z

ra/x c/z r ri/null b/x a/x

]b/y b/x c/z ra/z b/x c/y

r] ri/null b/x a/x c/z b/x a/x

E]b/x c/z r ri/null b/x a/x

FIG. 3. The rural symmetric augmentation * of the graph shown in Figure 2. The italic number
associated with each edge corresponds to the number of times the edge appears in the rural symmet-
ric augmentation (dotted edges represent E, solid fine edges represent Ec, and reset edges are not
shown).

3

FIC. 4. The graph GI of the graph G’ shown in Figure 2 and a minimum-cost maximum-flow.

C c VF (D c VF) is the set of vertices in G’ with positive (negative) indices. The
cost and capacity of each edge in GF are as follows:

1. Each edge (s, vi) has cost zero and capacity 7(s, vi) C(vi).
2. Each edge (vj, t) has cost zero and capacity 7(vj, t) -(vj).
3. The remaining edges in EF have the same cost in GF as in G and have infinite

capacity.
The graph (F for the graph G of Figure 2 is shown in Figure 4.
Given a minimum-cost maximum-flow F on GF, a minimum-cost rural symmetric

augmentation of G, * can be constructed from GF [10]. A minimum-cost maximum-

GRAPH ALGORITHMS FOR CONFORMANCE TESTING 517

b/y

a/x) E

Ix

rq a/x c/y b/x I c/y c/z

E] b/x b/y r ri/null a/x b/x

] c/y b/x c/y F’ a/x a/z

ri/null a/x b/x r b/x b/x c/z

E] a/x c/z r ri/null a/x c/y

[] b/y b/x a/z] a/z b/x c/y
ri/null a/x b/x c/z c/y b/x

E] b/x c/z r ri/null b/x a/x

FIC. 5. Graph GA with multiple UIO for the graph shown in Figure 1 (dotted edges represent
E, solid fine edges represent Ec, and reset edges are not shown).

flow of GF for the graph G of Figure 1 is given in Figure 4. The cost of the test
sequence is 55 (including an initial reset input). The approach presented in [10] is
such that only one G can be generated from G, because exactly one UIO sequence
per state is computed. Therefore, the value for the index of each vertex is fixed and
is usually not equal to zero. This means that more edge replications occur, leading to
an increased cost of the test sequence.

In [18], it has been proved that there may exist several minimum-length UIO
sequences for a given state. An appropriate choice of UIO sequences for testing each
edge can be used to construct an alternative graph G with less A(G), therefore
reducing the total length of the test sequence. Ideally, the alternative graph G is

symmetric, so no augmentation is needed; in this case, no edges from E are included
in G* and the cost of the test sequence is simply the cost of the edges in Ec. If
multiple UIO sequences are used for each state, the graph G with minimum-length
UIO sequences (denoted to G4 is shown in Figure 5. Note that UI031 (see Table 2)
is used to test transition (vl, vl;a/x) (shown as edge 1) and UI021 is used to test the
transition (vl, v ;ri/null) (shown as edge 4). The rural symmetric augmentation (*
of the graph G of Figure 5 is given in Figure 6.

The multiple UIO sequence assignment problem serves the above purpose and is
defined as follows.

DEFINITION 1. Given G and a set MUIOj {UIO,..., UIO } (where rj > 0
is the number of minimum-length UIO sequences with distinct tail states for state sj)
for vj, j 1,..., n, assign an element UIO] E MUIOj for each edge (vi, vj; L) E
such that A(G) is minimized.

To solve the multiple UIO sequence assignment problem, a directed weighted

518 YINAN N. SHEN AND FABRIZIO LOMBARDI
TABLE 2

The multiple UIOs for the FSM shown
in Figure 1.

State UIO sequence

/x /
a/x b/x

vl c/y b/x
/ /
b/x a/x

v2 b/y

v3 b/x c/z
b/x a/z

v4 b/x c/y

v5 c/z
a/z

Tail MUIO #

Vl UIO
v2 UIO
v3 UI03
v4 UI04
v5 UIO
V3 UI02

Vl UIO
v4 UIO
v5 UI04

vl UIO
I 2v. U 05

rq a/x c/y b/x] c/y c/z

[] b/x b/y r ri/null a/x b/x

[] c/y b/x c/y rT a/x a/z

[] ri/null a/x b/x r b/x b/x c/z

r a/x c/z [ri/null a/x c/y

E] b/y b/x a/z a/z b/x c/y

[] ri/null a/x b/x r c/z c/y b/x

E] b/x c/z [ri/null b/x a/x

FIG. 6. The rural symmetric augmentation G* of the graph shown in Figure 5. The italic
number associated with each edge corresponds to the number of times the edge appears in the rural
symmetric augmentation (dotted edges represent E, solid fine edges represent Ec, and reset edges are
not shown).

graph GM (VM, EM) is constructed such that VM {8, t} [_J Yx [-J Yy (Yx
{xl,...,Xn} and Vy {yl,...,yn}) and EM Es U E U ET+ U E* (Es {(s,x)"
x e Vx},E {(y,t)" y e Vy},E+T {(yj,t)" yj e Vy}, and E* {(x,yy)"
there exists UIO. such that TAIL(UIO.) vy}). An edge (yj,t) e E is denoted

GRAPH ALGORITHMS FOR CONFORMANCE TESTING 519

Es E" E T (E)

0@+1

4/4@0

C(F*) -16

FIG. 7. The graph GM for the FSM of Figure 1 and the set of multiple UIO sequences of Table
1. The label on each edge represents "flow/capacity @cost" or "flow@cosf’ if capacity infinity.

as (yj, t)- and an edge (yj, t) e ET+ is denoted as (yj, t)+. As an example, the graph
GM, constructed from the graph G of Figure 1 and the set of minimum-length UIO
sequences of G in Table 1, is given in Figure 7.

The following conditions for cost and cpacity of each edge in EM apply:
1. each edge (s,x) E Es has cost zero and capacity /(s,x) dE(v),
2. each edge (yj, t) E has cost 1 and capacity /(yj, t) do,rE (Vj)
3. each edge (yj, t) ET+ has cost +1 and infinite capacity,
4. each edge (x,yj) E* has cost zero and infinite capacity,

where dE(v)and E (v)aredout the in-degree and out-degree of a vertex v in G.
As the cost of each edge e EstJE* is 0 and the cost of each edge e

ET+ (E) is +1 (-1), the cost of the flow F on (M is C(F) E(j,t)+eE+r F(yj, t)+
E(yj ,t)- eE F(y t)-.

The minimum-cost maximum-flow F* on (M can be used to solve the multiple
UIO sequence assignment problem by constructing a new graph G such that for each
vy E V, each edge (vk, vy) E is assigned to exactly one UIO sequence UIO
MUIOy and each UIO in MUIOj is used exactly F*(xy, y) times, where (xj, y)
E* is the edge in (M which represents UIO. The minimum-cost maximum-flow F*
of the graph (M is shown in Figure 7.

The following theorems were proved in [18] and are included for completeness.
THEOREM 1. If F* is a minimum-cost maximum-flow on GM and GA is con-

structed from F* using the multiple UIO sequence assignment procedure, then the cost
C(F*) A(C4

THEOREM 2. If F* is a minimum-cost maximum-flow on GM, then the corre-
sponding assignment of UIO sequences to the edges ofC is such that the degree A(C4
of C’A is minimized.

Note that the above two theorems are valid provided that (* is strongly con-
nected. (This is one of the necessary conditions for the existence of an Euler tour.)
Aho et M. [10] have also proved the following theorems.

THEOREM 3. If the edge-induced subgraph G[Ec] of G’ is weakly connected, then

520 YINAN N. SHEN AND FABRIZIO LOMBARDI

* is strongly connected if single UIO sequences are used.
THEOREM 4. If G has a reset capability, then G[Ec] is weakly connected.
THEOREM 5. If G has at least a self-loop for every v E V, then G[Ec] is weakly

connected.

4. The weakly connected graph problem. The approach of [18] basically
solves the UIO assignment problem, i.e., to assign to each vertex vj V dnc (vj) UIO
sequences UIO MUIO; in [18], the minimum-cost maximum-flow F* on GM of
[10] gives an assignment of UIO sequences which has minimum A(G’). However, the
assignment problem as defined in [18] is confusing (as described in later paragraphs).
This paper uses the UIO concatenation problem for the same purpose. The problem
can be formulated as follows. The problem of UIO concatenation consists of two sub-
problems: the first subproblem determines the number of each UIO (c 1, 2,..., rj,

where rj is the number of MUIOj). This is referred to as the UIO assignment prob-
lern. The second subproblem chooses the UIO sequence from UIO for each edge
(vi, vj) E and then chains the edge (vi, vj) with this UIO sequence. This is referred
to as the UIO chaining problem.

In [18], the two above problems are not explicitly distinguished: the assignment
problem is solved in [18] by finding a minimum-cost maximum-flow in (M while the
chaining problem is solved in [18] by choosing a UIO sequence UIO according to c in
an ascending order. This implies that the weakly connected requirement in the graph
may not necessarily be met (also in the presence of a reset capability in the FSM).
Figure 8 shows an example. As there is more than one UIO sequence for v3, Ec6
can be chained with UIO (instead of UIO), and Ec12 can be chained with UIO]
(instead of UIO) without changing the cost of the flow in Figure 7. This results in
a new graph G, as shown in Figure 8. However, the edge-induced subgraph G[Ec]
of G is not weakly connected; this means that the graph 0* derived from G of

Figure 8 no longer will be strongly connected and the Euler tour on this (* cannot
be found except if more edges of E are added. Therefore, the total cost of the rural
Chinese postman tour of Figure 8 is greater than that of Figure 5. In this example
the cost will increase by 3 because at least three edges of E (i.e., E3, Ell, and El5)
must be added to make the edge set {Ec, Ec., EcI3} strongly connected with the
other edges in Ec.

The UIO chaining problem can be described as follows: decide which UIO]
should be used for solving the assignment problem. If more than one UIO] sequence
is assigned to a vertex v. (in this case, there must be more than one in-edge (vi, vy) to
vj in E), then there exist several alternatives for concatenating these edges (vi, vj) to

UIO]. For example, in Figure 9, two UIO sequences (UIO and UIO) are assigned
to v3. This corresponds to the minimum-cost maximum-flow of Figure 7. Two edges
(E6 (v2, v3) and E12 (v4, va)) must be chained with two different UIO sequences.
Two alternatives are possible:

1. Ec6 E6 UIO, Ec12 El2 UIO (this will result in the graph being not
weakly connected), or

2. Ec6 E6. UIO, EcI EI. UIO (this will result in the graph being
weakly connected).

Hence, different Ec can be constructed such that the edge-induced subgraph
G[Ec] may be weakly connected. (If the FSM has reset capabilities, this condition
is valid.) The Ec with this property can be constructed as follows. The chaining
subproblem can be solved by using a triple directed graph from G (V, E), which is
defined as GT (VT, ET), where VT Yw Vx Vy (for Vw {wl w}, Vx
{x,... ,Xn}, Vy {y,... ,Yn}) and ET EUE*, and E {(wi,xj): there exists an

GRAPH ALGORITHMS FOR CONFORMANCE TESTING 521

/x

a/x

rq a/x c/y b/x [] c/y c/z

b/x b/y [d/null a/x b/x

E c/y b/x c/y [a/x a/z

E] ri/null a/x b/x r b/x b/x a/z

!] a/x c/z r ri/null a/x c/y

E] b/y b/x c/z r a/z b/x c/y
ri/null a/x b/x c/z c/y b/x

b/x c/z [ri/null b/x a/x

FIG. 8. Another graph GA for chaining different UIOs to edge Ec6 and Ecl2 of Figure 5. In
this graph, the edge-induced subgraph G[Ec] of GA is not weakly connected. Dotted edges represent
E (reset edges are not shown). Solid fine edges represent Ec.

E UlO Ec

FIG. 9. The graph GT for the FSM of Figure 1 and the set of multiple UIO sequences of Table
1. The label on each edge represents the capacity; the capacity of an unlabeled edge is 1.

522 YINAN N. SHEN AND FABRIZIO LOMBARDI

edge (v,vj)in G},E* {(x,yj): there exists UIO such that TAIL(UIO)= vj}.
Let each edge (w, xy) e E have capacity /(w, x), which is equal to the number

of edges (v, vj), and each edge (x, yj) e E* has capacity 7(x, yy) F* (x, yj), where
F* is the minimum-cost maximum-flow in GM [18]. If /(x,yj) F*(x,yj) 0, the
edge (x, yj) can be omitted. An example of (T is shown in Figure 9; this is the (T
of Figure 7.

Let the two adjacent edges, (w, xk) and (Xk, yj), be a triple match edge or, briefly,
a trimatch edge. Any trimatch edge in (T can construct an Ec in G4. It is obvious
that different G4 can be obtained if different trimatch edges are chosen. A trimatch
in (T in which each edge e E ET appears 7(e) times is called an exact trimatch.

The UIO chaining problem is, therefore, equivalent to finding an exact trimatch
of the triple graph GT such that the induced graph G(Ec) is weakly connected. If
all vertices {x} are omitted, the exact trimatch is reduced to an exact binary match
(bimatch). This bimatch can be viewed also as a group of two level trees {Ty }; the
root of Tj is yj which corresponds to vertex vj by definition. Equivalently, all leaves
are {v} which correspond to the same vertices. If every bimatch edge (i.e., a tree
edge) constructs an edge (v, v) in Ec, all vertices in tree Tj are weakly connected.
Note that w and y in (T correspond to the same vertex v in G. The following
lemma can be easily proved.

LEMMA 1. If two trees have in common at least one vertex (including the root)
in an exact bimatch, then all vertices of the two trees in GA are weakly connected.

The following theorem directly relates chaining to weak connectivity.
THEOREM 6. If an FSM has reset capability, then there always exists a chaining

of every edge in E and the UIO used in F* such that the edge-induced subgraph G[Ec]
of GA is weakly connected.

Proof. If the FSM has reset capability, then there exists an edge (v, vl;Lk) from
each vertex v (i 1,..., n) to vertex vl (representing the reset state $1 in G). In [10],
it has been shown that if a single UIO of v is used, GlEe] is a spanning subgraph of
G and therefore is weakly connected.

If exactly two UIO sequences of vl (denoted as UI01 and UI021) are used in
F* and TAIL(UIO) Y1 and TAIL(UIO) Y2, then it is possible to find a
match (w., y1). This match must exist for v. because it has a reset edge (v2, vl)
and TAIL(UIO) y. VIO or UIO can be chained randomly with any other
(w,x). The two trees (denoted as T1 and T) have the following properties:

1. Both trees include all vertices of G4.
2. The two trees have a common vertex v.
Lemma 1 has shown that all vertices in both trees (as well as all vertices in G4

are weakly connected. Then, G[Ec] is weakly connected also. If three or more UIO
sequences (i.e., UIOI, UIO, UIO) exist in F*, their TAILs are Y1, Y2, and y,
respectively. It is then possible to find matches (w., y) and (w, y.), while other
matches can be chained randomly. T1 and T. have the vertex v. in common, while

T and T have the vertex v in common. Hence, all vertices in the trees (inclusive
of G4 are weakly connected and G[Ec] is also weakly connected. This process can
be iteratively continued, thus proving the theorem, l:!

Consider as an example Figure 9. The reset state is S; S has three UIO se-
quences in which - =/- 0, TAIL(UIO) y, TAIL(UIO) y3, and TAIL(UIO)
yh. It is possible to find a match (w3,y2) (passing through Xl) and a match (wh,y3)
(also passing through Xl). All other matches can be constructed randomly. The G[Ec]
thus constructed is weakly connected.

Theorem 6 not only provides a sufficient condition for G[Ec] to be weakly con-
nected (namely, that G has a reset capability) but also presents an algorithm for

GRAPH ALGORITHMS FOR CONFORMANCE TESTING 523

constructing a weakly connected G[Ec]. This algorithm can be directly derived us-
ing the proof of Theorem 6. So, Theorem 6 gives a sufficient condition for the test
sequence generated by the touring method.

5. Multiple UIO tour length minimization. In [18], the assignment of edges
to multiple UIO sequences has been discussed. The approach of [18] minimizes A(G’),
but this does not necessarily minimize the length of the tour. In more general terms,
it does not minimize the cost of the tour. In this section, an algorithm for finding the
minimized tour cost is presented. The proposed approach is based on a multistage
flow graph and on the assumption that the UIO sequences for any given state all have
minimum cost. For multiple UIO sequences of a state, the following conditions apply
for the minimum cost: if there is more than one UIO sequence with the same TAIL
state, the chosen UIO sequence is the UIO of minimum cost; however, UIO sequences
of a given state with different TAIL states may have different cost. Consider initially
the following lemma.

LEMMA 2. If A(G’) of a minimum-cost maximum-flow F* on GM is equal to 0,
then there is no other assignment of edges to the UIO sequence which has a tour of
smaller cost.

Proof. A(G’) 0; hence, the rural symmetric augmentation of * can be con-
structed from G without using any edge in E; i.e., G* (V*, E*), where * Ec.
Ec is constructed by chaining an appropriate UIO to each E from the minimum-cost
maximum-flow F* on GM. The cost of each multiple UIO sequence for any state is
the minimum. Hence, the cost of the tour is minimum.

Lemma 2 does not necessarily hold if A(GI) 0; in some circumstances, the
minimum-cost maximum-flow may lead to the replication of a costly, edge of E for
constructing the symnetric graph *. In k later paragraph, this problem will be
illustrated in detail.

To obtain the minimum-cost tour, a directed graph GQ (VQ, EQ) is constructed
from G as follows. VQ {s, t} U Vw Vx Vy Vz, where s and t are the source
and target of GF, Vw {wl,...,Wn},Vx {xl,...,xn},Vy {y,...,yn},Vz
{z,...,z}, and

EQ Es U ET E E* EB,

where Es {(s, xi): xi e Vx},ET {(zk,t): Zk e Vz},E {(Wh,X): there
is an edge (h,i) in the graph G}, E* {(x,yj): there exists UIO such that
TAIL(UIO) vj}, and EB {(yj,zk): a minimum-cost transition from vj to
vk if it exists}.

Note that unlike E*, an edge (yj, zj) in EB represents a null edge (not a self-loop
of vj). Every edge in EQ has a cost and a capacity; let each edge (s, Wh) E Es have
zero cost and capacity 7(s, Wh) Edo,(Vh); let each edge (zk, t) ET have zero cost
and capacity (z, t) Edout(Vk); let each edge (Wh, Xi) E have the same cost as in
G and capacity one; let each edge (xi, yj) E* have cost the cost of UIO and
infinite capacity; let each edge (yj, zk) EB have infinite capacity and a cost defined
as cost(yj, zk) cost of the shortest transition (bridge sequence) from vj to vk if
j k, cost(yj, zk) 0 if j k.

A flow F on GQ is a function which satisfies the following conditions:
1. for each vertex Wh Vw,

(wh,x)E

524 YINAN N. SHEN AND FABRIZIO LOMBARDI

E E* E
8

E

41

@1

313@0
cost(F*’) 44

FIc,. 10. The graph GQ for the FSM of Figure 1 and the set of multiple UIO sequences o Table
1. The label on each edge represents "flow/capacity@cosf’ or "flow@cosf’ if capacity infinity.

2. for each vertex x E Vx,

(Wh,Xi)EE (xi,yj)EE*

3. for each vertex yj Vy,

E F(xi, yy)= E F(yj,z);
(,j)E* (,z

4. for each vertex zu Vz,

F(zk,t) E F(yy,zk);
(yy,z)Es

5. for each edge (s, x) e Es, F(s, x) < 7(s,x); and,
6. for each edge (Zk, t) ET, F(zk, t) <_ "(Zk, t).
The cost of the flow F is

(w,x{)E
x)cost(,, x.)

E (x, yy)cost(x, yj) + E
(xi,y)6E* (y ,zk)eEB

F(yy, zk)cost(yy, zk).

The graph GQ for the FSM of Figure 1 and the set of multiple UIO sequences
of Table 2 is shown in Figure 10. For simplicity let the cost of each edge be one. In
Figure 10, cost(y, z) 0. Because a directed edge (v, v2; b/x) exists, cost(y, z2) 1.
cost(yl, z3) 2 because the shortest transition from v to v3 consists of two adjacent
edges, (v, v2; b/x) and (v2, v3; b/y). Note that Figure 10 differs from Figure 7 (taken
from [18]) by the addition of E, EB, Vw, and Vz, while E is cancelled. This permits
that the volume of flow into zk is always equal to "y(z, t) for any maximum flow on
GQ. The main difference between G and (M is that GM does not explicitly take
into account a bridge sequence and the cost of the edges, UIOs, and bridge sequences.

GRAPH ALGORITHMS FOR CONFORMANCE TESTING 525

If the minimum-cost maximum-flow F* on (M has A(G’) > 0, Shen, Lombardi,
and Dahbura [18] have shown that in this case, A(G’) is minimum. However, the flow
F* on GQ derived from the F* on GM cannot be guaranteed to be a minimum-cost
flow. This occurs because A(G) guarantees only that the number of all streams of
flow F(yj, zk)(j k) is minimum; in other words, minimum A(G’) means that the
number of nonnull bridge sequences is minimum, but the total length of the bridge
sequences is not necessarily minimum.

Consider a minimum-cost maximum-flow F* on (M with A(G’) 1 which,
for example, results in one bridge sequence B1,2 to be added; this is equivalent to
F(yl,z2) 1 in GQ and another maximum-flow F2 on GM with A(G’) 2 (which
results in F(yl,z3) 1 and F(y2, z3) 1). Assume in this example cost(y,z2)
5, cost(y,z3) 1, and cost(y2,z3) 2. In the latter case, although zk(G’) is not
minimum, the tour length of F2 is less than the one of F* because it transforms the
two flows into flows on GQ. Hence, we have cost(y, z3)- cost(y2, z3) < cost(y, z2).

In (Q, each stream of flow from s to t consists of the edges (s, Wh), (Wh, Xi),
(x,yj), (yj,zk), and (zk,t) in GQ. The edge (Wh,X) maps an edge in G from vertex
Vh to v. The edge (x, yj) maps one of the UIO sequences in the MUIO set (i.e., the
multiple UIO set) for state v; the edge (yj, zk) maps a bridge sequence of G from vj
to v. Finally, the edge (S, Xh) and the edge (zk, t) represent the presence of in-edges
of Vh in G and the presence of out-edges of vk in G, respectively. If a maximum-flow
F in GQ is found, a generalized graph G of G can be constructed on F.

Let this generalized graph be G (V,E) such that V V and E
EcU EB. For each stream of flow f E F from s to t, f (s, Wh,X, yy,zk,t). There are
two edges ec and eB in G", where ec (Vh, vi)o(vi, vj), (Vh, Vi) E, (vi, vj) UIO,
and TAIL(UIO) vy; eS (vj, Vk), and es is the shortest bridge sequence from vy
to vk. Note that the connectivity problem can be solved using the chaining problem
described in 4.

LEMMA 3. If F is a maximum flow on GQ and G" is constructed from F as
described previously (where G is strongly connected and G[Ec] is weakly connected),
then G is a symmetric graph.

Proof. By definition, F(wh, x) is the edge (Vh, v) in G, F(x, yy) is a UIO, and
F(yj,z) is a series of edges (vy, vyl)(vyl, v2)... (vjr, vk) (where these edges may be
null edges). As F is a maximum flow, every edge in E has been assigned a UIO in F.

According to the conditions given above, the flow is saturated and the in-degree
for each vertex vk in G" is (x,yk)eS* F(xi, y) + (yj,zk)eSs F(yj, z) and the out-

degree is (yk,z)eEs F(yk,zt) + F(zk,t). As F is a maximum flow, then (yj,zk)eEB
F(yy,zk) F(zk,t) and -(x,y)eE* F(x,yk) (y,z)eEsF(Yk,Zt). This im-
plies that the in-degree of vk is E and is equal to the out-degree of vk. Thus, G is
symmetric. [:]

LEMMA 4. If a directed graph is symmetric and weakly connected, then this di-
rected graph is also strongly connected.

Proof. Assume that the directed graph G (V, E) is not strongly connected but
is weakly connected. Define the one-way from v to vj as the directed edge (i, j)
provided there is no path from vj to v in G. By the weakly connected assumption, .at
least one one-way edge (i, j) exists. List all the one-way edges in G; there must exist
a one-way edge (i, j) such that v Sj where Sj is a proper subset of V, all vertices
in Sj are strongly connected, and no one-way edge from v Sy to any other vertex
exists. In the final vertex subset Sj, there are two kinds of edges connected to v Sy"
the edges between two vertices Vm and Vn where v, and vn Sy and the edges from

526 YINAN N. SHEN AND FABRIZIO LOMBARDI

Vk to Vt where vt E Sj and vk is not in Sj. Therefore, the index of Sj is as follows.

(Sj) dout(vr)- din(Vr) number of edges (Vm, Vn)
vES vES

(number of edges (Vm, Vn) + number of edges (vk, vt)) < O.

However, by the condition of Lemma 4,

veS

This is a contradiction and Lemma 4 is proved. [:]

The applicability of Lemma 4 is general; i.e., it is not restricted to UIO sequences.
If the above conditions are satisfied, then it is possible to chain each edge of E to
suitable UIO sequence and make the directed graph Gt weakly connected. By Lemma
3, the directed graph G from a maximum flow is symmetric. Therefore, there exists
an Euler tour of G.

LEMMA 5. Any tour of a generalized graph G is a test sequence for the directed
graph G.

Proof. Consider G’ (V’,E) and E Ec U EB. Every edge in Ec is ob-
tained by chaining an edge in E and the corresponding UIO sequence. Thus, it is
test subsequence. The tour of G traverses all the edges in Ec; i.e., it includes all test
subsequences. Hence, by definition it is a test sequence of G.

LEMMA 6. Let the cost of the maximum flow F on GQ be cost(F) and the cost of
the Euler tour of G" be C(G"); if G" is strongly connected, then C(G") cost(F).

Proof. By a previous definition, a flow from s to t on GQ corresponds to two
d in G", i.e., ec Ec and eS EB. Hence, C(G") f’F cost(if), whereeffges= if(s, t) is a single stream of flow from s to t and cost(s, t) cost(s, Wh) +
cost(wh, Xi) + cost(xi, yj) + cost(yj,zk) + cost(zk, t), but cost(s, wh) 0 and
cost(zk,t) 0. Thus, E cost(s,t)= E (cost(wh, xi) + cost(xi, yy) + cost(yy,zk))=
cost(F).

The following theorem therefore holds.
THEOREM 7. Assume F* is a minimum-cost maximum-flow on GQ and G is

constructed from F*. If G is weakly connected, then there exists at least an Euler tour

of G which has the minimum cost among all the rural Chinese postman tours of G.
Proof. Lemma 4 and the condition of a weakly connected graph guarantee the

existence of an Euler tour in G. Assume that there exists a rural Chinese postman
tour of G and let it be denoted by T1. The total cost of this tour C1 is less than the
cost C of G. A G can be constructed from T1. Then, it is possible to construct
flow F from G such that cost(F1) < cost(F*). This yields a contradiction on the
flow F* being the minimum flow on GQ.

6. Conclusions. This paper has presented the solution to two problems left
open in [18] for protocol verification and validation by multiple UIO sequences. The
problems are the multiple UIO tour length minimization and the weakly connected
graph problems and they arise in the characterization of conformance testing of pro-
tocols using the multiple UIO technique of [18]. It is proved that the solution of these
problems can be achieved by modifying the assignment graph. The theory behind
these conditions has been fully analyzed and proved.

It should be pointed out that the UIO method does not always guarantee 100%
probability of detecting faults for conformance testing. In most cases, nearly 100%

GRAPH ALGORITHMS FOR CONFORMANCE TESTING 527

fault detection is possible. The interested reader should refer to [21] for a solution to
this problem.

The following problem is not addressed in this paper: by overlapping test sub-
sequences, a shorter test sequence may be generated [22, 23]. This problem can be
solved using a different flow method; due to lack of space this aspect is not discussed in
this paper. However, such a test sequence with overlapped test subsequences does not
necessarily have the same fault detection capabilities of the test sequence generated
with no overlaps [23, 24]. (In most cases, the test sequence with overlaps has the lower
fault coverage.)

Appendix A. The following graphs are used in the paper.
I. G (V, E): state transition graph of the FSM corresponding to the protocol

specifications.
2. G (V, EP) directed graph constructed from G where V V and E

_
EE [2 Ec. Each edge in Ec is the test subsequence for an edge in E. If a tour can
traverse all edges in Ec, then this tour is a test sequence of the FSM.

3. GF (VF, EF)" flow graph derived from G. The capacity of each edge in EF
depends on the index of the corresponding vertex vi in G. In GF there are a source

(s) and target (t). A minimum-cost maximum-flow F from s to t can be found which
can be used to construct the symmetric directed graph *.

4. * (*,/*)" symmetric directed graph constructed from G by replicating
X times each edge (vi, vj) E E. X may be 0, I, or more and it can be obtained from
the maximum flow F of GF. If * is strongly connected, the Euler tour of * is a test
sequence.

5. GM (VM, EM)" directed graph constructed from G and the MUIOs of all
vertices of G. A source (s) and a target (t) are added such that a flow from s to t
exists.

6. G4 (V,E)" alternative directed graph similar to G but using MUIOs
instead of UlOs. The assignment of MUIO is based on the minimum-cost maximum-
flow F on GM. Similarly, the directed graph GF and then the symmetric directed
graph * can be also constructed from

7. GT (VT, ET)" a directed graph obtained from G and the MUIO sequences.
The capacity of each edge depends on the minimum-cost maximum-flow F on GM.
GT is used to solve the chaining problem.

8. GQ (VQ, EQ)" constructed from G and MUIOs as well as the bridge subse-
quences of G. In GQ, a source (s) and a target (t) are added such that a flow from s

to t can be found.
9. G (V,E)" directed graph constructed from the flow F of GQ. Each

stream of flow in GQ maps two edges (ec and eB) on GQ. If F is a minimum-cost
maximum-flow, G is always symmetric. The Euler tour of Gp is the optimized test
sequence of the FSM.

REFERENCES

[1] G.V. BOCHMANN AND C. A. SUNSHINE, A survey of formal methods, in Computer Networks
and Protocols, P. E. Green, ed., Plenum Press, New York, 1983, pp. 561-578.

[2] F. C. HENNIE, Fault detection experiments for sequential circuits, in Proc. 5th Ann. Symp.
Switch. Theory and Logical Design, Princeton, NJ, 1964, pp. 95-110.

[3] Z. KOHAVI, Switching and Finite Automata Theory, McGraw-Hill, New York, 1978.

[4] G. GONENC, A method for the design of detection experiments, IEEE Trans. Comput., 19 (1970),
pp. 551-558.

528 YINAN N. SHEN AND FABRIZIO LOMBARDI

[5] S. NAITO AND M. TSUNOYAMA, Fault detection for sequential machines by transition tours, in
Proc. 11th IEEE Fault Tolerant Comput. Symp., Portland, ME, IEEE Computer Soc. Press,
Washington, 1981, pp. 238-243.

[6] K.K. SABNANI AND A. T. DAHBURA, A protocol test generation procedure, Computer Networks,
(SS), . S-.

[7] M. W. UYAR AND n. T. DAHBURA, Optimal test sequence generation for protocols: The Chinese
postman algorithm applied to Q.931, in Proc. IEEE Global Telecommunications Conference,
Houston, TX, 1986, pp. 68-72.

[8] D. SIDHU AND T. LEUNG, Fault coverage of protocol test methods, in Proc. IEEE International
Conference on Computer Communications, New Orleans, LA, 1988, pp. 80-85.

[9] B. WANG AND D. HUTCHINSON, Protocol testing techniques, Computer Communications, 10
(9S), p. 9-S.

[10] A.V. AHO, A. T. DAHBURA, D. LEE, AND M. U. UYAR, An optimization technique for protocol
conformance test generation based on UIO sequences and rural Chinese postman tours, in
Protocol Specification, Testing, and Verification, VIII, S. Aggarwal and K. K. Sabnani, eds.,
Elsevier-North Holland, Amsterdam, 1988, pp. 75-86.

[11] J. t. BONDY AND U. S. R. MURTY, Graph Theory with Applications, Elsevier-North Holland,
Amsterdam, 1976.

[12] M.-K. KUAN, Graphic programming using odd or even points, Chinese J. Math., 1 (1962), pp.
273-277.

[13] J. EDMONDS AND E. L. JOHNSON, Matching, Euler tours and the Chinese postman, Math.
Programming, 5 (1973), pp. 88-124.

[14] R. E. TARJAN, Data Structures and Network Algorithms, Society for Industrial and Applied
Mathematics, Philadelphia, PA, 1983.

[15] International Telegraph and Telephone Consultative Committee recommendation X.25, in In-
ternational Telegraph and Telephone Consultative Committee Orange Book, Vol. 8, Public
data networks, 1977.

[16] A. V. AHO, J. E. HOPCROFT, AND J. D. ULLMAN, The Design and Analysis of Computer
Algorithms, Addison-Wesley, Reading, MA, 1974.

[17] D. SIDHU AND T.-K. LEUNG, Formal Methodsfor Protocol Testing: A Detailed Study, Tech.
report 86-23, Iowa State University, Ames, IA, 1986.

[18] Y.-N. SHEN, F. LOMBARDI, AND A. T. DAHBUaA, Protocol conformance testing by multiple UIO
sequences, in Protocol Specification, Testing and Verification, IX, E. Brinksma, G. Scollo,
and C. A. Vissers, eds., Elsevier, New York, 1990, pp. 131-143.

[19] A. T. DAHBUaA, private communication, AT&T Bell Labs, Murray Hill, NJ, 1990.
[20] M. CHEN, private communication, IBM, Yorktown Heights, NY, 1990.
[21] F. LOMBARDI AND Y.N. SHEN, Evaluation and improvement of fault coverage of conformance

testing by UIO sequences, IEEE Trans. Comm., 40 (1992), pp. 1288-1293.
[22] M.-S. CHEN, Y. CHOI, AND A. KERSHENBAUM, Approaches utilizing segment overlap to minimize

test sequence, in International Federation of Information Processing 10th Int. Symp. on Prot.
Spec., Test. and Verif., Orlando, FL, 1990, pp. 67-84.

[23] Y.-N. SHEN, X. SUN, F. LOMBARDI, AND D. SCIUTO, Protocol conformance testing by discrim-
inating UIO sequences, in Protocol Spec., Testing and Verif. XI, Stockholm, Sweden, B.
Jonsson, B. Pehrson, and J. Parrow, eds., North Holland, Amsterdam, 1992, pp. 349-364.

[24] X. SUN, Y.-N. SHEN, AND F. LOMBARDI, On the verification and validation of protocols with
high fault coverage using UIO sequences, in Proc. 11th IEEE Symp. on Reliable Distributed
Systems, Houston, TX, 1992, pp. 196-203.

SIAM J. DISCRETE MATH.
Vol. 9, No. 4, pp. 529-544, November 1996

1996 Society for Industrial and Applied Mathematics
0O2

MULTIPARTITION SERIES*

DAVID G. WAGNERt

Abstract. We investigate a class of generating series which enumerate multi-analogues of set
partitions with very general weights and constraints imposed, and develop some of the relevant
theory. The weights and constraints we consider are embodied in the definition of a "system," which
includes weighted multiset systems as a simple special case. Three topics are discussed. First, we
derive a composition formula valid for all systems, which specializes to composition formulas for
familiar combinatorial structures in many cases. Second, we extend the Heilmann-Lieb theorem on
matching polynomials to a similar statement valid for more general factors of multigraphs. Finally,
we introduce a multi-analogue of the order polynomial of a labelled poset, and by applying our
general composition theorem give a formula for the effect of composition of labelled posers on their
E-polynomials.

Key words, matching polynomials, set systems, order polynomials

AMS subject classifications. 05A15, 30C15, 26C10

Introduction. Rook polynomials and matching polynomials have attracted much
interest since their introduction in the 1940s and 1970s, respectively [12, 11]. In part
this is due to the fact that their coefficients are analogues of Stirling numbers of
the second kind and retain many properties of these numbers in a more general set-
ting. Another source of interest in these and related polynomials is their connection
with certain models in statistical mechanics (e.g., the Ising model and Potts models
[1], models of adhesion of dimers [11], and models of r-electron bonding in aromatic
molecules [8]). The location of zeros of these polynomials translates into information
about phase transitions or energy spectra of the physical systems being modelled.
Harper [10] showed that the "Stirling polynomials" k S(n,k)tk have only real ze-
ros. Heilmann and Lieb [11] proved an analogous result for the matching polynomial
of any finite graph. As a special case of one of our main results (Theorem 3.1) we
obtain an appealing generalization of the Heilmann-Lieb theorem to more general
factors of multigraphs (Theorem 3.3). As is well known (Theorem (51) of [9]), the

d tifact that a polynomial -]i=0 ai has only real zeros implies that the sequence {a{}0d
2 >a_ for alli 1,.. d 1. Whenis logarithmically concave; that is, that a{ a+1

all the a are nonnnegative, it also implies that {a}0d is unimodal; that is, there is
an index k such that ao <_ <_ ak

_ _
ad. Theorem 3.3 therefore implies many

combinatorially interesting inequalities.
In fact, the research reported here began with Theorem 3.3 and grew out of

an effort to extend it in the same way that 4 of [21] extends the Heilmann-Lieb
theorem. In order to develop a definition of the composition of objects which was
general enough to cover the case of weighted multigraphs, we found it convenient to
introduce the concept of a "system." This abstraction is the focus of 1 and loosely
can be thought of as a weighted collection of multisets with specified "interference"
among its members. The related "multipartition series" is a generating series which
encodes the information about a system which is relevant to the questions we have in

Received by the editors October 3, 1994; accepted for publication (in revised form) October 10,
1995. This research was supported by National Science and Engineering Research Council of Canada
operating grant OGP0105392.

Department of Combinatorics and Optimization, University of Waterloo, Waterloo, Ontario,
Canada N2L 3GI (dgwagner@math.uwaterloo.ca).

529

530 DAVID G. WAGNER

mind. A slight variation of this definition results in a multi-analogue of the chromatic
polynomials of graph theory and the partition functions of statistical mechanics.

In 2 we define compositions of systems and prove a composition formula for
the multipartition series of the systems involved (Theorem 2.6). This is an exten-
sive generalization of Theorem 4.1 of [21]. In many special cases the composition of
systems defined here reduces to the composition of combinatorially defined objects,
and the resulting formula for the composite multipartition series yields an interesting
combinatorial identity. One new instance of this is discussed in 4.

The content of 3 is a generalization of the Heilmann-Lieb theorem which gives
a large class of systems for which the multipartition series satisfies a strong real-
rootedness condition (Theorem 3.1). Several consequences of this are also discussed.

Finally, in 4, we show how order polynomials of labelled posets can be viewed
in the context of multipartition series. We interpret the composition formula of 2
in terms of composite labelled posers, resulting in a composition formula for the "E-
polynomials" of labelled posers. The formula involves an interesting multi-analogue of
the E-polynomial; further investigation of these series, however, is deferred to another
paper [23].

We introduce notation as we proceed, with the exception of the following more
or less standard conventions. The symbol := is used for equality by definition. The
cardinality of a set U is denoted by U. For u E U we write U\ u instead of
U \ {u}. For a function f U --, N defined on a set U, let f! :- rluu f(u)! and

Ifl := -ueu f(u). We say that f is finite when Ifl is finite. We denote the function
from U to N which is identically zero by 0 or by , and the all-ones function is denoted
by 1 or by U. Given a set X := {Xu "u U) of pairwise commuting indeterminates

xf() and for a finite subsetindexed by U, for a finite f" U --, N let XI 1-IueU
S C, U let Xs := YIues z. If Q(X) e R[[X]] for some ring R, then we denote by
[Xf]Q(X) the coefficient of xf in Q(X). Given a set U, a (finite) multiset on U is
any finite function S U --, N. The interpretation is that for each u U, S(u) is
the multiplicity of u as an element of S. Thus finite sets may be usefully confused
with their indicator functions. We also write S for IS] and u S for S(u) > 0. The
set of all finite multisets on U is denoted by A4(U). The set of all finite nonempty
multisets on U is A//+(U) :- A4(U) \ 0. We denote by 7)(U) the set of all finite
subsets of U, and 7)+(U) 7)(U) \ O. For S,T AIr(U) the notation S c_ T means
that S(u) <_ T(u) for all u E U. All multisets we consider are finite.

1. Systems. By a vertex-set we mean a finite or countable set V, the elements
of which are called vertices. A multipartition 7r of V is any multiset of nonempty
multisets on V; that is, r A/I(A/I+(V)). The elements of a multipartition are called
blocks. Given a multipartition r of V we define the elevation of r to be the multiset
el(r) V N given for v V by

(I) el(r,v) :- el(r)(v) :- 7r(S). S(v).
s+(v)

An ordered multipartition is a finite sequence ($1,..., Sm) of not necessarily distinct
nonempty multisets on V. The set of all ordered multipartitions of V is (.9(V) :-
[.J{A4+(V)" m _> 0}. The base of an ordered multipartition (S1,...,Sm) is the
multipartition 7r of Y such that 7r(U) := {i" S U} for all U A/+ (Y); we denote
the base of a by base(a). The number of ordered multipartitions with base equal to
r is the multinomial coefficient (#Tr)!/r!. Any concept involving a multipartition is

MULTIPARTITION SERIES 531

extended to one involving an ordered multipartition by using the base of the ordered
multipartition. For example, if a ($1,..., Sin) then we let a(U):= {i: Si U}
for all U E .A/t+ (V). The concatenation of two ordered multipartitions a and " is an
ordered multipartition, denoted by a @ -.

Now fix a commutative Q-algebra W, called the weight ring. A structure is a pair
(V, C) in which Y is a vertex-set and C is a function C :O(Y) -- W. This is clearly a
very general definition but, as will be seen, the generality is useful and several special
cases are of considerable interest. Let t and X :- {Xv v E V} be pairwise commuting
indeterminates algebraically independent over W. The multipartition series of (V, C)
is

(2) pC (t, X) "= E C(a)
t#

Xel()

eo(v)

and the polychromatic series of (V, C) is

(3) ZC (t’ X) := E c(a) (t) Xel(a)
eo(v)

(this terminology is motivated by Example 1.3). Notice that for any finite f V --. N,
both [Xf]pC(t, X) and [Xf]Zc(t, X) are polynomials in Wit] of degree at most Ill.

One natural condition to impose on a structure (V, C) is that whenever a, a
O(Y) are such that base(a) base(a’), then C(a) C(a’). Such a structure will be
called basic. Thus B(r) is well defined when (V, B) is a basic structure and r is a

multipartition of V, and it follows that

t# xel((4) P(t, X) := E B(r)
a(a+(v))

Until 4, 11 of our examples of structures are basic.
Notice that if el(n) G P(V) then r! 1, with the following consequence.
PROPOSITION 1.1. Let (V, 13) be a basic structure, and let U 7)+(V). Then

[xU]p(t, X) - B(rr)t# where the summation is over all set partitions 7c of U.
By specializing to (the indicator structure of) a finite set system, the polynomial of
Proposition 1.1 becomes the partition polynomial discussed in [21]. Further special-
izations result in matching, rook, and a-polynomials [3, 4, 6, 7, 8, 11, 12].

A multiset system is a pair (V, $’) in which V is a vertex-set and 9r is a subset
of A/+(V). When 9r is a subset of P+(V) we say that 9r is a set system on V. A
multipartition r of V respects if and only if for all S M+(V), if r(S) > 0 then
S E -. A structure (V, C) is supported on (V, .T) when it satisfies the condition that
if C(a) 0 then a respects 9r, for all a O(V). It is often helpful to emphasize
the presence of a multiset system (V, 9r) which supports a given structure. (V, C), in
which case we write (V, 9r, C). We call such a triple a system, and write P-(t, X) for its
multipartition series. Given a multiset system (V, 9r) we define the indicator structure
Z:: O(V) -+ W of 9r by Z:r(a) := 1 if a respects , and Z:(a) := 0 otherwise. We
write P:(t, X) for the multipartition series of (V,.T’,Z:r). Proof of Proposition 1.2 is
left to the reader.

PROPOSITION 1.2. Let (V,.T) be a multiset system. Then for any finite f: V
N,

[Xl]P2(t, X) E (#a)!
and [Xl]Z:(t, X) E #a

532 DAVID G. WAGNER

where the summations are over all ordered multipartitions cr E (9(V) which respect
and have elevation f. Consequently,

P:(t, X)= exp t E xS and Z:(t, X)= 1 + E xS
SE" SE2

EXAMPLE 1.3. Let G (V, E) be a simple undirected graph in which V is either
finite or countable. Denote by $0(G) the set of all finite nonempty subsets S of V
which induce an edge-free subgraph of G. Then for any U E 7)(V),

(IXv] 1+ E xs
Seo(a)

is the usual chromatic polynomial [4, 16] of the subgraph GIu of G induced by U, and

Seso(a)

is the a-polynomial [3, 4, 14] of
EXAMPLE 1.4. Let G (V, E) be a simple undirected graph in which V is either

finite or countable, and let]C(G):= {{v} :v e V} U E. Then for any U e 7)(Y),

is the modified matching polynomial [21] of the subgraph GIu. Generally, for a finite

f" Y --. N, we have [Xf]P:(a)(t, X) H t#H/r(H), where the summation is over
all multisets H AA(E) such that for all v V, el(H, v) < f(v), and where

More generally than in Proposition 1.2, fix weights c(S, m) W for each S
Ad+ (V) and integer rn > 0, and put c(S, 0) := 1 for all S Ad+ (V). This information
may also be encoded by a collection of structure series

Zm

C (z)
m>0

for each S 2M+ (V). We define a separated structure (V, C) by setting

:= l-[
s+(y)

for each a e (9(V). Notice that (V, C) is basic. Any system (V, 9,C) in which the
structure (V, C) is separated is called a separated system. The proof of Proposition
1.5 is analogous to that of Proposition 1.2, and is also omitted.

MULTIPARTITION SERIES 533

PROPOSITION 1.5. Let (V, , C) be a separated system defined by structure series

{Cs(z) S e 9r}. Then for any finite f" Y N,

x)= c()-gy

where the summation is over all multipartitions 7r of V which respect iT and have
elevation f. Consequently,

II c (tx)
SE

EXAMPLE 1.6. Let G (V, E) be an undirected multigraph which has only
finitely many loops or edges between each pair of vertices, and let w" E W be a
weight function on the edges of G. Suppose that for each S E A/I+(V) with #S 2,
there are re(S) edges in E incident with the multiset S of vertices, and that these
edges have weights wl(S),..., win(s)(S). We represent (G, w) by the separated system
(V, A/I<2, 6) in which A/I<2 {S E /+(V) "S _< 2}, 6 is defined by the structure
series

.()

a (z) := rI (, +
i--1

when #S 2, and G(z) l+z when S 1. For U 7)(V) the polyno-
mial [xU]p< (t, X) is a weighted modified matching polynomial, similar to that in

Example 1.4. However, for general finite f V -- N there is a difference: we have
[X/]P<. (t, X) L’H w(H)t#H where the summation is over all subsets H C_ E such
that for each v e V, f(v)- 1 _< el(H, v) _< f(v), and where w(H)"= rIeeH w(e).

We say that a separated system (V, 9r, C) is completely separated when for each
S 9r there is a c(S) W such that c(S, m) c(S)m for all m _> 0. In this case we
have

P(t,X) exp t E c(S)XS and Z(t,X)= 1 + E c(S)XS
S5 S"

Thus, a multiset system (with its indicator structure) is a special case of a completely
separated system. From Proposition 1.2 and equation (8) it is evident that completely
separated systems are the same as weighted multiset systems.

EXAMPLE 1.7. Let G (V, E) be a finite undirected multigraph. Define a
completely separated system : (.9(V) -, Q[q] as follows. For each S E A/+(V) put

q#E(GIs)
o

and for O(V) let {(a)"= rIse+(y)g(S)c(S). Consider the polynomial

(Ya(q,t) := [xV]z6(t,x) IXV] 1+ E q#E(als)X
s,+(v)

534 DAVID G. WAGNER

Then Q(G; x, y) := x-#V(a)Ya(x + 1, xy) is Tutte’s dichromatic polynomial [20] of G;
also, for m E N, Ya(q, m) is the partition function of the m-state Potts model [1] as-
sociated with G (where q is a quantity dependent on temperature). Comparison with
Example 1.3 shows that [q]Ya(q, t) is the chromatic polynomial of G. Furthermore,
for k E N and 0 _< q _< 1, [tk]Ya(q, t) is the probability that after deleting each edge of
G independently with probability q, the remaining spanning edge-subgraph of G has
exactly k components. In particular, the case k 1 gives the reliability polynomial [5]
of G. These claims can easily be verified by induction using the contraction/deletion
formula

Ya(q, t) (1 q)Ya/e(q, t) + qYa\e(q, t),

where e E(G) and G/e and G \ e represent the contraction and the deletion of e,
respectively.

2. Composite systems. Let V be a vertex-set, and let a := {U. v V}
be a set of pairwise disjoint vertex-sets indexed by V. The composition of 1 into
V is VIlli := [[{Uv v V}. We next consider the construction of multisets S
Ad+(V[tl]). Denote by Af+(V, II) the set of those elements (R, (rv)ev) of Ad+(V) x

1-Iev Ad(Ad+(U)) such that for all v V, #r. R(v). Define a function
N"+ (V, tl) Ad+ (V[II]) by

(9) (R, (rv)):= el(r).
vV

We leave the simple verification of Propositidn 2.1 to the reader.
PROPOSITION 2.1. Let V, d, and be as above. Then for each S Ad+(V[I])

there is a unique (R, (r)) -(S) such that R is a set.
Now let V and 1 be as above, let (V,)r) be a multiset system, and let (tl,) :=

{(U, 6):v V} be a set of pairwise vertex-disjoint multiset systems indexed by V.
We define the composition of (g, 0) into (V,), denoted by (VIlli, 3c[]), as follows.
The vertex-set V[I] has been defined above. A multiset S 2t4+(V[tA]) is a member
of $c[B] if and only if there exists at least one (R, (r)) -1(S) such that R 3c
and rv respects Gv for each v E V. The reader is also invited to check Proposition
2.2.

PROPOSITION 2.2. If (V,’) is a set system and each (U,6) is a set system,
(viii,
This proposition shows that in this case, the composition of multiset systems

defined here reduces to the composition of set systems defined in [21]. Several struc-
tural properties of set systems which are preserved by composition are also discussed
in [21]. For example, if (V, 9r) is a simplicial complex and each (Uv,) is a simplicial
complex, then (V[L[],)r[O]) is also a simplicial complex.

In order to define compositions of systems we next consider the construction of
ordered multipartitions of V[tl]. Let O(V, tl) consist of those elements (p, (-)ev) of
O(V) x 1-Iev O(Uv) such that for all v V, p- el(p, v). We define a function
T: O(V, II) - O(V[IA]) as follows. Given (p, (-)) O(V, IA), for each v V we may
write - al (... @ gym uniquely subject to the condition that pa Ri(v), where
p= (RI,...,Rm). Now for each 1,...,m let

(10) S, E el(tt)
"vV

MULTIPARTITION SERIES 535

define a multiset in A/t+(V[t]). Finally, we let T(p, (-)) := (S,..., Sin).
Proposition 2.3 records some useful facts about T; their proofs are routine and

we omit them.
PROPOSITION 2.3. Let (V,) be a multiset system and let (1, @) be a collection

of pairwise vertex-disjoint multiset systems indexed by V.
(a) For each a e O(V[[]), there is a unique (p, (-)) e T-(cr) for which each

block of p is a set.
(b) If (p, (7)) e O(V,U) is such that p respects and each - respects then

(c) If a e O(Y[12]) respects 9[] then there is at least one (p, (v)) e T-(cr) for
which p respects :F and each v respects v.

Now to define the composition of systems, let (V, 9v) and (12,) be as in Propo-
sition 2.3, let C be any structure supported on 9v, and let := {By v V} be
a set of structures supported on the corresponding members of . For an ordered
multipartition a e O(V[[]) we define the composite structure C[] evaluated at a to
be

(11) C[](G) := E C(p) H Bv(-v).
(p,(-v))T- (a) vV

The triple (VIi2], ’[5], C[])is a composite system
For any multipartition r of V, let d0t(V) denote the set of all multipartitions

a E O(V) such that base(a) 7, and recall that #(D(V) (#)!/r!.
LEMMA 24. Let V and U be as above, and let a ($1,..., S,) E (D(V[U]). Then

there is a bijective correspondence

m

i=1 (R,())e-(S) ev

Proof. We construct a bijection from the right side to the left side as follows. A
typical element on the right side corresponds to an m-tuple ((R1, (av)),..., (Rm, (arm)))

O(Uv each))) e (S). From this elementin which each av and (Ri, (base(a/ I/-1
" for each v V; thuswe construct p := (RI,...,/m) and - (R) (R)

T(p, (-)) a. One easily checks that this construction in fact gives a bijection.
PROPOSITION 2.5. Let (V, Jz, C) and (it, 05,) be as above.
(a) The structure C[B] is supported on $’[].
(b) If C is basic and each Bv is basic then C[] is basic.
(c) If C is completely separated and each B is completely separated then C[] is

completely separated.
(d) If . is a set system and C and all are indicator structures, then C[] is

an indicator structure.
Proof. Parts (a) and (b) are routine. For part (c), from (11) and Lemma 2.4 we

calculate that

(p,(’rv))ET- ((:r) RE

=II E
=1 (R,())E- (S)

(V) Ev

H
ev !

536 DAVID G. WAGNER

" and 13v is completelywhere the second equality is justified because if Tv v (R)’’’ (R)

separated, then it is basic and B(7) B(v)... Bv(). Therefore, if we put

for each S A//+(V[.I]), it follows that

II
se+(v[ll])

for each r e O(V[l/]). Comparing this with equation (6), we see that C[3] is com-
pletely separated.

Part (d) is a direct consequence of Proposition 2.1 and equation (12).
The following composition theorem was proved in [21] in the special case of finite

set systems, but only for the Xlth coefficient, and by a much more clumsy argument.
Let y := {y :v E V} be pairwise commuting independent indeterminates, let d :=
{/) :v E V} where 0 := O/Oyv for each v V, and let Xl := {X u U} for
each v V.

THEOREM 2.6. Let (V, .P, C) and (1/, O, 3) be as above. Then

pC[] (t, X) o c (Yv X][y]P’(t, d)H P-[] 6 v

vV

Proof. We collect terms on the right side using the relevant definitions, viz"

o c[y]P’(t, d)H v V

vV

[y0] C(p)
p veV o(u)

as was to be shown.
Theorem 2.6 implies that

(13) P-(t, X) [y0]p_ (t, d) H exp(yXv)
vV

for any system (V, , C). Thus, we lose no information in shifting our attention from
the multipartition series P(t, X) to the compositional operator C’w[t, y] Wit]
of the system (V, 9r, C), defined by = [y0]pC= (t, d) The utility of this point of
view is seen in the next section. It is important to notice that for any system (V,
c is W[t]-linear. Another useful property is given in Proposition 2 7, the proof of$-

MULTIPARTITION SERIES 537

which is omitted as it follows straightforwardly from the chain rule for differentiation.
For a multiset S 6 Ad+ (V) and a vertex v 6 S, let S \ v denote the multiset given by

(s \
if w#v,
if w=v.

Given a separated system (V, , C) and S e ’, let (V, \ S,C \ Cs) denote the
separated system supported on $" \ S and defined by the structure series {CT(z)

PROPOSITION 2.7. Let (V, yz, C) be a separated system defined by structure series
{Cs(z) S 6 }. Then for any v 6 V and Q(y) e W[y],

cO:yvQ(y) t E y\smC\Cs cs(tdS)dS\VQ(Y)
v6S6

where Cs (z) dCs (z)/dz.
3. Graphic systems. Throughout this section we take R for the weight ring

W. We use the method of interlacing zeros to show that certain conditions on a
system (V, ’, C) imply that each coefficient [Xf]P-(t, X) of the multipartition series
is a polynomial in R[t] with only real nonpositive zeros. This method is outlined in
the Appendix for the readers’ convenience.

For lack of a better term we shall say that Q(y) 6 R[y] is realistic when Q(y)
YIvev Q(yv) and each Q(yv) has only real nonpositive zeros (and, of course, only
finitely many Qv(y,) # 1). Consider the following three conditions on the composi-
tional operator O of a system (V, $’, C)"

(Z)
For any realistic Q(y), OQ(y) has only real nonpositive zeros.
For any realistic Q(y), and any v 6 V, OO.Q(y) - OQ(y).
For any realistic Q(y), any v 6 V, and any v 6 S 6 9v,

C\Cs c’s(tdS)dS\VQ(y -<’\S

We prove that these three conditions hold for a certain class of separated systems.
A Pdlya-Laguerre class one series is a series C(z) 6 R[[z]] of the form

(14) C(z) := exp(a0z) H(1 + aiz)

in which ai >_ 0 for all 0, and Yi>l a converges (cf. [13, Chap. 7, 2]). A P61ya-
Laguerre class one structure is a separated structure defined by a P61ya-Laguerre
class one structure series. A multiset system (V, $’) is graphic when #S _< 2 for all
S 6 9v, and a P6lya-Laguerre class one graphic system is a P61ya-Laguerre class one
structure supported on a graphic multiset system. (Examples 1.4 and 1.6 are both of
this form.)

THEOREM 3.1. if (V, ’, C) is a P6lya-Laguerre class one graphic system then
ffp satisfies conditions (a), (fi), and (7).

Proof. Let Q(y) be realistic. We prove the conditions simultaneously for all such
systems by induction on deg Q := Y’-vey deg Qv, The basis of induction deg Q <_ 1
is easily checked. Suppose that the theorem has been proved for deg Q _< n- 1 and
assume that deg Q n > 0. Without loss of generality we may assume that each Qv
is monic.

538 DAVID G. WAGNER

Let v E V be any vertex such that deg Qv > 0, let >_ 0 be such that Qv(-0) 0,
and put (y) Q(y)/(yv +). By linearity of (I) and Proposition 2.7 we have
(I)CQ(y) tR(t)+ 0(I)(y), where

R(t):= E y\zec\cscs(tdZ)dS\V,(Y)"
vESE

Now Q(y) satisfies the induction hypothesis, so that by (a) and (/) applied to Q(y)
and Lemmas A.3 and A.l(c) we see that

oct’(y) - tR(t)

and hence by Lemma A.2(c) that

c (I)Q(y) ((tR(t(I)Q(y)-<

This establishes part (a) of the induction step.
To establish part () of the induction step, let v E V be arbitrary. If deg Q. 0

then 0vQ(y) 0 and there is nothing to prove. Otherwise, let the zeros of Qv be
-0vl,...,-0k, and for i 1,...,k put Qi(y) := Q(y)/(yv +). By part (c) of
the induction step above, we have oci(y) - O:Q(y) for all/ 1,...,k. But
0.Q(y) k:’i=1 i(y), so that by linearity of (I)C and Lemma A.3 we find that
Cc%Q(y) - (I)Q(y), as desired.

It remains to verify part (7) of the induction step. Let v V and v S 9 be
arbitrary. Let the PSlya-Laguerre class one structure series Cs(z) be given in (14).
Thus Cs(Z) Y’j>o ajJs(z) where

{ Cs(z)Cs(z) :=
Cs(z)/(1 + ajz)

if j=0,
if j_>l.

eaC\Cs and Lemma A.3, inFor each j > 0 let Fj eC\Css(tdS By linearity of ’\s:$’\S

order to prove that (-) holds it suffices to show that for all j >_ 0,

(15) FjdS\Q(y) - (I):Q(y).

We do this by checking two cases" j =0or j_> 1. When#S= 2let S= {v,w},
where w v is possible. When j 0 we have

s\. { (I)CQ(y)
rd Q(Y) o:0Q(y)

if #S=1,
if

In either subcase, parts (a) and () of the induction step establish the validity of
(15). For j >_ 1 we have

(6) r (1 + ajtdS)Q(y) c (y).

In either subcase #S 1 or # 2, parts (a) and () of the induction step imply
that

(17) rjdS\’Q(y) - PjQ(y)

MULTIPARTITION SERIES 539

and that

(18) SvFydSQ(y) <Fjd Q(y).

Hence, from (18) and Lemma A.l(c) we deduce that

(19) FjdS\Q(y) tFjdSQ(y).

Now from (16), (17), (19), and Lemma A.3, we conclude that (15) holds. This com-
pletes the induction step and the proof.

Theorem 3.1 has as an application the following theorem.
THEOREM 3.2. Let G (V, E) be a finite multigraph. For each v E V, let

Qv(y) "= Era Nv(m)yra/m! be a polynomial with only real nonpositive zeros. For
each rn > 0 let N(m) EH l-Iev N,(degH(v)), where the sum is over all edge-
subgraphs H of G with rn edges. Then the polynomial ra N(m)tra has only real
nonpositive zeros.

Proof. Let Q(y) l-Iev Q(yv) and let (V, A/t2, G) be the separated system
supported on J42 "= {S E A4(V) #S 2} and defined by structure series Gs(z) :=
(1 + z)re(s) where re(S) is the number of edges of G incident with the multiset S of
vertices, for each S A/I2(V). The polynomial in the conclusion is then (I).Q(y).
But Q(y) is realistic, and (V, A/t2, G) is a PSlya-Laguerre class one graphic system,
by hypothesis. The result follows from Theorem 3.1, by property

As a further special case, we have the following direct generalization of the
Heilmann-Lieb theorem (which is the special case f0 0 and fl 1).

THEOREM 3.3. Let G (V, E) be a finite multigraph. Fix two functions fo and
fl from V to N such that for all v V, fo(v) <_ fl (v) <_ fo(v) + 1. For each m N
let N(m) be the number of edge-subgraphs H of G which have rn edges and are such
that for all v V, fo(v) <_ degH(v) _< fl(v). Then the polynomial m N(m)tra has
only real zeros.

Proof. This follows from Theorem 3.2 by taking

1 if n f0(v) or rn-- f(v),N(m) :=
0 otherwise.

As the following example shows, this theorem is in a sense the best possible.
Consider the graph K,3 and let w be the vertex of degree three. Take f0 -= 0,
fl(w) 2, and fl(v) 1 for v : w. Then the polynomial in the conclusion of
Theorem 3.3 is in this case 1 + 3t + 3t2, which has nonreal zeros.

By a simple construction we can obtain a consequence of Theorem 3.3 which is
superficially more general. Given a finite multigraph G (V, E), the multiset F
of flags of G consists of those pairs (v, e) with v E V, e E, and v e, counted
with multiplicities. Thus, a loop e at v contributes two copies of (v, e) to F. The
vertex-partition of F is the multipartition of F, with elevation F, such that (v, e)
and (v’, e’) are in the same block of if and only if v v’.

THEOREM 3.4. Let G (V, E) be a finite multigraph, and let re be any refinement
of the vertex-partition of F. Fix two functions f0, f, "re - N such that for each
B fo() < (B) < Io(B)+ ach m > O, N(n) oI
edge-subgraphs H of G with rn edges, which are such that for each B re, the number
of flags of H which are in B is between fo(B) and fl (B). Theft the poly?’tomial
ra N(m)tm has only real zeros.

540 DAVID G. WAGNER

Proof. Construct a new multigraph G’ (Vp, Ep) as follows. The vertex-set
is V := r. Given an edge e {u,v} of E, let B and B be the blocks of r
which contain the flags (u,e) and (v,e), respectively. Then put e’ := {B,Bve} and
E := {e e E E}, counted with multiplicities. Now, by applying Theorem 3.3 to the
graph G we obtain the result.

4. Order series. For this section we assume some familiarity with the theory of
labelled posets and P-partitions, as developed in [17, 18]. Let V be a finite set with
V n, say, and let A (V, <,w) be a labelled poser with underlying set V; that
is, (V, <) is a poset and w" V - In] is any bijection, where In] := {1,2,... ,n}. When
w is order-preserving, A is naturally labelled; when w is order-reversing, A is strictly
labelled. The case of naturally labelled posers subsumes unlabelled posets within this
framework. An inversion in A is a pair (a, b) E V2 with a < b and w(a) > w(b). Two
labellings w" V - In] and w" V - In] are isotonic when the corresponding sets of
inversions are equal. Isotony is thus an equivalence relation, and everything we have
to say about a labelled poset depends only upon its isotony class. For any subset S of
V, we use S to denote the lower order ideal ("downset") generated by S, and max S
to denote the set of maximal elements of S.

Given a labelled poser A, define a structure 4 O(V) - Q as follows. For
an ordered multipartition a (Si,...,Sm) O(V) we put 4(a) 1 if for each
i 1,...,m,

(i)
(ii) S/2 contains no inversions of A, and
(iii) Si N ($1 t2... t2 Si-1) c_ max(S O... tA Si-1);

otherwise we put 4(a) :- 0. The structure (V, ,4) is called the order structure of A.
Let O(A) O(V, <, w) denote the set of all a e O(Y) such that A(a) 1. Notice
that (V, ,4) is supported on P+ (V), and that A is not separated, and in fact is not
even basic unless (V, <) is an antichain.

Consider a labelled poset A (V, <,w) with #V n, and for each 0 <_ j _< n,
let ey(A) be the number of order-preserving surjections f" A - [j] such that if (a, b)
is an inversion in A then f(a) < f(b). The order polynomial [17, 18] of A is

gt(A; t) E ey(A)
j=o

PROPOSITION 4.1. Let A (V, <, w) be a finite labelled poser. Then [xV]zA(t, X)
is the order polynomial of A.

Proof. Notice that [xV]zA(t, X) -a () where the sum is over all a e O(A)
such that el(a) Y. To each such a (S,..., Sj) we associate a surjection f
A [j] by f-(i):- S for each 1 _< <: j. This gives a bijection between the set of
a E O(A) with el(a) Y and the set of surjections in the definition of f(A; t). The
result follows.

Actually, the multipartition series Pt(t,X) of order structures do not possess
many nice properties, and it is more convenient to work with a close relative. By
analogy with the terminology of [3, 4], we define the "augmented multipartition series"
of a system (V, 9v, U) to be

(20) /(t,X):= e(r)t#Xel().
o(v)

MULTIPARTITION SERIES 541

In the case of the order structure of a finite labelled poset A, the polynomial
[xV]A(t,X) is the E-polynomial [2, 15, 22] of A: E(A;t) := Yj=o ej(A)tj, with
the notation as above. The following conjecture is due to Naggers [15] in the natu-
rally labelled case, and to Stanley in general [19].

CONJECTURE 4.2. Let A (V, <,w) be a labelled poset. Then, for any U E

JM+(V), all zeros of [xU]A(t,X) are in the interval [-1, 0].
Actually, the conjecture has previously been made only for U E P+ (V), but as

we see in Corollary 4.5, this is not an essential difference.
For example, consider a strictly labelled totally ordered set A. Any set of at least

two elements of V then contains an inversion in A, from which it follows that

1
(21) A(t’X) H 1-tXvvEV

One also sees that if A is an antichain then

(22) A(t,X) (l tsep+(v)E XS)
-1

The following composition formula for augmented multipartition series can be
proved by mimicking the proof of Theorem 2.6. We use the notation y- for {y-
v V}.

PROPOSITION 4.3. Let (V, IT, C) and (:d, ,) be as in Theorem 2.6. Then

 .clml (t, x)[] [yO].(t y-l) H B(Yv Xlv)
vV

It is clear that for any system (V, 9c, C),

1
(23) /5-(t, X) [y](t, y-l) II 1 yvXv

vV

Given a labelled poset A (V, <,w) and pairwise disjoint labelled posets B
{B. :v V} indexed by V, we define the composition of B into A as follows [22].
For each v V let B := (U, <, u) and let m := #U. Then A[B] := (V[ll], <,)
where Viii] := Uev U, and x < y in A[B] if and only if either x U and y Ub
with a < b in A, or x < y in B. for some v E V. We put r := evm and note
that there is a unique set of order-preserving injections [m.] --. [r] for v V such
that their images are pairwise disjoint and if w(a) < w(b) then Ca(i) < b(j) for all
i [ma] and j [mb]. Finally, we define qo on V[ll] by putting qzlu := o Uv for
each v V.

The following theorem shows that the composition of systems defined in 2 spe-
cializes to a relationship among order structures of composite labelled posets.

THEOREM 4.4. Let A (V, <,w) be a finite labelled poset and let B {B v
V} be a collection of pairwise disjoint labelled posets indexed by V. Let (Uv, Bv) be
the order structure of B, for each v e V, and put (t1, fB) := {(U, B) v e Y}. Then
the composite structure (Y[ll],jt[]) is the order structure of the composite labelled
poset A[B].

542 DAVID G. WAGNER

Pro@ By definition, for any a e O(V[[]),

(p,(v))ec-1 () vey

Since A is supported on +(V), Proposition 2.3(a) implies that the only term such
that A(p) # 0 is the unique (p, (Tv)) e T-(a) for which each block of p is a set.
Hence A[](a) 1 if and only if A(p) 1 and Bv(T) 1 for all v 6 Y. We now
show that these conditions are equivalent to having a 60(A[B]), which suffices to
prove the theorem. As the argument consists of straightforwardly checking definitions
we merely outline the main steps.

Consider any a ($1,..., Sin) 60(Y[g]) and let (p, ()) be the unique element
of T-l(a) for which each block of p (R1,..., Rm) is a set. Then for each v 6 V,

arem where the ordered multipartitions v () if v R, andT =v...Ov,
(Si U) otherwise. Let T Si U. We make three claims, the proofs ofNV

which are left to the reader.
Claiml. For each 1 im, Si is a set if and only if for each v V T isa

set.
Claim 2. For each 1 N m, S contains no inversions of A[B] if and only if R

contains no inversions of A, and for each v V, (T)2 contains no inversions of B.
Claim3. For eachl<i<m:

s $(Sl ... s_) max(S1 ... S-l)

if and only if

R: 71 (R1 U... U Ri_) _C max(R U... U Ri_)

and, for each v E V,

T r-i (Tv U... U T-) C_ max(Tv U... U T-1).
Given these claims, we may argue as follows. For any a E O(V[12]), the first

paragraph shows that jt[](a) 1 if and only if ,4(p) 1 and, for each v V,
Bv(Tv) 1. This holds if and only if p satisfies conditions (i), (ii), and (iii) for A,
and for each v V, -v satisfies conditions (i), (ii), and (iii) for By, by definition. The
three claims above show that this occurs if and only if cr satisfies conditions (i), (ii),
and (iii) for A[B], which completes the proof.

COROLLARY 4.5. Let A (V, <, w) be a finite labelled poser, and let U 3d+ (V).
Then [XUlZ(t, x) is the order polynomial of A[B], where, for each v V, B, is a
strictly labelled totally ordered set of size U(v).

Proof. Equivalently, we show that [xu](t,x) is the E-polynomial of A[B].
Notice that

[xV]/5(t, x) [y]/5t(t, y-1)yU,
and from equation (21), the E-polynomial (in the indeterminate y) of a strictly la-
belled totally ordered set of size n is yn. Proposition 4.3 and Theorem 4.4 imply the
result.

In principle, Proposition 4.3 and Theorem 4.4 give a composition formula for E-
polynomials of labelled posets, but in order to use it effectively we must be able to
describe the series/hA(t,X) explicitly. In fact, one can be quite specific about the
form of A(t, X), but the arguments are too long to be included here and appear in
another paper [23].

MULTIPARTITION SERIES 543

A. Appendix: The method of interlacing zeros. We summarize here the
concepts and lemmas required for our proof of Theorem 3.1.

Suppose that p, q E R[t] both have only real zeros, that those of p are 1

_ _
n, and that those of q are 1 _< _< m. We say that q interlaces p if degp l/deg q
and the zeros of p and q satisfy

We also say that q alternates left ofp if degp deg q and the zeros of p and q satisfy

We use the notations p q for "p interlaces q," p ((q for "p alternates left of q," and
p q for "either p q or p ((q." Any polynomial which stands in one of these relations
must have only real zeros. By convention we say that for any real-rooted polynomial
p, all of p 0, 0 p, p ((0, and 0 ((p hold.

Lemma A.1 is immediate from the definitions.
LEMMA A.1. Let p, q R[t] have only real nonpositive zeros.

(a) One has q p if and only if p ((tq.
(b) One has q ((p if and only if p tq.
(c) One has q - p if and only if p - tq.
The next two lemmas are easy consequences of the intermediate value theorem.
LEMMA A.2. Suppose that p, q R[t] have only real zeros and have leading

coefficients of the same sign.
(a) If q ((p then q ((q + p and q + p ((p.
(b) If q p theu q q + p and q + p ((p.
(c) If q - p then q - q + p and q + p ((p.
LEMMA A.3. Suppose that p,q,...,qn R[t] have only real zeros and have

leading coefficients of the same sign, and put f q +... + qn. Iffor each 1,..., n
either qi p or qi ((p then either f p or f ((p. The first case occurs if and only if
qi P for all 1, n.

REFERENCES

[1] R. J. BAXTER, Exactly Solved Models in Statistical Mechanics, Academic Press, London, New
York, 1982.

[2] F. BRENTI, Unimodal, Log-concave, and Pdlya Frequency Sequences in Combinatorics, Mem.
Amer. Math. Soc., 413, 1989.

[3] F. BRENTI, Expansions of chromatic polynomials and log-concavity, Trans. Amer. Math. Soc.,
332 (1992), pp. 729-756.

[4] F. BRENTI, G. F. ROYLE, AND D. G. WAGNER, Location of zeros of chromatic and related
polynomials of graphs, Canad. J. Math., 46 (1994), pp. 55-80.

[5] C. J. COLBOURN, The Combinatorics of Network Reliability, Oxford University Press, New
York, 1987.

[6] C. D. GODSIL AND I. GUTMAN, On the theory of the matching polynomial, J. Graph Theory, 5
(1981), pp. 137-144.

[7] J. GOLDMAN, J. JOICHI, AND D. WHITE, Rook theory, III. Rook polynomials and the chromatic
structure of graphs, J. Combin. Theory Set. B, 25 (1978), pp. 135-142.

[8] I. GUTMAN, Acyclic systems with extremal Hiickel r-electron energy, Theoret. CAirn. Acta, 45
(1977), pp. 79-87.

[9] G. H. HARDY, J. E. LITTLEWOOD, AND G. P)LYA, Inequalities, Cambridge University Press,
Cambridge, UK, 1959.

[10] L. H. HARPER, StArling behaviour is asymptotically normal, Ann. Math. Statistics, 38 (1967),
pp. 410-414.

544 DAVID G. WAGNER

[11] O. J. HEILMANN AND E. H. LIEB, Theory of monomer-dimer systems, Comm. Math. Phys., 25
(1972), pp. 190-232.

[12] I. KAPLANSKY AND J. RIORDAN, The problem of the rook and its applications, Duke Math. J.,
13 (1946), pp. 259-268.

[13] S. KARLIN, Total Positivity, Vol. I, Stanford University Press, Stanford, CA, 1968.
[14] R. R. KORFHAGE, a-polynomials and graph colouring, J, Combin. Theory Ser. B, 24 (1978),

pp. 137-153.
[15] J. NEGGERS, Representations of finite partially ordered sets, J. Combin. Info. System Sci., 3

(1978), pp..113-133.
[16] R. C. READ AND W. T. TUTTE, Chromatic polynomials, in Selected Topics in Graph Theory

3, L. W. Beineke and R. J. Wilson, eds., Academic Press, New York, 1988.
[17] R. P. STANLEY, Ordered structures and partitions, Mem. Amer. Math. Soc. 119, 1972.
[18] Enumerative combinatorics, Vol. I, Wadwsworth Brooks/Cole, Monterey, CA, 1986.
[19] , Personal communication, 1986.
[20] W. T. TUTTE, On dichromatic polynomials, J. Combin. Theory, 2 (1967), pp. 301-320.
[21] D. G. WAGNER, The partition polynomial of a finite set system, J. Combin. Theory Ser. A, 56

(1991), pp. 138-159.
[22] , Enumeration offunctions from posers to chains, Europ. J. Combin., 13 (1992), pp. 313-

324.
[23] , Order series of labelled posers, Order, 10 (1993), pp. 161-181.

SIAM J. DISCRETE MATH.
Vol. 9, No. 4, pp. 545-561, November 1996

1996 Society for Industrial and Applied Mathematics
O03

VALUATED MATROID INTERSECTION I: OPTIMALITY CRITERIA*

KAZUO MUROTAt
Abstract. The independent assignment problem (or the weighted matroid intersection problem)

is extended using Dress and Wenzel’s matroid valuations, which are attached to the vertex set of
the underlying bipartite graph as an additional weighting. Specifically, the problem considered is
as follows: given a bipartite graph G (V+, V-;A) with arc weight w A 1 and matroid
valuations w+ and w- on V+ and V-, respectively, find a matching M(C_ A) that maximizes

{w(a) a e M} q- ca+ (0+M) + ca- (t)- M), where 0+M and 0-M denote the sets of vertices

in V+ and V- incident to M. As natural extensions of the previous results for the independent
assignment problem, two optimality criteria are established: one in terms of potentials and the other
in terms of negative cycles in an auxiliary graph.

Key words, weighted matroid intersection problem, independent assignment problem, valuated
matroid, combinatorial optimization

AMS subject classifications. 90C35, 90C27, 90B80

1. Introduction. The weighted matroid intersection problem and its extensions
has played a major role in the theory of combinatorial optimization. (See, for instance,
Edmonds [7], [8], Faigle [9], Fujishige [14], and Lawler [20].) One of its equivalent
variants introduced by Iri and Tomizawa [17] is the independent assignment problem
defined as follows. We are given a bipartite graph G (V+, V-; A), matroids M+
(V+, B+) and M- (V-, B-), and a weight function w" A --. R, where (V+, V-) is
the bipartition of the vertex set of G, A is the arc set of G, M+ (resp., M-) is defined
on V+ (resp., V-) in terms of the family of bases B+ (resp., B-), and R is a totally
ordered additive group. (Typically R R (reals), Q (rtionals), or Z (integers).)
The independent assignment problem is to find a matching M(C_ A) that maximizes

(I.I) w(M) =_ {w(a) a E M},

subject to the constraint

(1.2) O+M E B+, O-M B-,

where 0+M (respectively, 0-M) denotes the set of vertices in V+ (respectively, V-)
incident to M. The independent assignment problem has been shown to be a useful
framework in which to formulate engineering problems in systems analysis. (See, e.g.,
Iri [16], Murota [22], and aecski [30].)

Recently, on the other hand, Dress and Wenzel [5], [6] introduced the notion of
valuation on a matroid. A valuation on a matroid M (V, B) is a function co B --+ R
which enjoys the exchange property: for B,B’ B and u B- B’, there exists
v B’ B such that B- u+ v E B, B’ + u- v e B, and

(1.3) + _< + + +

A matroid equipped with a valuation is called valuated matroid.

Received by the editors January 18, 1995; accepted for publication (in revised form) October
30, 1995.

Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606-01, Japan (murota@
kurims.kyoto-u.ac.jp). This research was completed while the author was at Forschungsinstitut fiir
Diskrete Mathematik, Universitt Bonn.

545

546 KAZUO MUROTA

A valuation w can be induced from a weight function 7" V - R and a E R by

w(B) c -k- {r/(u) u E B} for B .
Such a valuation will be called separable (called "essentially trivial" in [6]).

A (nonseparable) valuated matroid naturally arises from a polynomial matrix
with coefficients from a field. Let A(x) be an m x n matrix of rank m with each entry
being a polynomial in a variable x, and let M (V, B) denote the (linear) matroid
defined on the column set V of A(x) by the linear independence of the column vectors.
Then a valuated matroid is obtained if w(B) for B B is defined to be the degree in
x of the determinant of the m x m submatrix with columns in B; i.e.,

(1.5) w(B) deg det A[B].

In fact, the Grassmann-Pliicker identity implies the exchange property of w, as pointed
out in Dress and Wenzel [5], [6] in a more algebraic term of "field valuation." Some
examples of valuated matroids of a more combinatorial-geometrical flavor are reported
in Terhalle [33], whereas Example 3.3 in 3 below shows another example arising from
graphs. Details on valuated matroids are given in 3.

In this paper we consider an extension of the independent assignment problem to
its valuated version. Namely we assume that M+ (V+, B+) and M- (V-, B-)
are equipped with valuations w+ B+ --. R and w- B- R and consider the
problem of finding a matching M(C_ A) that maximizes

t(M) =_ w(M) + w+ (O+M) + -(a-M),

subject to the constraint (1.2). We shall call this problem the valuated independent
assignment problem (VIAP). This is a proper extension of the independent assign-
ment problem, whereas it obviously reduces to the ordinary independent assignment
problem in the case that w+ and w- are trivial valuations that vanish identically on
B+ and B-, respectively, and also in a more general case of separable valuations.

In the present paper we establish two forms of optimality criteria for the valuated
independent assignment problem by extending in a natural way the two well-known
optimality criteria for the ordinary independent assignment problem. The first (The-
orem 4.1) is in terms of potentials, as in Frank [10], and the second (Theorem 4.3) is in
terms of negative cycles in an auxiliary graph, as in Fujishige [12]. (See also Fujishige
[14] and Zimmermann [35], which give a similar condition for submodular flows.) The
negative-cycle criterion yields a primal-type cycle-canceling algorithm for solving the
valuated independent assignment problem, to be reported in part II [25], which is
an extension of Fujishige’s [12] and Zimmermann’s [36] for the ordinary independent
assignment problem.

The driving wheels for these extensions are the proper generalizations of the
fundamental lemmas on the exchangeability in a matroid to those in a valuated ma-
troid. Among others it should be mentioned that the so-called no-shortcut lemma
(see Lemma 3.3 in 3 for a precise statement) is generalized to what we shall call
unique-max lemma (Lemma 3.8 in 3). When specialized to a valuated matroid as-
sociated with a polynomial matrix as in (1.5), the no-shortcut lemma states that
a triangular matrix having nonzero diagonal elements is nonsingular, whereas the
unique-max lemma reveals a stronger property and that a square matrix having a
unique maximum-degree transversal is nonsingular. (See Remark 3.2 for more about
this.)

VALUATED MATROID INTERSECTION 547

The objective of this paper is twofold. The first is purely theoretical within the
field of combinatorial optimization. As compared with the richness of matroid opti-
mizations (greedy algorithm, intersection/union, lexico-optimality, etc.), not much is
known about valuated-matroid optimizations. All the known results center around
greedy procedures for a single valuated matroid (cf. Dress and Wenzel [5], Dress and
Terhalle [2]-[4], Murota [24]). The present results, along with the algorithms in [25],
will contribute to the development of the theory of valuated-matroid optimization.
This line of research is pursued further in the subsequent papers [26]-[28]; the opti-
mality criteria are extended to the submodular flow problem in [27], duality theorems
are established in [26], [28] in relation to convex analysis, and the matroid union
operation is extended to valuations in [28].

The second objective is more application oriented. As explained above, the val-
uated matroid is a combinatorial abstraction of polynomial matrices. In view of the
principal role of polynomial matrices in system engineering (see, e.g., Rosenbrock
[31], Vidyasagar [34]) as well as the previous success in application of matroids to
it, it is natural to hope for successful applications of valuated matroid to engineer-
ing problems. In this connection it should be emphasized that most of the significant
applications of matroid theory have been related, more or less, to the matroid intersec-
tion problem. This paper will lay the foundation for future engineering applications.
Some applications of the valuated matroid intersection to mixed matrices [22], which
in fact have been the motivation of this paper, are discussed in [29].

2. Problem formulations. In this section we describe the problem and its vari-
ants. Suppose we are given a bipartite graph G (V+, V-; A), valuated matroids
M+ (V+,B+,02+) and M- (V-, B-,02-), and a weight function w A - R.
The valuated independent assignment problem is the following.

VALUATED INDEPENDENT ASSIGNMENT PROBLEM. Find a matching M(C_ A)
that maximizes

(2.1) ft(M) =_ w(M) + w+(O+M) + T-(O-M)
subject to the constraint

(2.2) O+M E B+, O-M E B-.

Clearly the two matroids must have the same rank for the feasibility of this
problem. It is sometimes convenient to extend the domain of the definition of w+ to
2V+ by simply setting w+(B) -oc for B C_ V+ with B B+ and similarly for w-.
Then the constraint (2.2) will be implicit in the objective function ft(M).

The above problem reduces to the independent assignment problem if the valua-
tions are trivial with w+ (B) 0 for B B+ and reduces further to the conventional
assignment problem if the matroids are trivial or free with B+ 2V+

Just as the weighted matroid intersection and partition problems may be regarded
as special cases of the independent assignment problem, the following three problems
fall into the category of our problem. Suppose now we are given a pair of valuated
matroids M (V, B1, 021) and M2 (V,/2,022) defined on a common ground set V
and a weight function w: V R.

INTERSECTION PROBLEM. Find a common base B B1N B2 that maximizes
w(B) + w(B)+ w2(B). (In case the valuations are separable as (1.4) this problem
reduces to the usual optimal common base problem.)

DISJOINT BASES PROBLEM. Find disjoint bases B and B2 (i.e., B C? B2 ,
B e B1, and B2 B2) that maximize wl(B1) + w2(B2).

548 KAZUO MUROTA

PARTITION PROBLEM. Find a partition (B, V- B) of V that maximizes w (B) +

As a matter of course, the disjoint bases problem for more than two valuated
matroids can also be formulated as a valuated independent assignment problem. The
partition problem is an intersection problem in disguise, since it is the intersection
problem for M and (M2) the dual ofM2, whose valuation is defined by (w2) (B)

Remark 2.1. The valuated independent assignment problem can easily be gener-
alized to an independent linkage-type problem (cf. Fujishige [13], Iri [15]). The un-
derlying bipartite graph is replaced with an arbitrary (directed or undirected) graph
having specified entrance and exit vertex sets, on which valuated matroids are defined,
and matchings are replaced by linkings from the entrance to the exit. The optimality
criteria of the present paper, mutatis mutandis, are easily shown to remain valid for
this linkage-type problem.

In the ordinary independent assignment problem the constraint imposed on a
matching M is more often that O+M be independent in M+ than that O+/-M be a
base in M+/-. This motivates us to consider the following problem parametrized by an
integer k:

VIAP(k). Maximize

t2(M,B+,B-) =_ w(M) +w+(B+) +w-(B-),

subject to the constraint that M is a matching of size k, and

O+M C_ B+ E B+, O-M C_ B- E B-.

In fact, the primal-dual type augmenting algorithm of [25] consists of solving this
problem successively for k 0, 1,2, The optimality criteria for VIAP(k) are
derived in 5.

3. Properties of a valuated matroid.

3.1. Examples. The first two examples are already mentioned in the Introduc-
tion.

Example 3.1. Let M (V, B) be a matroid. For /: V R and c R,

+ e B} (B

is a matroid valuation. Such w is called a separable valuation.
Example 3.2. Let A(x) be an m x n matrix of rank m with each entry being

a polynomial (or rational function) in a variable x, and let M (V, B) denote the
(linear) matroid defined on the column set V of A(x) by the linear independence of
the column vectors. Then co B -+ Z defined by w(B) degx det A[B] (B I)
is a matroid valuation (see Dress and Wenzel [6] for the proof), where degx(f/g)
deg f- deg, g for two polynomials f and g in x. An example of nonseparable
valuation of this kind is provided by

1 1 1 2

Example 3.3. In addition to the above two constructions that can be found in the
literature [6] we point out here another instance of a (nonseparable) valuated matroid

VALUATED MATROID INTERSECTION 549

that arises from the minimum cost of a linking in a graph. Let G (V, A) be a
directed graph having no self-loops and S and T be disjoint subsets of the vertex set
V. By L we denote (the arc set of) a Menger-type vertex-disjoint linking from S to
T and by 0+L the set of its initial vertices (in S); put U - (S U T). As is well
known, B (+L L E :, where/: denotes the family of maximum linkings, defines
a matroid M (S, B). Given a cost function c" -. Z such that every cycle has a
nonnegative cost,

w(B) -min {E c(a) O+L B’L E

is a matroid valuation.
To see this, first note that, by the max-flow min-cut theorem, we may assume

O-L T, where O-L designates the set of the terminal vertices of L (in T). Consider
a rational function matrix, say A(x) (Aij (x)), in variable x with the row set indexed
by T 2 U and the column set by S U U defined by

1 (i=j U),Aij(x)
cijx-c(j,i) ((j, i)),

where {aij I(J, i) A} is an algebraically independent set of real numbers. Then we
have w(B) degx det A[B U], which is a version of Example 3.2. An example of a
nonseparable valuation of this kind is provided by G (F, A) with F S T, S
{81,82,83,84} T {tl,t2}, {(sl,tl), (82,t2), (s3,tl), (83,t2), (s4, tl), (84,t2)},
c(a) 0 except for c(s3, t2) --1, and c(s4, t2) -2. See also [27, Ex. 2.3], in which
a flow-type generalization is given.

3.2. Basic properties. This subsection describes some relevant results of Dress
and Wenzel [5], [6] on the maximization of a matroid valuation.

Let M (V, B, w) be a valuated matroid of rank r. For B E B and v V- B, we
denote by C(B, v) the unique circuit contained in B + v (= the fundamental circuit
of v relative to B). For B B, v V- B, and u C(B, v), we define

+
For convenience we set

w(B, u, v) -cx for u C(B, v).

This is also a consequence of our former convention to put w(Bt) -oc for B’ { B.
The following lemma is most fundamental, showing that the local optimality

implies the global optimality.
LEMMA 3.1 (see [5], [6]). Let B e B. Then w(B) >_ w(B’) for any B’ e B if and

only if

(3.2) w(B, u, v) < 0 for any (u, v) with u e C(B, v).

Proof. The original proof is by induction on IB- B’ I. An alternative proof is
given later in Remark 3.1. [:1

For the maximization of w, the greedy algorithm of [5] starts with an arbitrary
base B0 {ul,u2,...,ur} B and repeats the following for k 1,2,...,r: find
Vk V- Bk- such that

+ > + v) (Vv V

550 KAZUO MUROTA

and put Jk Bk-1 Uk -k vk. Then Br can be shown to be optimal. In this way an
optimal base (maximizing w) can be found with r(IY r) + 1 function evaluations
Of CO.

For r/" V - R we define w[/]" B -+ R (or 2y --+ R {-}) by

e B}.

This is gain a valuation on M. This operation is cMled a similarity transformation.
A valuation w is separable (or "essentially trivial" in the terminology of [6]) if and
only if will(B) constant (VB e B) for some " V R.

M* (V, B*, w*), defined by

B* {B V- B e B}, w*(B) w(V- B),

is gin vluted matroid, called the dual of M (V, B, w).
3.3. rther exchange properties. We shM1 establish a number of lemmas

concerning basis exchanges in a single vMuated matroid. They will play the key roles
throughout this paper.

For B B and B V we consider the exchangeability graph, denoted G(B, B),
in the usual sense in matroid theory. Namely, G(B, B) is a bipartite graph having
(B- B’, B’- B) as the vertex bipartition and {(u, v) u e B- B’, v e B’ B, u e
C(B, v)} as the arc set. The following fact (Brualdi [1]) is well known in matroid
theory.

LEMMA 3.2. Let B B. If B is also a base, then G(B,B) has a perfect
matching.

The converse of the above statement is not always true. A partial converse is the
key property underlying the (weighted or unweighted) matroid intersection algorithm
and is known as the no-shortcut lemma. (For this name we refer to Kung [19]; see
Iri and Tomizawa [17, Lem. 2], Krogdahl [18], Lawler [20, Lem. 3.1 of Chap. 8]
and Schrijver [32, Thm. 4.3].) It can be stated as follows, in a form suitable for its
extension to a valuated matroid.

LEMMA 3.3 (no-shortcut lemma). Let B B and B’ Y with B’ IB]. If
there exists exactly one perfect matching in G(B,B), then B B.

To capture the exchangeability with valuations, we need quantitative extensions
of the above statements. To this end we attach "arc weight" w(B, u, v) of (3.1) to
each arc (u, v) of G(B, B’) and denote by (B, B’) the maximum weight of a perfect
matching in G(B, B’) with respect to the arc weight w(B, u, v). Lemma 3.2 is extended
as follows.

LEMMA 3.4 (upper-bound lemma). For B, B B,

B’).

Proo For any u B- B there exists v B B with

(B) + (B’) (B 1 +) + (B’ + 1),

which can be rewritten as

< +
with B B’ + u vl. By the same argument applied to (B, B) we obtain

VALUATED MATROID INTERSECTION 551

for some u2 e (B B’) ?Zl and v2 e (B’- B) Vl, where B B + u2 v2
B’- {ul, u2} + {Vl, v2}. Hence

2

i=1

Repeating this process we arrive at

m

(B’) < (B)+ (B, ,, ,,) < (B)+ (B, B’),
i--1

where m IB B’ IB’- BI, B B’ {Ztl,... ?/.m}, and B’- B {vl,...,
v,}. D

Remark 3.1. Lemma 3.4 (upper-bound lemma) gives an alternative proof for
the optimality condition given in Lamina 3.1. The necessity of (3.2) is obvious. For
sufficiency take any B’ E B and consider G(B, B’). The condition (3.2) is equivalent
to all the arcs having nonpositive weights. Hence (B, B’) < 0, which implies w(B’) <_
w(B) by Lemma 3.4.

In Lemma 3.4 it is natural to ask for a (sufficient) condition under which the
bound (3.4) is tight. Comparison of Lemmas 3.3 and 3.4 will suggest the following.

UNIQUE-MAX CONDITION. There exists exactly one maximum-weight
perfect matching in G(B, B’).

In what follows we shall show that this is indeed a sufficient condition for the
tightness. (See Lemma 3.8.)

First we note the following fact, rephrasing the unique-max condition in terms of
"potential" or "dual variable."

LEMMA 3.5. Let B e 13 and B’ C_ V with IB’ B IB B’ m.

(1) G(B, B’) has a perfect matching if and only if there exist " (B B’) U (B’
B) -- R and indexings of the elements ofB-B’ and B’-B, say B-B’ {ul, urn}
and B B {Vl,...,Vm}, such that

=0 (l <_ =j < m),(a.) (B, u,) ’(,,) +() < 0 (< ,j < ,).

(2) The pair (B, B’) satisfies the unique-max condition if and only if there exist

" (B- B’)U (B’-B) --. R and indexings of the elements of B- B’ and B’-B,
say B- B’ {ul,...,Um} and B’- B {vl,...,Vm}, such that

(3.6)
=0

(B, ,,) g() +() < 0
<0

(l <_i=j <_m),
(l <_j < i <_m),
(l <_i <j <_m).

Proof. This is an immediate corollary of the complementary slackness well known
in matching theory. (See, e.g., Lawler [20], and Lovsz and Plummer [21].) Let
M {(u, v)li 1,... ,m} be a maximum-weight perfect matching and be an
optimal .potential (or dual variable). Then w(B, u, v)- (u)+ (v) <_ 0 for all arcs
(u, v). Call an arc tight if this inequality holds true with equality and define G*
to be the subgraph of G consisting of tight arcs. The complementary slackness says
that maximum-weight perfect matchings in G(B, B) are in one-to-one correspondence
with perfect matchings in G*. [’1

552 KAZUO MUROTA

LEMMA 3.6. Let B 13 and u, u, v, v be four distinct elements with (u, u } C_ B,
(v, v} C_ V-B, and let B’ B-{u, u}/(v, v}. Assume that M
is the unique maximum-weight perfect matching in G(B, B’).

(1) B’e B and w(B’)-w(B)/(B,B’).
(2) For B B-u + v we have

(B,,v) (B,,v),
w(B, u, u) w(B, u, v) w(B, u v),
(Bo, o,) (B, o,) (B,,).

Proof. (1) Putting B* B u + v we see

(3.7) w(B*) + w(B) w(B, u, v) + w(S, u, v) + 2w(B) (B, B’) + 2w(B).

By applying the exchange axiom (1.3) to (B, B*) with u B B*, we have

(B*) + (B) _< (B* v’ +) + (B + v’

for some v’ B* B {u, v}. Combining this with (3.7) we obtain

(3.8) (B, B’) + 2w(B) _< w(B* v’ + u) + w(B + v’ u).

Suppose that v’ u. Then

RHS of (3.8) w(B* u + u) + w(B + u u)
(B o + v) + (B + o)
(B, o, v) + (B, , v) + (B).

This means that M’ {(u, v), (u, v)} is also a maximum-weight perfect matching
in G(B, B’), a contradiction to the uniqueness of M.

Therefore we have v’ v in (3.8), and then

RHS of (3.8) w(B* v + u) + w(S + v u) w(B) + w(B’).

Hence follows w(B)+ (B,B’) _< w(B’). The reverse inequality has already been
shown in the upper-bound lemma (Lemma 3.4). Note that B B follows from
(B’) #

(2) By straightforward calculations as follows,

(B, ,) (B + v + v) (B + v)
(B’)-(B)- (B,,)

=(B,B’) -w(B,u,v)
o(B, u, v),

w(B, u, u) w(B u + v) w(B u / v)
(B, , v) -(B,,v),

(B,, v) (B o +) (B u + o)
=w(B,u,v) -w(B,u,v).

LEMMA 3.7. Let B 13 and B C_ V with IBI IBI. II there exists exactly
one maximum-weight perfect matching M in G(B, B’), then for any (u, v) M the
following hold true.

VALUATED MATROID INTERSECTION 553

(1) B =_ B-u +v E B.
(2) There exists exactly one maximum-weight perfect matching in G(B, B’).
(3) (Bo, B’) (B, B’) (B,, ,).
Proof. (1) This is obvious.
(2) Using the notation in Lemma 3.5 we have M {(u, v)li 1,..., m} and

(u, v) (uk, vk) for some k. Put

B B + B (, o} + {, o}
for = k, j 7 k. It then follows from (3.4) and (3.6) that

(B, u, v)
(B,) (B)

< (B, B) (B, u,)
max (w(B, uk, Vk) + co(B, u, vj),w(B, ui, vk) + co(B, u, vj)) co(B, u, v)

< [() +() g() g()] [() g()]
g()- (),

where the second inequality is strict for < j. For j, on the other hand, both
inequalities are satisfied with equalities, since G(B, B) has a unique maximum-
weight perfect matching {(u, v), (u, v)} and Lemma 3.6 implies w(B, u, v)
w(B, u, vi) ’(u) ’(v). Thus, the potential for (B, B’) serves as a certificate of
the unique-max condition also for (B, B’).

(3) (Bo, B’) E ((,) ()) (B, B’) (B, o, o).
We are now in a position to state the mai.n result of this section, the unique-max

lemma, which is a quantitative extension of the no-shortcut lemma.
LEMMA 3.8 (unique-max lemma). Let B 13 and B’ C_ Y with IB’I IBI. If

there exists exactly one maximum-weight perfect matching in G(B, B’), then B’ 13
and

(3.9) (B’) (B) + (B, B’).

Proof. This is proved by induction on m IB-B’]. The case of m 1 is obvious.
So assume m > 2. Take any (u, v) contained in the unique maximum-weight perfect
matching, and put B B- u + v. (B, B’) satisfies the unique-max condition by
Lemma 3.7(2), and we have

(B’) (Bo) + (Bo, B’)
by the induction hypothesis. By Lamina 3.7(3) we see

(B, B’) (B, B’) (B, o, o)
while co(B) w(B) + co(B, u, v) by definition. Hence follows (3.9). r]

Remark 3.2. Some remark is in order regarding the relationship between the no-
shortcut condition (= uniqueness of a perfect matching in G(B, B’)) and the unique-
max condition (= uniqueness of the maximum-weight perfect matching in G(B, B’)).
Obviously the former implies the latter, and not conversely in general. For a separable
valuation (cf. (1.4) and 3.2), however, these two conditions are equivalent, and con-
sequently the unique-max lemma reduces to the no-shortcut lemma. See also Frank
[10, Lena. 2] in this connection.

554 KAZUO MUROTA

Remark 3.3. An alternative proof of the unique-max lemma was suggested by
Seb5 after the submission of the first draft. This proof makes use of the no-shortcut
lemma in contrast to the above proof. Let " (B B) W (B- B) -, R be as in
Lemma 3.5 and extend it to " V -, R by defining (u) +M for u B B and
(v) -M for v V- (B) with a suciently large M 0. It follows from the
exchange property (1.3) that the family of the maximizers of w,

o {B (Bo) q(B") (B" e)},

forms ghe basis family of a magroid, sw M (V, B). We claim that B B.
ro hi, r not th (")-() (")- ()- V 0 unl
BOB’ g B" g BUB’. IfBB’ g B" g BUB’, onthe other hand, we have
w(B")- w(B) 0 by the upper-bound lemma and the inequality

(B,,) (,,) () +() 0 (B B", B" B).

We also claim that the exchangeability graph G(B, B’) in M has a unique perfect
matching, sinceB-u+vB (lim) andB-u+vj CB (li<jm)
by (3.6). By applying the no-shortcut lemma to the given pair (B, B’) in the matroid
M (V,B), we obtain B’ B, which means w(B’) w(B), i.e., w(B’)

The following lemma is used in part II [25] in justifying a variant of the cycle-
canceling algorithm.

LEMMA 3.9. Under ,he same assupfion as in Lema 3.8, le* , u, and v be
as in Lepta 3.5. Then

(l<_i,j<m).

Proof. Putting Bj B’ vj "- Ui and using Lemma 3.4, Lemma 3.8, and (3.6)
we see that

(B’, v, ,) (<) (B’) < (B, <) (B, B’)

()-().

4. Optimality criteria.

4.1. Theorems. Two optimality criteria are given for the valuated indepen-
dent assignment problem (2.1)-(2.2) on G (Y+, V-;A) with valuated matroids
M+ (V+, B+,w+), M- (V-,B-,w-), and weight function w" A + R, where R
is a totally ordered additive group (e.g., R R, Q, or Z). Both of these criteria are
natural extensions of the corresponding results for the ordinary independent assign-
ment problem, which have been extended also for the submodular flow problem. (See
ank [10], [11], jishige [12], [14], and Zimmermann [35].) The proofs are postponed
to 4.2.

The first theorem refers to a "potential" function. It may be emphasized that in
the case of R Z the integrality of p is a part of the assertion.

THEOREM 4.1. (1) An independent assignment M in G is optimal for the valuated
independent assignment problem (2.1)-(2.2) ff and only ff there exists a ’otential"
function p" V+ V- R such that

VALUATED MATROID INTERSECTION 555

(i) w(a) -p(O+a) + p(O-a) { <-0 (a e A),
=0 (heM),

(ii) O+M is a maximum-weight base of M+ with respect to w+[p+],
(iii) O-M is a maximum-weight base of M- with respect to w-I-P-I,

where p+ is the restriction ofp to V+ and w+[p+] (resp., w-I-P-I) is the similarity
transformation defined in (3.3); namely,

e B+}

e B-}

(B+ c_ V+),

(B- _c V-).

(2) Let p be a potential that satisfies (i)-(iii) above for some (optimal) independent
assignment M Mo. An independent assignment M’ is optimal if and only if it

satisfies (i)-(iii) (with M replaced by M’).
The optimality condition for the intersection problem deserves a separate state-

ment, in a form of Frank’s weight splitting [10], though it is an immediate corol-
lary of the above theorem. Recall that the intersection problem is to maximize
w(B) + wl(B) + w2(B) for a pair of valuated matroids M (V, Bl,d1) and M2

(V, B2, w2) and a weight function w" V R.
THEOREM 4.2. A common base B of MI= (V, BI, w1) and M2= (V, B2, w2)

maximizes w(B) +w(B) +w2(B) if and only if there exist w,w2" V --+ R such that
(i) ["weight splitting"] w(v) w(v) + w2(v) (v E V),
(ii) B is a maximum-weight base of M with respect to wl[wl],
(iii) B is a maximum-weight base of M2 with respect to w2[w2],

where wl[w1] (resp., w2[w2]) is the similarity transformation defined in (3.3).
To describe the second criterion we need to introduce an auxiliary graph GM

(V, A) associated with an independent assignment M. We put B+ O+M, B-
O-M, and denote by C+(., .) the fundamental circuit in M:. The vertex set of
(M is given by V V+ U V- and the arc set A consists of four disjoint parts:

A u M LJA+ w A-,

where

A {a a e A} (copy of A),
M {la e M} (g: reorientation of a),
A+ {(u,v) lu B+,v Y+ B+,u C+(B+,v)},
A- {(v,u) u e B-,v e V- B-,u e C-(B-,v)}.

In addition, arc length "M(a) (a A) is defined by

-w(a) (a e A),
w() (a (u, v) e M, (v, u) e M),(4.1) /M(a) -w+(B+, u, v) (a (u, v) e A+),
-w-(B-,u,v) (a= (v,u) e A-),

where w+(B+, u, v) and T-(B-, u, v) are defined as in (3.1). We call a directed cycle
of negative length a negative cycle.

THEOREM 4.3. An independent assignment M in G is optimal for the valu-
ated independent assignment problem (2.1)-(2.2) if and only if there exists in GM no

negative cycle with respect to the arc length 7M.

556 KAZUO MUROTA

Remark 4.1. The exchangeability graphs G(B+, V+-B+) for M+ and G(B-, V-
-B-) for M- introduced in 3.3 are embedded in GM. Namely, they can be identified
with the subgraphs (V+,A+) and (V-,A-), respectively. Note, however, that the
arc weight is the negative of the arc length.

Remark 4.2. The optimality criterion in Theorem 4.2 can be reformulated as a
Fenchel-type duality between the matroid valuations and their conjugate functions, as
reported in [26]. It is also mentioned that Theorem 4.2 is extended for the submodular
ilow problem in [27].

4.2. Proofs. We are to prove the equivalence of the following three conditions
for an independent assignment M:

(OPT)" M is optimal.
(NNC)" There is no negative cycle in GM.
(POT)" There exists a potential p with (i)-(iii) in Theorem 4.1.

We prove (OPT) => (NNC) => (POT) => (OPT) and finally the second part of The-
orem 4.1. We abbreviate "YM to whenever convenient.

(OPT) => (NNC)" Suppose GM has a negative cycle. Let Q (c A) be the arc set
of a negative cycle having the smallest number of arcs, and put

(4.2) -+ B+ {O+a a e Q A+} + {O-a a e Q A+},
(4.3) -- B- {O-a a e QA-} + {O+a a e QA-},

where B+ 0+M and B- O-M s before.
LEMMA 4.4. (B+,+) and (B-,-) satisfy the unique-max condition in M+

and M- respectively.

Proof. We prove the claim for (B+,+) by dapting Fujishige’s proof technique
developed in [12] (which cn be found also in [14, Lem. 5.4]).

Tke mximum-weight perfect mtching M’= {(u, v)li 1,..., m} (where
m IB+ -+1) in the exchangeability graph G(B+,-+) for M+ as well as the
potential function " in Lemm 3.5. Then M is a subset of

A* { (u, v) u e B+ +,v e + B+, w+ (B+, u, v) (u) + (v) 0}.

Put Q (Q A+) u M, where M is now regarded as subset of A+ as in Remgrk

4.1. Q is g disjoint union of cycles in GM with its length

(4.4) ")’(Q’) 3’(Q) + [’y(M’) -y(Q A+)]
being negative, since -,(M’) is equal to the maximum weight of a perfect matching
in G(B+,+) and Q A+ can be identified with a perfect matching in G(B+,+).
The minimMity of Q (with respect to the number of arcs) implies that
negative cycle having the smallest number of arcs.

Suppose, to the contrary, that (B+, +) does not satisfy the unique-max condi-
tion. Since (u, v) A* for i 1,...,m, it follows from Lemm 3.5 that there are
distinct indices ia (k 1,..., q; q >_ 2) such that (u, v+) A* for k 1,..., q,
where i+ i. That is,

(4.5) w+(B+,u.,v+,) (ui)- (v+) (k= 1,...,q).

On the other hand we have

(4.6) w+ (B+, ui, vi) (ui ’(vi (k 1,..., q).

VALUATED MATROID INTERSECTION 557

It then follows that

q q

ti Vit:
k--1 (q

k=l

q q

(4.7) E 9/(u,, v,+, E 7(u,, vi,).
k=l k=l

For k 1,..., q, let P’(vi+l, ui) denote the path on Q from vi+l to ui, and let
Q be the directed cycle formed by arc (ui, vi+ and path P(vi+, ui). Obviously,

(4.8) v(Q) "(u,, v,+) + /(P’(vi+, u)) (k 1,..., q).

A simple but crucial observation here is that

(P(vi+’ui))O{(ui’vi)lk=l’’’’’q}=q’Qk=l
for some q with 1 _< q < q, where the union denotes the multiset union, and this
expression means that each element of Q appears q times on the left-hand side.
Hence by adding (4.8) over k 1,..., q we obtain

q q q

k=l k=l k--1

k=l k=l

q’. (Q’)<0,

where the last equality is due to (4.7). This implies that /(Q) < 0 for some k, while
Q has a smaller number of arcs than Q’. This contradicts the minimality of Q’.
Therefore, (B+, +) satisfies the unique-max condition, similarly for (B-, -). D

LEMMA 4.5. For a negative cycle Q in GM having the smallest number of arcs,

M= (M (a e M e Q N M}) LJ (Q ;3 A)

is an independent assignment with (-)
Proof. Note that + O+M, B 0- for + - as defined in (4.2) (4.3)

and recall the notation B+ O+M, B- O-M. By Lemma 4.4 and Lemma 3.8
(unique-max lemma), we have

w+(+) w+(B+) + +(B+, +) _> w+(B+) /(Q ;3 A+),
w-(--) w-(B-) +-(B-,--) >_ w-(B-) -/(Q;3A-).

Also we have

w(M) w(M) /(Q ;3 (A LJ M)).

558 KAZUO MUROTA

Addition of these inequalities yields gt(M)
The above lemma shows "(OPT) = (NNC)".
(NNC) = (POT)" by the well-known fact in graph theory, (NNC) implies the

existence of a function p" V+ U V- R such that

7(a) + p(O+a) p(O-a) >_ 0

This condition for a E A t2 M is equivalent to condition (i) in Theorem 4.1. For
a (u, v) E A+, where u C+ (B+, v), it means

w+ (B+, u, v) p(u) + p(v)

_
O.

Namely,

+, < 0 (u C+ (B+, v)),

which in turn implies condition (ii) in Theorem 4.1 by Lemma 3.1. Similarly, the
above condition for a A- implies condition (iii) in Theorem 4.1. Thus "(NNC) =
(POT)" has been shown.

(POT) (OPT): for any independent assignment M and any function p: V+
V- -- R, we see

a(M) w+(O+M) + w-(O-M) + w(M)

[w+(O+M) + E P(O+a)] + [w-(O-M)
+ E [w(a) p(O+a) + p(O-a)]
aEM

w+9+](O+M) + w-[-P-I(O-M) + E wp(a),
aM

E p(O-a)]
aM

where Wp(a) w(a) p(O+a) + p(O-a).
Suppose M and p satisfy (i)-(iii) of Theorem 4.1 and take an arbitrary indepen-

dent assignment Mt. Then we have

t(M’) w+9+](O+M’) + w-[-p-](O-M’) + E Wp(a)
aM

<_ w++](O+M) + w-I-p-](O-M)
ft(M).

This shows that M is optimal, establishing "(POT) = (OPT)".
Finally for the second half of Theorem 4.1 we note in the above inequality that

t(M’) gt(M) if and only if w+9+](O+M’) w+p+](O+M), w-[-p-](O-M’)
co-[-p-](O-M), wp(a) 0 for a e M’.

We have completed the proofs of Theorems 4.1 and 4.3.

5. Extension to VIAP(k).
5.1. Theorems. In this section the optimality criteria for VIAP(k) introduced

at the end of 2 are derived from Theorems 4.1 and 4.3. The proofs are given in 5.2.
THEOREM 5.1. (1) A feasible solution (M,B+,B-) for VIAP(k) is optimal if

and only if there exists a "potential" function p V+ t2 V- --, R such that

VALUATED MATROID INTERSECTION 559

(i) w(a) -p(O+a) + p(O-a) { <-0 (a e A),
=0

(ii) B+ is a maximum-weight base ofM+ with respect to w+[p+],
(iii) B- is a maximum-weight base of M- with respect to w-I-P-I,
(iv) p(u) > p(v) (u e V+, v e B+ -O+M),
(v) p(u) < p(v) (u e V-, v e B- O-M).
(2) Let p be a potential that satisfies (i)-(v) above for some (optimal) (M0, B0+, B’).

Then (M, B+, B-) is optimal if and only if it satisfies (i)-(v).
To express the optimality in terms of negative cycles we need to introduce an

auxiliary graph G(M,B+,B- (V,A) associated with (M,B+,B-), which is a slight
modification of the one used in 4. The vertex set V of G(M,B+,B-) is given by

v+ u v- u {s+, s-},

where s+ and s- are new vertices referred to as the source vertex and the sink vertex,
respectively. The arc set A consists of eight disjoint parts:

= (A U M) U (A+ U F+ U S+) U (A- U F- U S-),

where

A {a a e A} (copy of A),
M {nla e M} (E: reorientation of a),
A+ {(u,v) lu e B+,v e Y+ B+,u e C+(B+,v)},
F*= u e Y*},
S* {(s*,v) lv e B* -0*M},
A- {(v,u) u e B-,v e V- B-,u e C-(B-,v)},
F- e v-},
S-={(v,s-)lveB--O-M}.

The arc length ,(a) Y(M,B+,B-)(a) (a E A) is defined by

-w(a)

/(a) -w+(B+, u, v)
-w-(B-, u, v)
0

(a e A),
(a (u, v) e M, E (v, u) e M),
(a (u, v) e A+),
(a (v, u) e A-),
(a E F+ U S+ U F- U S-).

THEOREM 5.2. A feasible solution (M,B+,B-) for VIAP(k) is optimal if and
only if there exists in G(M,B+,B-) no negative cycle with respect to the arc length
f(M,B+,B-

Remark 5.1. The definition of F+/- could be replaced by

F*={(u,s+)IueO*Mu(V+-B+)}, F-={(s-,u) lueO-MU(V--B-)}

without affecting the above theorem. The present definition is more convenient for
the algorithm to be developed in part II [25].

Remark 5.2. When k r+ r-, the auxiliary graph G(M,B+,B-) contains the

auxiliary graph (M of 4 as a subgraph.

560 KAZUO MUROTA

5.2. Proofs. We formulate VIAP(k) as a valuated independent assignment prob-
/lem on Gk (Vk+, V-; Ak) with valuated matroids M+k (Vk+, B+k,wk and M-

(V’,B;,w;) having a common rank r+ +r- -k. The graph Gk (Vk+, V-;Ak)is
defined as follows:

v: = v+ v:, u: <_ <_
u/ { 71

Ak A U {(u,u.) u E Y+,u-EU-}u{(u+,u) luEy-,u.+, E U+}.
The valuated matroid Mk+ is the direct sum of M+ and the free matroid on Uk+ with

+(B u +)trivial valuation (which is zero); i.e., Bk+ {B U Uk+ B e B+} and wk
w+ (B) for B E B+, similarly for M’. The weight wk A R is defined by

w(a) (aeA),w(a) 0 (a e Ak A).

With an independent assignment Mk in Gk we can create a feasible solution
(M, B+, B-) for VIAP(k) by defining M Mk f A, B+ 0+Mk- Uk+, and B-
O-Mk U[. Conversely, from (M, B+, B-) feasible for VIAP(k) we can construct
an independent assignment Mk in G. Moreover, we have ft(M, B+, B-) ftk(Mk),

+(O+Mk) + w(O-Mk).where k(Mk) Wk(Mk) -Wk
Through this reduction of VIAP(k) to the valuated independent assignment prob-

lem, Theorems 4,1 and 4.3 translate into Theorems 5.1 and 5.2, respectively.

Acknowledgments. The author is grateful to Andreas Dress for a stimulating
comment on [23] on the occasion of the 15th International Symposium on Mathemat-
ical Programming at Ann Arbor, August 1994, which motivated the present work.
He also thanks Satoru Iwata for careful reading of the manuscript and for fruitful
discussions, which resulted in the extension given in 5. The discussion with Andrs
Seb6 was also fruitful, which led to Remark 3.3.

REFERENCES

[1] R. A. BRUALDI, Comments on bases in dependence structures, Bull. Austral. Math. Soc., 1
(1969), pp. 161-167.

[2] A. W. M. DRESS AND W. TERHALLE, Well.layered maps and the maximum-degree k k-
subdeterminant of a matrix of rational functions, Appl. Math. Lett., 8 (1995), pp. 19-23.

[3] Well-layered mapsmA class of greedily optimizable set functions, Appl. Math. Lett., 8
1,1995), pp. 77-80.

[4] , Rewarding mapsmOn greedy optimization of set functions, Adv. in Appl. Math., 16
(1995), pp. 464-483.

[5] A. W. M. DRESS AND W. WENZEL, Valuated matroid: A new look at the greedy algorithm,
Appl. Math. Lett., 3 (1990), pp. 33-35.

[6] Valuated matroids, Adv. Math., 93 (1992), pp. 214-250.
[7] J. EDMONDS, Submodular functions, matroids and certain polyhedra, in Combinatorial Struc-

tures and Their Applications, R. Guy, H. Hanai, N. Sauer, and J. SchSnsheim, eds., Gordon
and Breach, New York, 1970, pp. 69-87.

[8] Matroid intersection, Ann. Discrete Math., 14 (1979), pp. 39-49.
[9] U. FAIGLE, Matroids in combinatorial optimization, in Combinatorial Geometries, N. White,

ed., Cambridge University Press, London, 1987, pp. 161-210.
[10] A. -FRANK, A weighted matroid intersection algorithm, J. Algorithms, 2 (1981), pp. 328-336.
[11] , An algorithm for submodular functions on graphs, Ann. Discrete Math., 16 (1982),

pp. 97-120.
[12] S. FUJISHIGE, A primal approach to the independent assignment problem, J. Oper. Res. Soc.

Japan, 20 (1977), pp. 1-15.

VALUATED MATROID INTERSECTION 561

[13] S. FUJISHIGE, An algorithm for finding an optimal independent linkage, J. Oper. Res. Soc.
Japan, 20 (1977), pp. 59-75.

[14] .., Submodular Functions and Optimization, Ann. Discrete Math. 47, North-Holland Am-
sterdam, 1991.

[15] M. IaI, A practical algorithm for the Mender-type generalization of the independent assignment
problem, Math. Prod. Study, 8 (1978), pp. 88-105.

[16] , Applications of matroid theory, in Mathematical Programming-The State of the Art,
A. Bachem, M. GrStschel, and B. Korte, eds., Springer-Verlag, Berlin, 1983, pp. 158-201.

[17] M. IaI AND N. TOMIZAWA, An algorithm for finding an optimal "independent assignment", J.
Oper. Res. Soc. Japan, 19 (1976), pp. 32-57.

[18] S. KROGDAHL, The dependence graph for bases in matroids, Discrete Math., 19 (1977), pp. 47-
59.

[19] J. P. S. KUNG, Basis-exchange properties, in Theory of Matroids, N. White, ed., Cambridge
University Press, London, 1986, pp. 62-75.

[20] E. L. LAWLER, Combinatorial Optimization: Networks and Matroids, Holt, Rinehart and Win-
ston, New York, 1976.

[21] L. Lov.sz AND /. PLUMMER, Matching Theory, North-Holland, Amsterdam, 1986.
[22] K. MUROTA, Systems Analysis By Graphs and Matroids--Structural Solvability and Control-

lability, Algorithms and Combinatorics 3, Springer-Verlag, Berlin, 1987.
[23] , Combinatorial relaxation algorithm for the maximum degree of subdeterminants: Com-

puting Smith-McMillan form at infinity and structural indices in Kronecker form, Appli-
cable Algebra in Engineering, Communication and Computing, 6 (1995), pp. 251-273.

[24] Finding optimal minors of valuated bimatroids, Appl. Math. Lett., 8 (1995), pp. 37-42.
[25] , Valuated matroid intersection II: Algorithms, SIAM J. Discrete Math., 9 (1996),

pp. 562-576.
[26] , Fenchel-type Duality for Matroid Valuations, Report 95839-OR, Forschungsinstitut fiir

Diskrete Mathematik, Universitt Bonn, Germany, 1995.
[27] , Submodular Flow Problem with a Nonseparable Cost Function, Report 95843-OR,

Forschungsinstitut fiir Diskrete Mathematik, Universitt Bonn, Germany, 1995.
[28] , Convexity and Steinitz’s exchange property, Adv. Appl. Math., to appear. Extended

abstract in the Proceedings of Integer Programming and Combinatorial Optimization, V,
June 1996, Lecture Notes in Computer Science, Springer-Verlag, Berlin, 1996.

[29] Structural approach in systems analysis by mixed matrices--An exposition for index of
DAE, in Proc. ICIAM 95, Hamburg, K. Kirchgissner, O. Mahrenholtz, and R. Mennicken,
eds., Mathematical Research, Academie Verlag, Berlin, 1996.

[30] A. RECSKI, Matroid Theory and Its Applications in Electric Network Theory and In Statics,
Algorithms and Combinatorics 6, Springer-Verlag, Berlin, 1989.

[31] H. H. ROSENBROCK, State-space and Multivariable Theory, Nelson, London, 1970.
[32] A. SCHRIJVER, Matroids and linking systems, J. Combin. Theory Ser. B, 26 (1979), pp. 349-369.
[33] W. TERHALLE, Ein kombinatorischer Zugang zu p-adischer Geometrie: Bewertete Matroide,

Biume und Gebdude, Doctor’s dissertation, Universitt Bielefeld, Germany, 1992.
[34] M. VIDYASAGAR, Control System Synthesis: A Factorization Approach, MIT Press, Cambridge,

MA, 1985.
[35] U. ZIMMERMANN, Minimization on submodular flows, Discrete Appl. Math., 4 (1982), pp. 303-

323.
[36] Negative circuits for flows and submodular flows, Discrete Appl. Math., 36 (1992),

pp. 179-189.

SIAM J. DISCRETE MATH.
Vol. 9, No. 4, pp. 562-576, November 1996

1996 Society for Industrial and Applied Mathematics
0O4

VALUATED MATROID INTERSECTION Ii: ALGORITHMS*

KAZUO MUROTAt

Abstract. Based on the optimality criteria established in part [SIAM J. Discrete Math.,
9 (1996), pp. 545-561] we show a primal-type cycle-canceling algorithm and a primal-dual-type
augmenting algorithm for the valuated independent assignment problem: given a bipartite graph
G (V+,V-;A) with arc weight w A R and matroid valuations w+ and w- on V+ and
Y-, respectively find a matching M(C A) that maximizes {w(a) a E M} + w+(O+M)+
w-(O-M), where O+M and O-M denote the sets of vertices in V+ and V- incident to M. The
proposed algorithms generalize the previous algorithms for the independent assignment problem as
well as for the weighted matroid intersection problem, including those due to Lawler [Math. Prog.,
9 (1975), pp. 31-56], Iri and Tomizawa [J. Oper. Res. Soc. Japan, 19 (1976), pp. 32-57], Fujishige
[J. Oper. Res. Soc. Japan, 20 (1977), pp. 1-15], Frank [g. Algorithms, 2 (1981), pp. 328-336], and
Zimmermann [Discrete Appl. Math., 36 (1992), pp. 179-189].

Key words, weighted matroid intersection problem, independent assignment problem, valuated
matroid, combinatorial optimization

AMS subject classifications. 90C35, 90C27, 90B80

1. Introduction. Part I of this paper [24] has introduced an extension of the
independent assignment problem using the concept of the valuated matroid of Dress
and Wenzel [4], [5]. A matroid M (V, B) defined on a ground set Y by the family of
bases B is called a valuated matroid if it is equipped with a function w :B R that
enjoys the exchange axiom: for B, B’ E B and u E B- B’ there exists v B’- B
such that B- u+v B, B’ + u- v B, ad

(1.1) w(B) + w(B’) <_ w(B u + v) + w(B’ + u v).

Here R is a totally ordered additive group. (Typically R R (reals), Q (rationals),
or Z (integers).) The problem considered in part I is as follows:

VALUATED INDEPENDENT ASSIGNMENT PROBLEM. Given a bipartite
graph G (V+, V-;A), valuated matroids M+ (V+,B+,w+) and
M- (V-, B-, w-), and arc weight w A -. R, find a matching
M(C_ A) that maximizes

a(M) =_ w(M) + w+(O+M) + w-(O-M)

subject to the constraint

O+M B+ O-M B-

where O+M and O-M denote the sets of vertices in V+ and V-
incident to M.

We assume r+ r- for the feasibility of the problem, where r+ and r- denote the
ranks of M+ and M-. A special case of this problem is

Received by the editors January 18, 1995; accepted for publication (in revised form) October
30, 1995.

Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606-01, Japan (murota@
kurims.kyoto-u.ac.jp). This research was completed while the author was at Forschungsinstitut fiir
Diskrete Mathematik, Universitt Bonn.

562

VALUATED MATROID INTERSECTION II 563

INTERSECTION PROBLEM. Given a pair of valuated matroids M
(V, BI, w) and M2 (V, B2, w2) defined on a common ground set V
and a weight function w" V - R, find a common base B E B N B2
that maximizes w(B) + wl(B) + w2(B).

Also considered in part I [24] is the following more general form of the valuated
independent assignment problem (VIAP).

VIAP(k). Maximize

a(M,B+,B-) w(M) +w+(B+) +w-(B-)

subject to the constraint that M is a matching of size k, and

O+M
_
B+ E B+, O-M

_
B- e B-.

Obviously, VIAP(k) with k r+ r- is the VIAP above, although VIAP(k) does
not presuppose that r+ r-. VIAP(k) with trivial valuations (w+/- 0 on +/-) is
nothing but the problem of finding a maximum-weight independent matching of size
k. For the intersection problem (with valuations) VIAP(k) takes the following form:

maximize w(I)+ w(B) + w2(B2) under the constraint that I is a
common independent set of size k, and B (respectively, B2) is a base
of M (respectively, M2) containing I.

Part I has established the optimality criteria to the above problems.
Part II gives a primal-type cycle-canceling algorithm and a primal-dual-type aug-

menting algorithm for the valuated independent assignment problem, both of which
run in strongly polynomial time with oracles for the valuations w+/-. Our cycle-
canceling algorithm is based on the negative-cycle criterion (Theorem 4.3 of part
I) and is an extension of Fujishige’s [9] for the ordinary independent assignment prob-
lem. It can be polished up to a strongly polynomial algorithm using the minimum-
ratio-cycle strategy invented by Zimmermann [28]. Our augmenting algorithm, on
the other hand, solves VIAP(k) for k 0, 1, 2,... and is an extension of the well-
established primal-dual algorithm for the ordinary independent assignment problem
and the weighted matroid intersection problem due to Iri and Tomizawa [15] and
Lawler [18], [19]. (See also Frank [7]; for the submodular flow problem see Cunning-
ham and Frank [3], Frank [8], and Fujishige [11], [12].)

Remark 1.1. Extensions of the proposed algorithms to the linkage-type problems
as considered in Fujishige [10] and Iri [14] should be obvious from the results of this
paper combined with those in [10] and [14]. In this paper no further explicit accounts
will be made about this.

Let us recall some notation and lemmas from part I which are constantly referred
to in this part. Let M (V, B, w) be a valuated matroid. For B B, v V- B, and
uV,

(1.3)

C(B, v): fundamental circuit of v relative to B
(=unique circuit contained in B + v),
 o(B + ,,,(B),

where w(B, u, v) -oc if and only if u C(B, v), assuming the convention that
w(B’) -o if B’ B. For B B and B’ C_ V,

G(B, B’) "exchangeability graph with vertex bipartition(B B’, B’- B)
and arc set(u,v) lu e B- B’,v e B’ B,u e C(B,v);

564 KAZUO MUROTA

each arc (u, v)is given weight w(B, u, v),
(B, B’) "weight of a maximum-weight perfect matching in G(B, B’),

Unique-max condition" there exists exactly one maximum-weight perfect matching

inG(B,B’).

The following two lemmas are the driving wheels for the technical developments (cf.
Lemmas 3.4 and 3.8 of part I).

LEMMA 1.1 ("upper-bound lemma"). For B, B’ E B,

w(B’) < w(B) + (B, B’).

LEMMA 1.2 ("unique-max lemma"). Let.B B and B’ C_ V with IB’] IBI. If
(B, B’) satisfies the unique-max condition, then B’ B and

+ B’).

2. Cycle-canceling algorithms.

2.1. Algorithms. In Theorem 4.3 of part I we have shown a nega.tiv2 cycle
criterion for the optimality with reference to an auxiliary graph (TM (V, A) with
V=V+t0V- andA=At0MtoA+toA-,where

A {a a e A} (copy of A),
M {gla e M} (g: reorientation of a),
A+ {(u,v)[u B+,v V* B+,u C+(B+,v)},
A- {(v,u) u e B-,v e V- B-,u e C-(B-,v)}.

Here B+ = O+M, B- O-M, and C+(B+, v) and C-(B-, v) are defined as in (1.2).
The arc length "yM(a) (a A) is defined by

-w(a) (a e A),
w(g) (a (u, v) e M, g (v, u) e M),(2.1) 7M(a) -w+(B+, u, v) (a (u, v) e A+),
-co-(B-, u, v) (a (v, u) e A-),

where co+(B+, u, v) and co-(B-, u, v) are as in (1.3).
Theorem 4.3 of part I as well as its proof suggests an algorithm for solving the

valuated independent assignment problem as follows. The validity of this procedure
follows from Theorem 4.3 and Lemma 4.5 of part I.

CYCLE-CANCELING ALGORITHM. Starting from an arbitrary inde-
pendent assignment M, repeat (i)-(ii) below while there exists

negative cycle in GM"
(i) Find a negative cycle Q having the smallest number of arcs in

the auxiliary graph GM (with respect to the arc length
(ii) Modify the current independent matching along the cycle Q by

M= (M {a a__ M i’5 . Q M}) to (Q q A).

This is a straightforward extension of the primal algorithm of Fujishige [9] for the
ordinary independent assignment problem, which extends the classical idea of Klein

VALUATED MATROID INTERSECTION II 565

[17] and which is further extended by Fujishige [ii] and by Zimmermann [27] for the
submodular flow problem. (See also Fujishige [12] and the references therein.)

The above algorithm assumes an initial independent assignment M, which can
be found by the existing algorithms for the (unweighted) matroid intersection. For
each M, the graph GM can be constructed with r+ (IV+I r+) evaluations of w+ and
t-(IV- r-) evaluations of w-, where r/ and r- are the ranks of M/ and M-,
respectively. (We have r+ r- for a feasible problem.) When the valuated matroids
are associated with polynomial matrices as in Example 3.2 of part I, w+ can be eval-
uated by the method of interpolation or by an algorithm of combinatorial relaxation
type (see Murota [23] for details); or, more directly, w+(., ., .) can be determined by
pivoting operations on tile matrices if arithmetic operations on rational functions can
be performed.

A negative cycle having the smallest number of arcs in (i) can be found easily by
a variant of the standard shortest-path algorithm. It should however be worth noting
that the minimality of the number of arcs is not really necessary, and in fact this
observation adds more flexibility to the algorithm, as we will see soon. Recalling the
notation

(2.2) -+ B+ {O+a a e Q A+} + {O-a a e Q A+},
(2.3) -- B- {O-a a e QA-} + {O+a a e QA-},

we call a cycle Q in M admissible if both (B+, +) and (B-, B satisfy the unique-
max condition in M+ and M-, respectively. The admissibility of Q guarantees (by
the unique-max lemma) that the modified matching M remains to be an independent
assignment.

In the proof of Lemma 4.4 of part I it has been shown that if a negative cycle Q
is not admissible, a family of cycles, denoted Q (k 1,..., q), is naturally defined
and that at least one of its members is a negative cycle. Following the terminology of
Zimmermann [28] (for the submodular flow problem) let us call each Q an induced
cycle. The above observations lead to the following refinements of Lemmas 4.4 and
4.5 of part I.

LEMMA 2.1. Let Q be a negative cycle in GM. Either Q is admissible or else
it induces a negative cycle having a smaller number of arcs than Q. In particular, a
negative cycle having the smallest number of arcs is admissible.

LEMMA 2.2. For an admissible cycle Q in GM, M is an independent assignment
with (M) >_ (M) 7M(Q).

Remark 2.1. In the case of the ordinary independent assignment problem, the
admissibility of a cycle defined above agrees with the admissibility in the sense of [28]
and with the feasibility in the sense of [2]. This is due to the observation made in
Remark 3.2 of part I.

The algorithm finds the optimal independent assignment in a finite number of
steps since there exist a finite number of independent assignments in the given graph
and the objective function value gt(M) increases monotonically; we have seen

(2.4) t(M) _> t(M)- 7M(Q) (> t(M)).

(It may be emphasized, however, that the gin in fl(M) cn be larger thn -TM(Q),
a phenomenon which cnnot occur in the ordinary independent ssignment problem.
See the proof of Lemm 4.5 of part I.) However, the number of iterations of the loop
(i)-(ii) is not bounded by polynomial in the problem size as is Mso the case with

566 KAZUO MUROTA

the original form of the primal algorithm for the ordinary independent assignment
problem.

Recently Zimmermann [28] has shown (for the submodular flow problem) that,
when R C_ R, a judicious choice of a negative cycle renders the number of iterations
bounded by r+ (= r-). The idea is to introduce an auxiliary weight function
on A and to select a cycle Q of minimum ratio "/M(Q)/o(Q) (satisfying some extra
condition). In what follows we shall show that this idea carries over to our problem,
making the number of iterations of the loop (i)-(ii) of our algorithm bounded by r+

We maintain a subset M of A, called the active arc set, and define a A {0, 1 }
by

1 (aeM’),a(a)= 0 (ae-M).

An arc is said to be active if it belongs to M’. A cycle Q (c_ A) is called a minimum-
ratio cycle with respect to (TM, a) if /M(Q)/a(Q) takes the minimum value among
all cycles with a(Q) > 0. We assume R c_ R till the end of 2.

CYCLE-CANCELING ALGORITHM WITH MINIMUM-RATIO CYCLE. Start-
ing from an arbitrary independent assignment M and active arc set
defined by M" M (=- {la E M}), repeat (i)-(iii) below while

there exists a negative cycle in (M:
(i) Find an admissible minimum-ratio cycle Q in the auxiliary graph
GM (with respect to (TM,

(ii) Modify the current active arc set by

M.=M’-(QM)

and the function a accordingly.
(iii) Modify the current independent matching along the cycle Q

by

-= (M- {a e M -g e QM}) (QA).

The following properties are maintained throughout the computation:
Any negative cycle in (M contains an active arc (cf. Lemma 2.8).
M is an independent assignment. (That is, O+M B+, O-M B-.)

Because of the first property, the minimum-ratio cycle in (i) is well defined, as long
as (M contains a negative cycle. In (ii), on the other hand, the active arc set M"
decreases monotonically, at least by one element in each iteration. This implies the
termination of the algorithm in at most r+ (- r-) iterations, whereas the obtained
matching M is an optimal independent assignment by the second property and The-
orem 4.3 of part I.

An admissible minimum-ratio cycle can be found in a polynomial time in the
problem size as follows. By an algorithm of Megiddo [22], a minimum-ratio cycle Q
can be generated in O([VI2[A[log [Yl) time. We can test for the admissibility of Q on
the basis of Lemma 3.5 of part I by_means of an algorithm for the weighted bipartite
matching problem. This takes O([V[3) or less time. In case Q is not admissible, it
induces a (nonempty) family of minimum-ratio cycles each having a smaller number

VALUATED MATROID INTERSECTION II 567

of arcs than Q, as will be shown later in Lemma 2.5. We pick up any one of the
induced minimum-ratio cycles and repeat the above procedure. After repeating not
more than IVI times we are guaranteed to obtain an admissible minimum-ratio cycle.

Summarizing the above arguments we have the following theorem, where R c_ R
is assumed.

THEOREM 2.3. The cycle-canceling algorithm with minimum-ratio cycle selection
is a strongly polynomial time algorithm (modulo a polynomial number of evaluations

In connection to Lemma 2.2 it may be noted (cf. Lemma 2.6) that the minimum-
ratio cycle selection yields an equality in (2.4) (in contrast to the original version of
the algorithm).

Finally we mention two other variants of the cycle-canceling algorithm using the
minimum-mean-cycle strategy, which was introduced by Goldberg and Tarjan [13] for
the minimum-cost flow problem and adapted to the submodular flow problem by Cui
and Fujishige [2]. The mean length of a cycle Q in GM is M(Q) divided by IQI (= the
number of arcs in Q), and a minimum-mean cycle means a cycle having the minimum
mean length. Note that a minimum-mean cycle is a minimum-ratio cycle for c 1.

The variants suggested here are to select, as in [2], a minimum-mean cycle Q in

GM according to one of the rules:
(N) select a minimum-mean cycle having the smallest number of arcs,
(L) select a minimum-mean cycle such that qM(O+a) r(O-a) for each arc in

it, where r" Y -- {1, 2,..., IVI} is a fixed one-to-one mapping (-- ordering
of V) and

qM(U) min{r(v) arc (u, v) lieson a minimum-mean cycle in GM}.

It is observed in [21 that such minimum-mean cycles can be found in O(IVI IAI) time
using an algorithm of Karp [16]. (See also McCormick [21] and Orlin and Ahuja [25]
for algorithms for minimum-mean cycles.) The validity of these variants can be shown
similarly as that of the minimum-ratio cycle algorithm. (See Remark 2.2.) Again we
have an equality in (2.4).

2.2. Validity of the minimum-ratio cycle algorithm. We shall show the
validity of the cycle-canceling algorithm using the minimum-ratio cycle selection. Ba-
sically we follow the arguments in [13], [28] while establishing two lemmas (Lemmas
2.5 and 2.7) specific to our problem. We abbreviate M to /for notational simplicity.

For e >_ 0 an independent assignment M is said to be e-optimal (with respect to

c) if there exists a function p" V R such that

(2.5) /p(a) =_ /(a) + p(O+a) p(O-a) > -ec(a) (a e A).

Noting (2.5) is equivalent to saying that the modified arc length (a) /(a) + ea(a)
admits a function p such that

(a) + p(O+a) -p(O-a) >_ 0 (a e A),

we see that the existence of p with (2.5) is also equivalent to

(2.6) 7(Q) >--ea(Q) (Q negative cycle).

This implies obviously that a(Q) > 0 for any negative cycle Q; that is,

(2.7) any negative cycle in GM contains an active arc.

568 KAZUO MUROTA

Conversely suppose (2.7) is true and

(2.8) there exists a negative cycle.

Then the "minimum cycle ratio"

(2.9) # min
a(Q)

Q" cycle with a(Q) > 0

is well defined and M is e-optimal with e - > 0. Hence we have the following
statement.

LMMa 2.4. Coeditio (2.7) is satisfied if and ol if M is e-optimal for some
e>0.

Proof. In addition o Che above argument, note that the case 0 corresponds
to an optimal M for which (2.7) is wcuously true due to Theorem 4.3 of part I.

Under condition (2.7) we define e(M) to be the minimum value of k 0 for which
M is a-optimal. The above argument shows, under (2.8), that

(2.10) (M) -.
The following lemma substantiates step (i) of the minimum-ratio cycle algorithm.
LEMMA 2.5. Assumin9 (2.7) and (2.8) let Q be a minimum-ratio ccle. Either

Q is admissible or else it induces a minimum-ratio ccle havin9 a smaller number of
arcs han Q. In particular, a minimum-raio ccle havin9 he smalles number of arcs
i admissible.

Proof. We modify the proof of Lemma 4.4 of part I. Let + and B be de-
fined by (2.2) and (2.3). Suppose that Q is not admissible, and assume without

loss of generality that (B+, +) does not satisfy the unique-max condition. Take a

maximum-weight perfect matching M in G(B+,+) for M+ as well as the potential
function in Lemma 3.5 of part I. Put Q (Q-A+)UM, which is a collection of dis-
joint cycles, say Q =1%. Th (’) () (si (M’) (a A+) 0),
and

(2.11) 7(Q’) 7(Q) + [7(M’) 7(Q cl A+)]

holds. By the choice of M’ we have 7(Q’) < 7(Q), which implies

(2.) 7(Q’)/(’) <_ 7()/(Q)= .
We claim that the equality holds in (2.12). In fct, (2.12) shows

(Q’) (Q) <_ (Q’) (Q),
j=l j--1

whereas 7(Q}) _> #a(Q}) for all j by (2.7) and (2.9). With the equality in (2.12),we
obtain 7(Q) 7(Q) since a(Q) a(Q).

It then follows from (2.11) that

(2.13) (Q C A+) (M’) -a+(B+,N+).
Hence, putting

M"= QV1A+= {(u,v) 1,...,m},

VALUATED MATROID INTERSECTION II 569

we have M" c_ A*, where

A* {(u, v) u e (B+, + 0},

and is the potential function in Lemma 3.5 of part I. (Note: (ui, vi) denoted arcs in
M’ in the proof of Lemma 4.4 of part I.)

Since (B+,+) does not satisfy the unique-max condition, there exist distinct
indices ik (k 1,..., q; q 2) such that (u,v+) e A* for k 1,..., q, where
iq+l il. Then

(2.14) w+ (B+, ui, vi+ (ui) (vi+ (k 1,..., q),

(2.15) w+(B+, ui, vi) (ui) (vi) (k 1,..., q),
q q

(2.16) (,i+) (,v)
k=l k=l

hold true, where (2.15) is due to M" A*.
For k 1,..., q, let P(v+, u) denote the path on Q from v+ to u{, and

let Qk be the directed cycle formed by arc (u,v+) and path P(v{+, u{). By a
similar argument as in the proof of Lemma 4.4 of part I we obtain

q

(7(Qk) a(Qk)) q’((Q) ,a(Q)) 0

for some q’ with 1 q’ < q, which shows (Q) Pa(Qk) 0 for each k. There-
fore Q is a minimum-ratio cycle for k with a(Qk) > 0, while such k exists since

> 0.
LEMMA 2.6. Assuming (2.7) and (2.8), let Q be an admissible minimum-ratio

cycle. Then is an independent assignment with n() fl(M) -M(Q).
Proof. This is the same the proof of Lemma 4.5 of part I, except that (2.13) is

used.
LEMMA 2.7. Assuming (2.7) and (2.8), let Q be an admissible minimum-ratio

cycle Then () (M) for (M {a e M e Q M}) u (Q A).
Proof. Put e e(M), which is equal to - by (2.10). By the s-optimality of M,

Gp(a) G(a) + p(a+a) p(O-a) -sa(a) (a e A)

holds for some p. Note that

(2.17) 7p(a) -sa(a) (a e Q).

Denote byG (, A) the auxiliary graph for , with obvious additional notations

A Uo U+ U-, , and . We will show

(2.18) p(a)

for the same p. This is obvious for a since (a) 0 and its reorientation
Q A satisfies Gp() 0.

In what follows we show (2.18) for a e +; the proof for the remaining case

with a

respectively. Then (2.18) for a

(2.19) w(, u, v)

570 KAZUO MUROTA

since w(, u, v) --oc if (u, v) +.
Recalling the definition

(a) -w(B, u, v) (a (u, v) e A+)
and noting a(a) 0 (a e A+), we see from (2.5) that

(.0) (B, u,) < ;() p() (e B, e V B).

(Note that (u, v) g+ implies w(B, u, v) -oc.) Equation (2.17) shows that this is
satisfied with equality for (u, v) E Q A A+. Hence

(2.21) (B,)= p(u)- p(v).
uEB-B vEB-B

For u E B and v V-B put B B-u+v. It follows from Lemma 1.1
(upper-bound lemma), Lemma 1.2 (unique-max lemma), (2.20), and (2.21) that

(, ,) (B’)-()
< (B, B’) (B,)

<_ [p(u’)- p(v’)]-[p(u’)- p(v’)lu’B-B vB-B u’B-- v--B
=p()- p().

Thus (2.19) is established. It may be remarked that the essence of (2.19) lies in
Lemma 3.9 of part I. U

Combining Lemmas 2.4 and 2.7 we see that condition (2.7) is preserved in up-
dating an independent matching, in step (iii) of the minimum-ratio cycle algorithm.
That is, we have the following.

LEMMA 2.8. Assuming (2.7) and (2.8), let Q be an admissible minimum-ratio
cycle. Then the condition (2.7) is satisfied by M.

We have justified all the claims about the cycle-canceling algorithm with minimum-
ratio cycle selection.

Remark 2.2. The validity of the variants using the minimum-mean cycle can be
shown similarly. To be specific, we have the following.

LEMMA 2.9. Let Q be a minimum-mean cycle selected by rule (N) or (L). Then
Q is admissible and- is an independent assignment with

Proof. Put a 1 in the proof of Lemma 2.5. This shows that if Q were not
admissible, each induced cycle Qk would be a minimum-mean cycle. Case (N)" We
have IQkl < IQI, which is a contradiction. Case (L)" The choice of Q implies that
r(vik) < 7r(vik+l) for k 1,... ,q, which is a contradiction since iq+l il. The proof
of the second half is the same as the proof of Lemma 2.6. El

It should be emphasized, however, that no polynomial bound on the number of
iterations can be deduced from the above lemma.

3. Augmenting algorithm.

3.1. Algorithms. Our augmenting algorithm solves VIAP(k) for k 0, I, 2,...
with the aid of the auxiliary graph G(M,B+,B-) (V,A) introduced in 5 of part I.
The vertex set V is given by

v+ u v- u {s+, s-},

VALUATED MATROID INTERSECTION II 571

where s+ and s- are new vertices referred to as the source vertex and the sink vertex,
respectively. The arc set A consists of eight disjoint parts:

A (A U M) u (A+ u F+ U S+) U (A- U F- U S-),

where

A={alae
M= {lae
A+= {(u,v)
F+ {(u, s+)
t;+ {(s+, v)
A-= {(v,u)
F- {(-, u)
s- {(v,-)

A} (copy.of A),
M} (: reorientation of a),
u B+, v e V+ B+, u e C+ (B+, v)},
IeV+},
Iv E B+-O+M},
u e B-,v e V- B-,u e C-(B-,v)},

iv B--.O-M}.

The arc length 9’(a) "(M,B+,B-)(a) (a A) is defined by

(3.1)

-w(a)
()

"(a) -w+(B+, u, v)
--(B-, u, v)
0

(a e A),
(a (u, v) e M, g (v, u) e M),
(a (u, v) e A+),
(a (v, u) e A-),
(aF.+US+UF-US-).

LEMMA 3.1. Let (M,B+,B-) be a feasible solution of VIAP(k). Problem
VIAP(k + 1) has a feasible solution if and only if there exists a directed path in

G(M,B+,B-) from 8+ to 8-.

Proof. First note that the graph G(M,B+,B-) does not depend on w nor on w+,
except for the arc length. Then the claim follows from a standard result for the
independent matching problem (e.g., [1], [12, Thm. 4.7]). El

Suppose that (M,B+,B-) is optimal for VIAP(k) and that VIAP(k + 1) is fea-
sible. It follows from Lemma 3.1 that there is a (directed) path in G(M,B+,B-) from
the source s+ to the sink s- and from Theorem 5.2 of part I that there is a shortest
path from s+ to s- with respect to ,. Let P be (the set of arcs on) a shortest path
from s+ to s- having the smallest number of arcs. Then the following theorem holds
true; the proof is given later.

THEOREM 3.2. Let (M,B+,B-) be optimal for VIAP(k) and P be a shortest
path, from the source s+ to the sink s- in G(M,B+,B-), having the smallest number

of arcs. Then (M, -+, --) defined by

(3.2)
(3.3)
(3.4)

M M- {a e M In e PrM} + (P r A),
-+ B+ {O+a a P r A+} + {O-a a e P n A+},-- B- -{O-a a e PrA-} + {O+a a e PrA-},

is optimal for VIAP(k + 1).
With this theorem, we obtain the following algorithm of augmenting type that

solves VIAP(k) for k 0, 1, 2, At the beginning of the algorithm we set M 0

572 KAZUO MUROTA

and find a maximum-weight base B+ of M+ with respect to w+ and a maximum-
weight base B- of M- with respect to w-. Obviously this choice gives the optimal
solution to VIAP(0).

AUGMENTING ALGORITHM (OUTLINE). Starting from the empty
matching M and maximum-weight bases B+ and B- of M+ and
M-, respectively, repeat (i)-(ii) below for k 0, 1, 2,..

(i) Find a shortest path P having the smallest number of arcs

(from s+ to s- in G(M,B+,B- with respect to the arc length
"Y(M,B+ ,B-
[Stop if there is no path from s+ to s-.]

(ii) Update (M,B+,B-) to (M,B " --) by (3.2) (3.3) (3.4)

Note that the graph G(M,B+,B-) can be constructed in a similar manner as the

graph GM for the cycle-canceling algorithm.
Just like the primal-dual algorithm for the ordinary minimum-cost flow problem

and the independent assignment problem, the algorithm outlined above can be made
more efficient by the explicit use of a potential function p" V - R, the use of which
has been invented independently by Tomizawa [26] and by Edmonds and Karp [6].

Suppose again that (M, B+, B-) is optimal for VIAP(k). By Theorem 5.2 of part
I there is a potential p" V - R such that

(3.5) "),(a) =_ "),(a) + p(O+a) -p(O-a) >_ 0 (a e A).

This condition is equivalent to the following set of conditions appearing in Theorem
5.1 of part I:

(3.6)

(3.9)
(3.0)

w(a) p(O+a) + p(O-a) { < 0 (a e A),
=0 (a e M),

B+ is a maximum-weight base of M+ with respect to w+[p+]
B- is a maximum-weight base of M- with respect to w-[-p-]
p(u) >_ p(v) (u E V+, v B+ -0+M),
p() < p(,) (e v-, , e B- -O-M),

where it should be recalled from part I that p+ denotes the restriction of p to V+/- and
that

+[+](B) +(B) + p+() +(B) + () (B e +),
vEB vEB

-[-v-](B) -(B)- -(v)= -(B)- V() (B e -)
vB vB

are called the similarity transformations of w+/-.
In the following algorithm we maintain a potential function p in addition to

(M, B+, B-), and a shortest path is sought with respect to the modified arc length
-yp, which is nonnegative by virtue of (3.5). At the beginning of the algorithm the
potential p is chosen as

(3.11) p(v) { 0 (v e V+ + s+),
maxafiA w(a) (v e V- + s-),

VALUATED MATROID INTERSECTION II 573

which is easily seen to be legitimate. In the general steps p is updated to

(3.12) p(v) p(v) + Ap(v) (v e V)

based on the length Ap(v) of the shortest path from the source s+ to v with respect
to the modified arc length /p.

AUGMENTING ALGORITHM (WITH POTENTIAL).
(Step 0)

(i) SetM=O.
(ii) Define p by (3.11).
(iii) Find maximum-weight bases B+ and B- ofM+ and M-,

respectively.
(Step 1) Repeat (i)-(iii) below for k 0, 1, 2,...:

(i) Find a shortest path P having the smallest number of arcs

(from s+ to s- in G(M,B+,B-) with respect to the modified
arc length %).
[Stop if there is no path from s+ to s-.]

(ii) For each v E Y compute the length Ap(v) of the short-
est path from s+ to v in G(M,B+,B-) with respect to the
modified arc length /p; update p to by (3.12).

(iii) Update (M, B+, B-) to (M, B -) by (3.2) (3.3) (3.4)
Remark 3.1. In the description of the algorithm above, we have assumed that

Ap(v) takes a finite value for all v in order to focus on the main ideas, which is com-
mon in the literature on matroid intersection algorithms. In actual implementations,
however, this issue should be taken care of in an appropriate manner.

3.2. Validity of the augmenting algorithm. We show that (M, B -, -,)
satisfies conditions (3.6)-(3.10). It then follows from Theorem 5.1 of part I that

(,+,-) is optimal for VIAP(k + 1). Theorem 3.2 also follows from this.
First note that M is a matching of size k / 1 and that

(3.13) () =_ () + (o+a) (O-a)
/p(a)/ Ap(O+a) Ap(O-a) >_ 0 (a e A)

by the definition of Ap.
LEMMA 3.3.

w(a) (0+a) + p(O-a) { <- 0 (a e __A)’
=0 (eM).

Proof. The first part follows from (3.13) for a A, while the second is due to

/p(a) + Ap(a+a) Ap(a-a) /(a) + (0+a) -(O-a) 0 (a M 2 P).

LEMMA 3.4.

(u) > () (u e v+, v + 0+), (u) < (v) (u v-, v - 0-).

Proof. The inequality (3.13) for a (u, s+), (v, s+), (s+, v) implies (u)-(s+
0 and (v) -(s+) 0. The proof for the second claim is similar.

574 KAZUO MUROTA

Let

{(u+,v+) i 1,...,1+} Pn A+,
{(v-,uT i-1,...,/-} PCqA-,

where + -IP C A+I, l- IP A-I, and the indices are chosen so that

l+’ l+

represents the order in which they appear on P and similarly for

We see

+ B+ {,+ + {,+,.. ++}+ +}_O+,
B B- {u-,...,u_} + {v-,...,v_} _D O-M.

LEMMA 3.5. (1) (B+,+) and (B-,--) satisfy the unique-max condition in
M+ andM-, respectively.

()
+

(B+,+) ((+)- (+)),
i--1

l-

(B-,-) (() (7)).
i--1

Proof We prove the case "+" only and omit the superscript "+."
(1) By (3.13) for a e A+, we have

(B,,) < () p() (1 < ,j <).

Here we have an equality if j and a strict inequality if i < j by the definitions of
and P. Then the unique-max property follows from Lemma 3.5 of part I.

(2) We see from the above that is the optimal dual variable in the sense of
matching theory [20], and hence

(B,) ((u) (v)).
i----1

LEMMA 3.6.

+[+1(+) > +[+](B?) (&+ e +),
-[-P-](-) > -[--](Bi-) (Bi- e -).

Proof. Again we prove the case "+" only. By Lemma 3.1 of part I it suffices to
show

N(B +) <](B) (ueB, veV-B).

VALUATED MATROID INTERSECTION II 575

Note first that

](+) []() (+ v) () () + ().

Here we have

(- +) (B) _< (B, + v) _< (’)
u’EB v’6B-u+v

by the upper-bound lemma (Lemma 1.1) and (3.13) for a E A+, and

() (B) (B,) (() f())
i--1

by Lemma 3.5 and the unique-max lemma (Lemma 1.2). Therefore the RHS of (3.14)
is bounded by

(’) (’) (() ()) () +() 0.
uB v’---u-v i--1

Thus we have shown (3.6) in Lemma 3.3, (3.7) and (3.8) in Lemma 3.6, and (3.9)
and (3.10) in Lemma 3.4. This completes the proof of Theorem 3.2.

Acknowledgments. The author expresses his gratitude to Satoru Iwata for
bringing to his attention a number of important references concerning the primal
approach and for suggesting a substantial improvement on the primal-dual algorithm.
Discussion with Uwe Zimmermann on the minimum-ratio cycle algorithm was helpful
to improve its presentation.

[10]

[11]

[12]

[13]

REFERENCES

[1] W. COOK, W. H. CUNNINGHAM, W. R. PULLEYBLANK, AND A. SCtIRIJVER, Combinatorial
Optimization, to appear.

[2] W. CvI AND S. FUJISHIGE, A primal algorithm for the submodular flow problem with minimum-
mean cycle selection, J. Oper. Res. Soc. Japan, 31 (1988), pp. 431-440.

[3] W. H. CUNNINGHAM AND A. FRANK, A primal-dual algorithm for submodular flows, Math.
Oper. Res., 10 (1985), pp. 251-262.

[4] A. W. M. DRESS AND W. WENZEL, Valuated matroid: A new look at the greedy algorithm,
Appl. Math. Lett., 3 (1990), pp. 33-35.

[5] , Valuated matroids, Adv. Math., 93 (1992), pp. 214-250.
[6] J. EDMONDS AND R. M. KARP, Theoretical improvements in algorithmic eJciency for network

flow problems, J. Assoc. Comput. Mach., 19 (1972), pp. 248-264.
[7] A. FRANK, A weighted matroid intersection algorithm, J. Algorithms, 2 (1981), pp. 328-336.
IS] , An algorithm for submodular functions on graphs, Ann. Discrete Math., 16 (1982),

pp. 97-120.
[9] S. FUJISHIGE, A primal approach to the independent assignment problem, J. Oper. Res. Soc.

Japan, 20 (1977), pp. 1-15.
, An algorithm for finding an optimal independent linkage, J. Oper. Res. Soc. Japan, 20

(), . -.
, Algorithms for solving the independent-flow problems, J. Oper. Res. Soc. Japan, 21

(1978), pp. 189-204.
, Submodular Functions and Optimization, Annals of Discrete Mathematics 47, North-

Holland, Amsterdam, 1991.
A. V. GOLDBERG AND a. E. TARJAN, Finding minimum-cost circulations by canceling negative

cycles, J. Assoc. Comput. Mach., 36 (1989), pp. 873-886.

576 KAZUO MUROTA

[14] M. III, A practical algorithm for the Menger-type generalization of the independent assignment
problem, Mathematical Programming Study, 8 (1978), pp. 88-105.

[15] M. IeI AND N. TOMIZAWA, An algorithm for finding an optimal "independent assignment", J.
Oper. Res. Soc. Japan, 19 (1976), pp. 32-57.

[16] R. M. KARP, A characterization of the minimum mean cycle in a digraph, Discrete Math., 23
(1978), pp. 309-311.

[17] M. KLEIN, A primal method for minimal cost flows, Management Science, 14 (1967), pp. 205-
220.

[18] E. L. LAWLER, Matroid intersection algorithms, Math. Prog., 9 (1975), pp. 31-56.
[19] , Combinatorial Optimization: Networks and Matroids, Holt, Rinehart and Winston,

New York, 1976.
[20] L. Lovsz AND M. PLUMMER, Matching Theory, North-Holland, Amsterdam, 1986.
[21] S. T. MCCORMICK, Approximate binary search algorithms for mean cuts and cycles, Oper.

Res. Lett., 14 (1993), pp. 129-132.
[22] N. MEGIDDO, Combinatorial optimization with rational objective functions, Math. Oper. Res.,

4 (99), pp. 44-424.
[23] K. MUROTA, Computing the degree of determinants via combinatorial relaxation, SIAM J.

Comput., 24 (1995), pp. 765-796.
[24] ------, Valuated matroid intersection I: Optimality criteria, SIAM J. Discrete Math., 9 (1996),

pp. 545-561.
[25] J. B. ORLIN AND R. K. AHUJA, New scaling algorithms for the assignment and minimum cycle

mean problems, Math. Prog., 54 (1992), pp. 41-56.
[26] N. TOMIZAWA, On some techniques useful for solution of transportation network problems,

Networks, 1 (1971), pp. 173-194.
[27] U. ZIMMERMANN, Minimization on submodular flows, Discrete Appl. Math., 4 (1982), pp. 303-

323.
[28] Negative circuits for flows and submodular flows, Discrete Appl. Math., 36 (1992),

pp. 179-189.

SIAM J. DISCRETE MATH.
Vol. 9, No. 4, pp. 577-596, November 1996

() 1996 Society for Industrial and Applied Mathematics
O05

PLANE EMBEDDINGS OF 2-TI:tEES AND BICONNECTED
PARTIAL 2-TREES*

ANDRZEJ PROSKUROWSKIt, MACIEJ M. SYSLO$, AND PAWEL WINTER

Abstract. We consider different plane embeddings of partial 2-trees and give an efficient algo-
rithm constructing a minimum cardinality cover of faces, where each face is covered by exactly one
vertex. These tasks are facilitated by a unique tree representation of plane embeddings of 2-trees.

Key words, planar embeddings, treewidth, 2-trees, covering, minimum cost perfect matching

AMS subject classifications. 05C10, 05C30, 05C70

1. Introduction.

1.1, Motivation. Partial 2-trees constitute a nontrivial class of planar graphs
that includes outerplanar graphs and series-parallel graphs. They admit efficient
algorithms solving many inherently hard problems on general graphs [8, 1]. This
property of algorithmic tractability follows from the tree-like structure of partial 2-
trees and 2-trees, which are graphs imbedding partial 2-trees [12]. We propose a tree
representation of 2-trees that is very useful in algorithmic treatment of these graphs.

The central algorithmic problem considered here is connected with plane embed-
dings of 2-trees and partial 2-trees. The union of minimal separators of any 2-tree has
a very distinct structure which implies a one-to-one correspondence between certain
subgraphs of partial 2-trees (outerplanar subgraphs pivotal for plane embedding) and
the corresponding subgraphs of the imbedding 2-trees. This intermediate result com-
plements the study of interior graphs of maximal outerplanar graphs in [4]. It also
leads in a fairly straightforward manner to a formula counting the number of plane
embeddings of biconnected 2-trees. (This problem for general planar graphs has been
considered by MacLane [5].)

We investigate the existence of restricted covers of faces of a plane graph by
vertices. This notion has been introduced in [9] and investigated in [10]. In the
case of maximal outerplanar graphs, a tree representation of a plane embedding was
used both to count the number of different embeddings (see [11]) and to construct
an embedding admitting a perfect face independent vertex cover of all graph faces,
FIVC. The proposed tree representation of 2-trees is crucial for constructing a perfect
FIVC for 2-trees and partial 2-trees.

1.2. Definitions. We will deal with simple, loopless combinatorial graphs. An
edge is incident with its end vertices, which are mutually adjacent. A simple path
between two vertices u and v is a sequence of edges such that each of their end
vertices (other than u or v) is incident with exactly two neighboring edges. If u v,
we have a simple cycle. A graph is connected if there is a path between any two of

Received by the editors September 7, 1993; accepted for publication (in revised form) November
10, 1995.

Department of Computer and Information Science, University of Oregon, Eugene, OR 97403
(andrzej@cs.uoregon.edu). The work of this author was supported in part by National Science
Foundation grant NSF-CCR-9213439.

Institute of Computer Science, University of Wroctaw, ul. Przesmyckiego 20, 51151 Wroctaw,
Poland (sysloii.uni.wroc.pl).

Department of Computer Science, University of Copenhagen, Universitetsparken 1, DK-2100
Copenhagen , Denmark (paweldiku.dk).

577

578 A. PROSKUROWSKI, M. M. SYSLO, AND P. WINTER

its vertices. In a connected graph, a subset S of vertices is a separator if its removal
disconnects the graph. A tree is a connected acyclic graph. A graph G is outerplanar
if there is an embedding of G in the plane such that all vertices lie on the boundary
of the infinite region of the plane (the outer face). Thus, an outerplanar graph has
no subgraph homeomorphic to (a subdivision of) the complete bipartite graph K2,3.
The set of boundary cycles consists of the boundaries of the faces, regions of the plane
in a plane embedding. We identify a plane embedding of a graph with the set of its
boundary cycles. A subgraph of G induced by a subset S of the vertices of G consists
of S and all edges of G with both end vertices in S.

A 2-tree is either the complete graph on 3 vertices (the triangle K3) or a graph
with n > 3 vertices obtained from a 2-tree G on n-1 vertices by adding a new vertex
adjacent exactly to both end vertices of an edge of G. (An alternative definition
involves construction of a 2-tree as the union of two smaller 2-trees that have an edge
in common.) Every minimal separator of a 2-tree consists of the end vertices of an
edge [7].

A partial 2-tree is a subgraph of a 2-tree (it can be imbedded in a 2-tree) with the
same set of vertices. The class of partial 2-trees is identical with a slight generalization
of series-parMlel graphs, which are graphs with treewidth at most 2. It is well known
that a graph is a partial 2-tree if and only if it contains no homeomorph of K4. For
emphasis, we will call 2-trees full. Also, we will distinguish between an embedding of
a planar graph in the plane and an imbedding of a partial 2-tree in a full 2-tree.

We will use the following classification of edges in a full or partial 2-tree H. An
edge e (a, b) is called exterior if {a, b} is not a separator of H; otherwise, it is called
interior. An edge e (a, b) is called strongly interior if the graph H-{a, b} has more
than two connected components and weakly interior otherwise. A strongly interior
edge e= (a, b)is terminal if and only if at most one of the graphs Gi H--Cj
is not outerplanar. (Here, C’s are the connected components of H- {a, b}, ’rd
denotes the disjoint union of graphs.)

LEMMA 1.1. Every nonouterplanar 2-tree H has a terminal strongly interior
edge.

Proof. If a 2-tree H is not outerplanar, it has a strongly interior edge since it
contains a homeomorph of K2,3. Assume that there is no such terminal edge. Then,
there is a strongly interior edge e that separates H into at least two nonouterplanar
components: C, which has the maximum size over all strongly interior edges and the
corresponding components, and D. The latter has a strongly interior edge f separating
H into connected components, one of which is nonouterplanar and properly includes
C, thus contradicting the definition of C as maximum size. (This argument should
give an intuition about the name of the terminal strongly interior edge.) El

Outerplanar 2-trees are known as maximal outerplanar graphs (mops), which are
also identical with all triangulations of polygons.

2. Structure of 2-trees and their separators.

2.1. Interior graphs of 2-trees. Hedetniemi, Proskurowski, and Syslo [4] de-
fine the interior graph of a mop as the union of its interior edges (see also [6]). They
completely characterize the interior graphs of mops and show that such a graph is
a union of mops and attached to them caterpillars. We obtain a similar result for
partial 2-trees.

LEMMA 2.1. Any tree is the interior graph of some 2-tree.
Proof. (This is proved by induction on the number of vertices.) By inspection,

the lemma is true for n 2 and n 3 vertices. For n >_ 3, consider a tree T with

PLANE EMBEDDINGS OF BICONNECTED PARTIAL 2-TREES 579

n + 1 vertices. Unless T Kl,n (a star) we can split T into smaller trees T1 and T2
by removing an edge e so that ITil + 1 _< n (i 1, 2). By the inductive hypothesis,
each of the trees Ti augmented by e is the interior graph of a 2-tree Gi (i 1, 2).
A 2-tree G obtained from G1 and G2 by identifying the copies of e in each of them
has T as its interior graph. As for the remaining case, K,n is the interior graph of
the 2-tree with a universal vertex and n remaining vertices inducing a path (a wheel
without one external edge).

THEOREM 2.2. A connected partial 2-tree H is the interior graph of some 2-tree
if and only if it has no induced cycles of length greater than 3.

Proof. Sufficiency: any such H has biconnected components, Hi, that are either
edges or 2-trees. A 2-tree component Hi is the interior graph of a 2-tree Gi obtained
from Hi by adding a triangle (a vertex adjacent to both end vertices of an edge) to
each exterior edge. An edge component Hi is the interior graph of a 2-tree Gi obtained
by adding two triangles to Hi. Consider the union of such graphs Gi (identifying the
corresponding copies of articulation vertices of H). For each articulation point v of
G, choose from each connected component of G-v an edge e of H incident to v and
connect the other end vertices of these edges by a path. This results in a 2-tree that
has H as its interior graph.

Necessity: let a partial 2-tree H be the interior graph of a 2-tree G. As a chordal
graph, G has no induced chordless cycles other than triangles. Removing all vertices
of degree 2 from G does not introduce any induced cycles. Since those vertices are
incident to all exterior edges of G, their removal results in the interior graph, H, also
without induced cycles of length greater than 3.

The necessity result of [4] that the interior graph of a mop is a union of mops and
caterpillars is an immediate corollary of Theorem 2.2 (since caterpillars are the only
acyclic interior graphs of mops). However, the outerplanarity constitutes a nontrivial
hindrance for the sufficiency of this condition.

2.2. Tree representation of 2-trees. We will represent a plane embedding of
a 2-tree by a rooted, ordered tree with sibling nodes (children of the same parent)
partitioned into two sets. To reach this goal, we first define a unique associated graph
D(G) of a given 2-tree G. D(G) is the intersection graph of triangles of G over the
set of edges. Thus, the vertices (called nodes) of D(G) correspond to triangles of G,
and edges of D(G) correspond to edges of G that are in at least two triangles (an
example can be found in Fig. lb).

It can easily be verified that each node v of D(G) is in at most three maximal
cliques. Furthermore, there is at least one node in D(G) that belongs to exactly
one maximal clique. We will call such a node (and the corresponding triangle of G)
pendant.

We will now give an algorithm constructing a graph that represents a plane em-
bedding Gp of G (Gp is assumed to be specified by the set of boundary cycles). Let r
be a pendant node in D(G). Let Tr denote the directed tree rooted at r and obtained
by the breadth-first traversal of D(G) (Fig. 3b). Consider a node v E Tr. Let Tv
denote the maximal subtree of Tr rooted at v. Each node in Tv corresponds to a
triangle in G. Let G(v) denote a subgraph of G consisting of vertices and edges in the
triangles corresponding to nodes in Tv. Let us define the natural relation of inclusion
between triangles of a plane embedding: a triangle u is included in a triangle v if at
least one of u’s vertices is strictly inside the region bordered by v. We partition the
children of v into the following three subsets:

In(v): nodes with the corresponding triangles included in v,

580 A. PROSKUROWSKI, M. M. SYSLO, AND P. WINTER

FIG. 1. G and its associated graph D(G).

Out(v): nodes with the corresponding triangles not related to v,
Coy(v): nodes with the corresponding triangles including v.

These nodes belong to at most two maximal cliques of D(G) that also contain
v. If v r, then these nodes belong to just one clique. Further partition the nodes
in In(v) into In (v) and In2(v) depending on to which of the two maximal cliques
they belong. Let Outl(v) and Out2(v) (respectively, Cove(v) and Cov2(v)) be a
similar partition of Out(v) (respectively, Cov(v)). Order the nodes in each of the sets
In(v), Out(v), Cove(v), In2(v), Out2(v), Cov2(v) according to the relationship of
the inclusion in the plane between the corresponding triangles of G (the triangle that
includes all the others first). From now on we will treat these sets as ordered lists
and II will denote their concatenation; the equality will take under consideration the
order of elements.

Note that either Covl(v) 0 or Cov2(v) due to the fact that Gp is planar.
In fact, the planarity of Gp forces the set of nodes U {u E D(G)lVov(u) } to
be on a single directed path in Tr. Let v be a node of D(G) with Cov(v) 7 that is
farthest away from the root r. Assume that Coy1 (v) and Cov2(v) 7 and let z
denote the first node in Cov2(v) (Fig. 2a). Consider the plane embedding (Fig. 2b)
where

the triangle zl is drawn outside of v (i.e., zl is removed from Cov2(v) and
added in front of Out2(v)),
triangles corresponding to nodes in Outl(z) and Out2(zl) are drawn inside
z in the same order (i.e., Out (z) and Out2(zl) become In (Zl) and In2(z),
respectively),
triangles corresponding to nodes in In (zl) and In2(z) are drawn outside z
in the same order (i.e., In (Zl) and In2(zl) become Out (zl) and Out2(zl),

PLANE EMBEDDINGS OF BICONNECTED PARTIAL 2-TREES 581

(a)

(b)

FIG. 2. Identical plane embeddings.

respectively).
Although the two drawings are different, they represent the same plane embed-

ding. Since the above transformation can be applied repeatedly, we shall henceforth
assume that U (or, equivalently, Covl (v) and Cov2(v) for all v E Tr).

The tree Tr together with the ordered partitions Inl (v), Out (v), In2(v), Out2(v)
for every node v in Tr other than r will be called an in-graph of T rooted at r

(Fig. 3c). It will be denoted by T. The root r will have all children in one partition
(), Ot().

LEMMA 2.3. Every plane embedding Gv of a full 2-tree G can be represented by

an in-graph T, where r is a pendant node in D(G).
Proof. The proof follows immediately from the above discussion. D
When drawing in-graphs as in Fig. 3c, we will use open (respectively, bold) circles

to indicate nodes of Out-subsets (respectively,/n-subsets). The order in the subsets
will be indicated by directed dashed paths.

LEMMA 2.4. Every in-graph Tr of G defines a unique plane embedding Gp
of G.

Proof. The embedding associated with Tr is obtained in the following manner
(Fig. 4):

582 A. PROSKUROWSKI, M. M. SYSLO, AND P. WINTER

(a) (b)

FIG. 3. D(G), its breadth-first tree Tr, and an in-graph Tr.

(a)

FIG. 4. T and the corresponding embedding Gp.

Draw the triangle r.

Traverse the nodes of Tr in any parent-first order. When leaving a node
v, draw in the nested fashion triangles corresponding to Inl (v) and In2(v)
(respectively, Out1 (v) and Out2(v))inside (respectively, outside) the triangle
v. The ordering of triangles is given by the directed paths (first node corre-
sponding to the outermost triangle). It is always possible to place triangles
without violating the planarity of the already embedded subgraph. Note that

PLANE EMBEDDINGS OF BICONNECTED PARTIAL 2-TREES 583

triangles drawn when traversing In, (v) and In2(v) (and their successors) will
all be inside v. The unique face inside v that contains all three vertices on
its boundary will be considered as the one corresponding to v. El

Let r be a pendant node of a pendant clique in D(G). Let Tr be an in-graph
rooted at r. Let us define a transformation of Gp(v) called, informally, "turning
inside-out" of Gp at v that swaps the In and Out subsets while preserving the order
of their elements.

More formally, for a vertex v of Tr,

For v r, the subscripts are immaterial. Define the in-graph $(T) obtained

from Tr by turning G inside-out at r.

LEMMA 2.5. Two distinct in-graphs, Tr and T, both rooted at the same pendant

node r in D(G), represent the same plane embedding of G if and only if $(T) =T’.
Proof. It can esily be verified that if $(T) =T, then the respective plane

embeddings are identicM.
Let In and Out be ssociated with T, and let In and Out be associated

with T’. For the implication in the other direction, note that if In (v) In (v),
Outl(v) Out(v), In2(v) In(v), Out2(v) Out(v) for M1 nonroot nodes

v T; then there is nothing to prove. Therefore, let v be node of T with t
least one of the equMities violated. Assume that v is selected such that for
nodes on the path between v and the root r, the above equMities are stisfied. Let
v {a, b, c} be the triangle in G corrponding to the node v. Assume with-
out loss of generMity (w.l.o.g.) that Inl(v) # In (v) or Otl () Ot(). Let
In(v) {x,x2,...,xk}, In(v) {x,x,...,x,}, Out(v) {Y,Y2,...,Yt}, and
Out (v) {y, y, y, }. Let u {a, bu, c} be the triangle in G corresponding to
node u e In(v)]Out(v) In(v)[]Out(v). Assume w.l.o.g, that a a and

c c for all u e Inl(v)[Out (v).
Assume that k 1 and consider the face corresponding to xk in the plane em-

bedding given by Tr. This face contMns no vertices b, u Inl(v)[[Outl(v) {xk}.
Neither does it contain b. Since T represents the same embedding, x is either x,
or y,. By a similar argument, if 1, then yt is either y, or x,.

Assume that k 2 and let xi, Xi+l (1 < k) be a pair of consecutive nodes
in Inl (v). Hence, the plane embedding must have a face with both b and b+ on
its boundary. Consequently, xi and Xi+l must appear next to each other in either
In(v) or Out,(v). Similar arguments apply if/ 2 and y, yy+l (j 1) is a pair of
consecutive nodes in Outl (v).

It follows from the above arguments that either
I, (v) In (v), Outl (v) Out (v)"or

Assume that v is not the root nd In (v) Out (v) and Out (v) In. Assume
that In (v) # O. Since x is in front of In (v), no face with b on its boundary can
contMn vertex not in G(v). But Xl is Mso in front of Out (v) implying that at least
one fce with b on its boundary must contain vertex outside G(v), a contradiction.
If Inl (v) 0 then Outl (v) # 0 leads to similar contradiction.

584 A. PROSKUROWSKI, M. M. SYSLO, AND P. WINTER

3. Counting plane embeddings.

3.1. Plane embeddings of 2-trees. A frame in a 2-tree H is a maximal (with
respect to subgraph inclusion) outerplanar subgraph of H that does not contain any
strongly interior edge as an interior edge. Any frame is also a mop. Strongly interior
edges of a 2-tree partition it into frames (if one allows multiple copies of those edges).

We will first prove that a biconnected partial 2-tree has the same plane embed-
dings as any full 2-tree that imbeds it (modulo embeddings of its frames). Since the
frames are outerplanar and the plane embeddings problem for outerplanar graphs has
been solved [11], solving the problem for full 2-trees will imply the solution for partial
2-trees.

LEMMA 3.1. A biconnected partial 2-tree G contains all exterior edges of any full
2-tree imbedding with the same set of vertices.

Proof. Removal of an exterior edge from a 2-tree introduces an articulation point.
If there were an imbedding H of G missing an exterior edge, it would separable and
so would any partial graph of H. This contradicts the biconnectivity of G.

Strongly interior edges of a 2-tree H partition H into maximal outerplanar com-
ponents (frames) in the following sense: in every nonouterplanar 2-tree, there is a
terminal strongly interior edge, say, e (a, b). Add the outerplanar graphs G (con-
nected components C of H-{a, b} augmented by {a, b} and the adjacent edges) to
the set of frames and remove the corresponding components C to obtain a 2-tree H.
Repeat the operation until only one edge remains.

LEMMA 3.2. Any 2-tre.e imbedding H of a biconnected partial 2-tree G contains
the same set of strongly interior edges.

Proof. The lemma follows from the uniqueness of the set of exterior edges (see
Lemma 3.1). If (a,b) is a strongly interior edge in an imbedding H of G, then
the removal of {a,b} disconnects G into more than two components. Since H-
{a, b} consists of at least three connected components, G contains three disjoint paths
between a and b. A 2-tree imbedding of G in which any two of the three paths are
connected by a path not using a or b would have a subgraph homeomorphic to K4.
This would contradict the absence of such a subgraph in partial (and thus also in full)
2-trees. Thus, {a, b} is a separator in any 2-tree imbedding of G.

3.2. Counting plane embeddings of 2-trees. Using the tree representation,
it is a rather straightforward task to count all plane embeddings of 2-trees. Let
v denote a node of an in-graph Tr of a 2-tree G, v :/- r. Let Inl(v)llOutl(v
{xl, x2,..., xkv } (kv >_ 0) and In2(v)llOut2(v {y, y2,..., ytv } (lv _> 0). There are

k! permutations of In(v)llOut(v). Each permutation can be split in kv + 1 ways
such that the first elements, 0 <_ i _< k, belong to Inl(v) while the remaining kv-
elements belong to Outl(v). It follows immediately from Lemma 2.4 that the number
of plane embeddings of G is

1
7r(G) -nve(lv + 1)!(kv + 1)!.

The coefficient 1/2 is due to the fact that plane embeddings obtained by turning inside-
out In(r) and Out(r) subsets at the root r are identical.

3.3. Counting plane embeddings of partial 2-trees. For a planar graph G,
let 7r(G) be the number of plane embeddings (i.e., embeddings with different sets of
boundary cycles). Let r’(G) be the number of plane embeddings of G when the outer
face containing a specified edge is distinguished. (It is easy to see that this number is

PLANE EMBEDDINGS OF BICONNECTED PARTIAL 2-TREES 585

independent of the particular edge chosen. When the graph G has at least two faces,
then 7t(G) 2r(G) since every edge is in exactly two faces.)

LEMMA 3.3. Let e (a, b) be an interior edge of a 2-tree H with components
Ci of H {a, b}. Let Hi H (j#i Cj. Then

l<i<l

Proof. We will use the idea of permuting the components Hi to produce all
embeddings of H while avoiding duplication by omitting embeddings related in a
manner similar to the mapping of the preceding subsection. The proof will follow
by induction on l:

(i) 2. Assume that H is drawn with a vertical edge e separating C1 on the
left of e from C2 on the right of e and consider given embeddings of H1 and H2. The
same embedding of H can be found among plane drawings of H with both C and
C2 on one side of e. On the other hand, every embedding of H and H with the
distinguished outer side of e multiplicatively contributes a new set of boundary cycles.

/’ H ’(H).Thus, 7r(H)= 7r’(H). 7r’(H2)= .
(ii) > 2. Let x be an end vertex of e. For each Hi, choose an arbitrary edge

ei incident with x. An embedding of H is uniquely given by the position of e in the
ordering of ei round x nd the given embeddings of the Hi’s (1 <_ < l) fixing the

rt(Hi) each embedding of(1"outer side" of e. Assuming 7r(H Cz)
Ht contributes multiplicatively to the number of different sets of boundary cycles and
the above observation proves the desired formula, since there are possible positions
for e.

Note that the outerplanar case (with the embedding count given in [11] as r(H)
2I-2, where f > 1 is the number of interior faces in H) is a simple corollary of Lemma
3.3, since every separating edge of an outerplanar graph gives 2 and the absence of
such an edge gives the base case of r(H) 1. Since all mops of a given size have the
same number of interior faces, the number of plane embeddings of a mop is completely
determined by its size.

LEMMA 3.4. Given a biconnected partial 2-tree G, the number ofplane embcddings
is the same for every 2-tree H imbedding G.

Proof. By Lemma 2.3, any two 2-tree imbeddings of G differ at most on some
subset of weakly interior edges. Yet, the sizes of the corresponding frames are identical.
Since the frames of a 2-tree are maximal outerplanar, it follows by Lemma 3.3 that
the number of plane embeddings of H is determined by the size of frames of H and
their interactions through strongly interior edges of H. These are identical for all
imbeddings of G.

From these lemmas follows immediately a formula counting the number of plane
embeddings for a partial 2-tree with minimal separators that induce edges.

THEOREM 3.5. Let {a, b} be a separator of a biconnected partial 2-tree G with
components Ci of G {a, b}. Let Gi G j#i Cy. Then

(i) if (a,b) is an edge of G, then 7r(G) 1/21! 1-I<i<z
(ii) otherwise, 7r(G) 1/2(1 1)!]-I<i<z
Proof. Since the proof of (i) is almost identical with the proof of Lemma 3.3, we

omit it.
In (ii), if 2, then either G is outerplanar or one can find a strongly interior

edge as in (i). Let {a, b} be a minimal separator of G not inducing an edge. Since

586 A. PROSKUROWSKI, M. M. SYSLO, AND P. WINTER

we assume that the number of connected components of G {a, b} is at least 3, (a, b)
is an edge in any 2-tree imbedding H of G. We notice that in this case, the _> 3
components can be "permuted" in 1/2(1- 1)! ways. Each subgraph G of G will be
defined as G-jCj augmented by the edge (a, b). (In the previous case of the
separator inducing an edge, the edge e (a, b) acts as an extra component.) []

4. Perfect FIVC for full 2-trees. Let G (V, E) be a biconnected planar
graph. A subset S of vertices is called a perfect face-independent vertex cover (or
perfect FIVC, for short) of G if there exists a plane embedding Gp of G in which every
face has exactly one vertex in S. A set W of cycles of a graph H is called a perfect
vertex-independent face cover (or perfect VIFC for short) if there is a plane embedding
Hp of H such that W is a subset of boundary cycles of faces and every vertex of H
is in exactly one cycle of W. A perfect VIFC in this plane embedding of H is simply
a 2-factor of H which consists of facial cycles. In the geometric dual G of Gp, a
perfect FIVC of G corresponds to a set of faces of G which is a perfect VIFC of the
vertices of G. The problems of the existence of perfect FIVCs and perfect VIFCs are
NP-complete in general; see [3, 2]. When restricted to outerplanar graphs, both the
existence problem and the problem, of finding a perfect FIVC are solvable in linear
time; see [10].

In this section, we describe a polynomial time algorithm that, given a full 2-tree
G, finds a plane embedding (p of G that admits a perfect FIVC or decides that
no such embedding exists. In fact, the algorithm finds a plane embedding with a
minimum cardinality perfect FIVC if a perfect FIVC exists. The algorithm follows an
approach similar to that of [10]. It processes in a bottom-up manner the breadth-first
search tree Tr of the associated graph D(G).

If Tr consists of the root r alone, the problem is trivial. In the following, we
assume that Tr contains at least two nodes. Let v E T, v r. Recall that Tv is
the maximal subtree of Tr rooted at v and G(v) is the corresponding subgraph of G.
Consider the edge (u, v) of Tr entering v ((u, v)

_
Tv). Assume that the corresponding

edge in G (and in G(v)) is (av, by). Define the following minimum cardinality covers
among all plane embeddings of G(v).

I(v) face-independent vertex cover of all but the exterior face.
B(v) face-independent vertex cover of all but the face corresponding to v
and the exterior face.
F(v) face-independent vertex cover of all but the face corresponding to v.
L(v) face-independent vertex cover of all faces with the face corresponding
to v and the exterior face covered by av.
R(v) face-independent vertex cover of all faces with the face corresponding
to v and the exterior face covered by by.
E(v) face-independent vertex cover of all faces using neither av nor by.

Initially, for each pendant node v {av, by, c} of Tr, v r, where (a, b) is a
common edge with another triangle, we let the corresponding covers be (see Fig. 5)
the following:

I(v) undefined; it is impossible to cover the face corresponding to v without
covering the exterior face.

O.
F(v) undefined; it is impossible to cover the exterior face without covering
the face corresponding to v.
L(v)= {av}.

PLANE EMBEDDINGS OF BICONNECTED PARTIAL 2-TREES 587

FIG. 5. Existing covers of G(v); v is a pendant node in Tr.

v(a)
c

FIG. 6. Two different plane embeddings of G(v) admitting the same I(v).

E(v)= {cv}.
Any node for which the above six covers have been determined is said to be

labeled. Hence, all pendant nodes of Tr other than r are initially the only labeled
nodes. Assume that an unlabeled node v is chosen such that all its children in Tr are
labeled. In the remainder of this section, we explain how to determine the six covers
for v. Let Inl(v)llOutl(v {x,x2,...,xk} and In2(v)ilOut2(v {Y,Y2,...,Yl}
denote the children of v in Tv.

4.1. FIVC for all but the exterior face (I(v)). Suppose that I(v) exists.
Let In (v), Out (v), In2(v), Out2(v) denote the ordered partition of children of v such
that the corresponding embedding of G(v) admits this I(v). Either In(v) or
In2(v) = ; otherwise, it would be impossible to cover the face corresponding to
v by I(v). Suppose that the face corresponding to v is covered by a vertex from
the triangle corresponding to a node in Tv, v E In2(v). Assume that In(v)
(Fig. 6a). The first node in In (v) is a root of a subtree of Tv. None of the vertices
of triangles corresponding to nodes in this subtree can cover the face corresponding
to v; otherwise, this face would be covered twice. Consider the plane embedding
of G(v) obtained by adding In(v) to the end of Out(v), i.e., the embedding with

Out (v) Out(v)llInl(v) and In(v) @. I(v) is still an FIVC of G(v) for all but
the exterior face (Fig. 6b).

We can therefore first assume that In(v) and search for the minimum
cardinality I(v) (or decide that it does not exist) among such embeddings of G.
Then, the minimum cardinality I2(v) for embeddings of G with In2(v) is found

588 A. PROSKUROWSKI, M. M. SYSLO, AND P. WINTER

or it is decided that it does not exist. The smallest of these two is the desired I(v).
If none of them exists, then neither does I(v).

FIG. 7. Two different plane embeddings of G(v) admitting the same I(v).

Our analysis will determine feasible covering sequences, i.e., sets of vertex covers
of Tx, for every child x of v. Let us assume w.l.o.g, that Inl(v) . Assume
that Out2(v) (Fig. 7a). Consider the embedding of G(v) obtained by adding
Out2(v) to the end of In2(v), i.e., the embedding with In2(v) In2(v)llOut2(v) and
Out2(v) . I(v) is still an FIVC of G(v) for all but the exterior face (Fig. 75).
Hence, when looking for the minimum cardinality I(v) with In(v) , we can
assume that Out2(v) .

Suppose therefore that In(v) Out2(v) 0. Let Outl(v) {x,x2, ...,xk} and
In2(v) {Y,Y2,...,Yt} with the indicated orders admitting I(v). Then G(x) must
be covered by either I(xl) or B(x); otherwise, the exterior face would be covered. If
G(x) is covered by I(x), then G(x2) must be covered by either I(x2) or B(x). If
G(x) is covered by B(xl), then G(x2) must be covered by either F(x2) or E(x2). If
G(x2) is covered by F(x2), then G(x3) must be covered by either F(x3) or E(x3). If
G(x2) is covered by E(x2), then G(x3) must be covered by either I(x3) or B(x3). Note
that G(xk) must be covered by either I(xk) or E(xk). Hence, the covering sequence
of Out1 (v) {x, x2, ...,Xk} must be formed as a path in the forest shown in Fig. 8a
with leaves being either I(x) or E(xk).

Suppose that I(x) (3 _< _< k) is preceded by E(x_) (Fig. 9a with 3). Then
we can place x in front of Out1 (v) without affecting I(v). Hence, we can assume that
all I(x) covers occur only in the beginning of the sequence Out (v) (Fig. 9b).

By turning Gp(Z) inside-out at every child z of x, the cover I(x) becomes F(x)
(and vice versa). Consequently, we can assume that no x (2 _< < k- 1) is covered
by F(x). Otherwise, we could place x in front of Out(v) and cover it by I(x)
(Fig. 10 with 3).

It follows that at least one optimal covering sequence of Outl (v) in I(v) is a path
in the pruned forest shown in Fig. 8b with leaves being either I(xk) or E(xk).

Given these restrictions, we can now determine the optimal covering sequence of
Outl(V) in I(v), provided that one exists.

Consider a complete undirected graph K with Xl,X2, ...,xk as its vertices. With
every edge (x,xj), associate the cost

min{IZ(x)l + II(xj)l, IB(x)l + IE(xy)l, IE(x)l + I/(xy)l}.

PLANE EMBEDDINGS OF BICONNECTED PARTIAL 2-TREES 589

/ I (x_3) ::

I (x_l)<
I (X_2)... B(x_3)

.....-- F (x_3)
B(x_2)<

E (x_3)

F (x 3)
F(X 2)/’.’--

E (x_3)
B (x_l)

I (x_3)
E (x_2)+.... B (x_3)

I (x 3)
I(x 2)(
"B (x_3)

I (x_l),.
B (x_2),......... E (x_3)

B (x_l),
E (x_2)

B (x_3)

(a) (b)

FIG. S. Covering sequences of Out1 (v) {Xl, x2, xk } for I(v).

; vav
bv by

+"’’7 i.. ...

()

FIG. 9. Equivalent covering sequences of Out1 (v) in I(v).

by bv

c

FIG. 10. Equivalent covering sequences of Outl(v) in I(v).

590 A. PROSKUROWSKI, M. M. SYSLO, AND P. WINTER

For undefined covers, their cardinality is defined to be oc. This cost gives the minimum
cardinality of partial FIVCs of Tx and Txj that are compatible if xi and xj were to
be placed consecutively in a plane embedding of G.

Suppose first that k is even. Solve the minimum cost perfect matching problem
on K. End vertices of edges in this matching with costs determined by the first
minimization term are placed in front of Outl(v) in any order. The remaining end
vertices are then placed pairwise. The order within each such pair (xi, xj) depends on
whether the edge cost was determined by the second minimization term (xi precedes
xj) or by the third minimization term (x precedes xi).

If k is odd, at least one of the subgraphs G(xm) (1 _< rn _< k) must be covered by
I(Xm). For each choice of Xm, we need to solve the minimum cost perfect matching
problem Mm on the complete subgraph of K induced by Outl (v) \ {x,}. Select the
matching Mm such that its cost together with II(xm)l is minimized. Place this Xm in
front of Outl(v). The remaining nodes of Outl(v) are ordered as in the case k even.

Let us now look at how to cover In.(v). G(yl) must be covered by either F(yl)
or E(y). If G(y) is covered by F(y), then G(y2) must be covered by either F(y.)
or E(y). If G(y) is covered by E(yl), then G(y2) must be covered by either I(y2)
or B(y2). If G(y) is covered by I(y2), then G(ya) must be covered by either I(Ya) or
B(y3). If G(y2) is covered by B(y2), then G(y3) must be covered by either F(y3) or
E(y3). Note that G(yl) must be covered by either I(yl) or E(yt). Hence, the covering
sequence of y, y, yt must be a path in the forest shown in Fig. 11a with leaves
being either I(yt) or E(yt).

F (y_2)
.’’’’ F

E
F (y_l)<

E (Y--2)B
I(y 2)I

B

E(y--I)B(y 2)F’’E

(y_3

(y_3

(y_3)

(y_3) ::""

(y_3)

(y_3)

(y_3)

F (y_2)....-.-- F (y_3)
F (y_l)< E (y_3)

E (y_2) B (y_3)

E (y_l

’B(y_2)
E (y_3)

(a) (b)

FIG. 11. Covering sequences of In2(v) {yl,y2,...,yz} for I(v).

Suppose that F(y) (3 < < l- 1) is preceded by B(y_) (Fig. 12a with
3). Then we can place F(yi) in front of In2(v) without affecting I(v). Hence, we
can assume that F(x) occurs only in the beginning of the covering sequence In2(v)
(Fig. 125).

As already mentioned, by turning I(y) inside-out, we obtain F(y) (and vice
versa). Consequently, we can assume that no y (3 < i <_ l- 1) is covered by I(yi). If
it were, we could place y in front of In2(v) and cover it by F(y) (Fig. 13 with i 3).

It follows that at least one optimal covering sequence of In2(v) in I(v) is a path
in the pruned tree shown in Fig. llb with leaves being E(xl).

Given these restrictions, we can now determine the optimal covering sequence of
In2(v) in I(v), provided that one exists.

Consider a complete undirected graph K with yl,y2, ...,yt as its vertices. With

PLANE EMBEDDINGS OF BICONNECTED PARTIAL 2-TREES 591

FI(. 12. Equivalent covering sequences of In2(v) in I(v).

b v

FIG. 13. Equivalent covering sequences of In2(v) in I(v).

every edge (y, yj) of K we associate the cost

min{IF(y)l +]F(yj)I, IB(y)I + IE(yj)], IE(y)] + IB(yj)I}.

Suppose first that is even. Then there is a pair of nodes y,, Yn (1 _< m <
n <: l) which have covers F(ym), E(yn). For each choice of the pair Ym, Yn, solve
the minimum cost perfect matching problem M,n on the complete subgraph of K
induced by In2(v) \ {Ym, Yn}. Select the matching Mmn such that its cost together
with min{IF(y,)l + IE(yn)[, IE(ym)l +]F(yn)l} is minimized. End vertices of edges in
Mm, with their costs determined by the first minimization term (IF(y)l+]F(yj)]) are
placed in front of In2(v) (in any order). If IF(ym)l+lE(yn)l < IE(ym)l+lF(yn)l, then

Ym is placed in In2(v), followed by Yn. If this is not the case, then Yn is followed by
Ym. The remaining end vertices of edges in Mmn are then placed pairwise. The order
within each pair depends on whether the edge cost was determined by the second
minimization term (y precedes yj) or by the third minimization term (yj precedes
Yi).

592 A. PROSKUROWSKI, M. M. SYSLO, AND P. WINTER

FIG. 14. Equivalent covering sequences of Inl(v) and Out(v) in B(v).

Suppose now that is odd. At least one of the subgraphs G(ym) (1 _< rn _< l)
must be covered by E(ym). For each choice of Ym, we need to solve the minimum
cost perfect matching problem Mm on the subgraph of K induced by In2(v) \ {Ym}.
Select the matching Mm such that its cost together with IE(ym)l is minimized. End
vertices of edges in Mm with their cost determined by the first minimization term are
placed in front of In2(v), followed by Ym. The remaining end vertices of edges in Mm
are then placed pairwise. The order within each pair depends on whether the edge
cost was determined by the second minimization term (y precedes yj or by the third
minimization term (yj precedes y).

4.2. FIVC for all but the face corresponding to v and to the exte-
rior face (B(v)). We employ an argument similar to that of the preceding section.
Suppose that B(v) exists. Let Inl(v), Out(v),In2(v), Out2(v denote the ordered
partition of children of v such that the corresponding embedding of G(v) admits this
B(v). We can assume that Inl(v) In2(v) . Suppose, to the contrary, that
In(v) (Fig.. 14a). Consider the embedding of G(v) obtained by adding In (v)
at the front of Out (v); i.e., Out (v) In (v)l]Outl (v) and In (v) O. B(v) is still
an FIVC of G(v) covering all faces except for the face corresponding to v and to the
exterior face (Fig. 14b).

Suppose therefore that In1 (v) In2(v) . The order of nodes within Outl (v)
and Out2(v) and the corresponding covering sequences can be determined in the same
manner as the order and covering sequence of Outl (v) for I(v) (Fig. 8).

4.3. FIVC for all but the face corresponding to v (F(v)). Suppose that
F(v) exists. Let In (v), Out (v), In2(v), Out2(v) denote the ordered partition of chil-
dren of v such that the corresponding embedding of G(v) admits a minimum cardi-
nality F(v). We can then assume that In (v) In2(v) . If this is not the case, we
can consider the embedding with In (v) , Out (v) Out (v)llIn (v), In2(v) ,
Out2(v) Out2(v)llIn2(v (see Fig. 6). F(v) is still an FIVC of G(v) for all but the
face corresponding to v.

Suppose therefore that In (v) In2(v) . The exterior face is covered either
by the covering sequence of OUtl(v) or by the covering sequence of Out2(v). The
minimum sum of the corresponding cover cardinalities determines the desired FIVC
as follows.

Assume that the exterior face is covered by a covering sequence of Out (v). This

PLANE EMBEDDINGS OF BICONNECTED PARTIAL 2-TREES 593

covering sequence of Out1 (v) must be the same as the covering sequence of In2(v) for
I(v) (Fig. 11). The covering sequence of Out2(v) must be the same as the covering
sequence of Outl (v) for I(v) (Fig. 8).

Assume that the exterior face is covered by the covering sequence of Out2(v). The
covering sequence of Out (v) must be the same as the covering sequence of Out (v)
for I(v) (Fig. 8). The covering sequence of Out2(v) must be the same as the covering
sequence of In2(v) for I(v) (Fig. 11).

4.4. FIVC for all faces using av (L(v)). Suppose that L(v)exists. Let
In(v), Out(v),In2(v), Out2(v) denote the ordered partition of children of v such
that the corresponding embedding of G(v) admits this L(v).

The assumption that Inl (v) , In2(v) q} can easily be verified. The covering
sequence of Out (v) must be L(x), L(x2), ..., L(xk). The covering sequence of Out2(v)
can be determined in the same manner as the covering sequence of In2(v) for I(v)
(see Fig. 11).

4.5. FIVC for all faces using by (R(v)). Suppose that R(v) exists. Let
In(v), Out(v),In2(v), Out2(v) denote the ordered partition of children of v such
that the corresponding embedding of G(v) admits this R(v).

The assumption that Inl (v) , In2(v) q) can easily be verified. The cover-
ing sequence of Out2(v) must be R(x),R(x2),...,R(xk). The covering sequence of
Out (v) can be determined in the same manner as the covering sequence of In2(v)
for I(v) (see Fig. 11).

4.6. FIVC for all faces using neither av nor by (E(v)). Suppose that E(v)
exists. Let In (v), Out (v), In2(v), Out2(v) denote the ordered partition of children
of v such that the corresponding embedding of G(v) admits this E(v).

Suppose first that the exterior face and the face corresponding to v are cov-
ered by cv. We can then assume that In(v) In2(v) q). Let Outl(v)
{Xl,X2,...,Xk} and Out2(v) {y,Y2,...,Yt}. The covering sequence of Out(v)
must be R(x),R(x2),...,R(xk). Similarly, the covering sequence of Out2(v) must
be n(y L(y2), n(yt).

Assume now that cv is not in E(v). if Inl (v)llOut (v) and In2(v)llOut2(v, then E(v) does not exist. Otherwise, we need to distinguish between the following
cases:

The exterior face is covered by a covering sequence of Ou.t (v), and the face
corresponding to v is covered by a covering sequence of In2(v). We can assume
that Out2(v) In (v) . Covering sequences of Out (v) and In2(v) must
be the same as the covering sequence of In2(v) for I(v) (Fig. 11).
The exterior face is covered by a covering sequence of Out2(v), and the face
corresponding to v is covered by a covering sequence of Inl (v). This case is
analogous to the previous case.
The exterior face is covered by a covering sequence of Out (v), and the face
corresponding to v is covered by a covering sequence of In (v). Then we can
assume that In2(v) J. Let Out2(v) {y, Y2, ..., Y }. The covering sequence
of Out2(v) must be the same as the covering sequence of Out,(v) for I(v).
Let Inl (v) {x, x2, Xp} and Out (v) {Xp_t.1, Xp+2, ..., Xk}, 1

__
p < k.

If p 1 then G(x) is covered by E(x). Suppose that p > 1. G(zl) must
be covered by either F(x) or by E(x); otherwise, the face corresponding
to v in the embedding of G(v) would be uncovered. Suppose that G(x) is
covered by E(x) (Fig. 1ha). Then G(x2) must be covered by either I(x2) or

594 A. PROSKUROWSKI, M. M. SYSLO, AND P. WINTER

u

avav
by

’
b

(a) (hi

FIG. 15. Equivalent covering sequences of Inl(v) and Out,(v) in E(v).

u

a b v

(a)

FIG. 16. Equivalent covering sequences of In (v) and Ou (v) in E(v).

B(x2). Let Out (v) Outl()ll{x, xa, x} and In (v) {Xl}. E(v) is
still an FIVC for all faces (Fig. 15b).
Suppose that G(xl) is covered by F(x) (Fig. 16a). Then G(x2) must be
covered by either F(x2) or E(x2). Let Out (v) {x}llOut (v) and In (v)
{x2,x3,...,Xp}. E(v) is still an FIVC for all faces (Fig. 16b). Hence, the
cardinality of In (v) has been reduced by one. Either Iinl (v)l- 1 or one of
the above two cases is applicable.
For each choice of a node x in In1 (v)llOut (v) as x (the only node in In (v)),
we find the covering sequence of nodes in Out (v). It can be determined in
the same manner as the covering sequence of In2(v) for I(v) (see Fig. 11).
We select the covering sequence whose cardinality together with IE(x)[is the
smallest.
The exterior face is covered by a covering sequence of Out2(v), and the face
corresponding to v is covered by a covering sequence of In2(v). This case is
analogous to the previous case.

PLANE EMBEDDINGS OF BICONNECTED PARTIAL 2-TREES 595

The smallest among the above five covers is the desired E(v).
4.7. Final FIVC determination. Suppose that I(r), B(r), F(r), L(r), R(r),

E(r) have been determined for the root node r. Then the minimum cardinality perfect
FIVC for G is the smallest of the covers L(r), R(r), E(r).

5. Covering faces of partial 2-trees. The FIVC problem for a plane embed-
ding of partial 2-trees is solvable in an almost identical manner to that of 2-trees.
Given a partial 2-tree H, one has to produce an imbedding in a 2-tree G and then
process G as for full 2-trees, with small modifications. To avoid repetition, we only
will give the basic case of covering the subgraph G(v) for some node v of the in-graph
of G, by I(v), i.e., a set of vertices covering all faces of G(v) except for the exterior
one. We will refer to the analysis of 4.1.

Let us assume that triangles corresponding to the children xl,..., xk of v in T(G)
(constituting, w.l.o.g., Out(v)) have as the common base an added edge,
which is in G but not in H and that triangles corresponding to children y,..., yt

of v (constituting In2(v)llOut2(v)) have as the common base the other edge of the
triangle v of G, (by, cv), which is also in H. We will consider two cases of constructing
an I(v) FIVC, depending on the manner in which the interior face corresponding to
v is covered.

Suppose first that the interior face corresponding to v is covered by a vertex
from G(xk). Then the analysis of the covering sequence of Out (v) is the same as
in the (full) 2-tree case for I(v). By considering the result of setting Out2(v)
Out2(v)llln2(v) (see Fig. 6), we can assume that In2(v) q. Thus, the analysis of
the covering sequence of Out(v) is the same as for Out (v) in the 2-tree case.

Suppose next that the interior face corresponding to v is covered by a vertex from
G(y). We can then assume that Out2(v) 0, setting In2(v) to In2(v)llOut2(v (see
Fig. 7). The covering sequence of In2(v) must be the same as the covering sequence
of In2(v) in the (full) 2-tree case. The covering sequence of Out(v) is almost the
same as in the I(v) covering of 2-trees. The only difference is that it must end in
either B(xk) or F(xk). Since every F(x) can be replaced by I(xi) and placed in front
of the sequence, we can assume that the sequence ends in B(xk). In the remainder of
this section, we discuss the analysis of the covering sequence of Out (v) in this case.

If k is even, then the feasible sequences are of the form

Zr(Xl),..., (Xi), B(Xi+l), E(xi+2), B(xi+3), E(xi+4), E(xk-1), B(xk),

where is odd.
To find the minimum cardinality FIVC we define a graph K as for the 2-tree case,

with similarly weighted edges. For each choice of two vertices Xm and Xn of K, we
find M,n, the minimum weight perfect matching for the subgraph of K induced by
the remaining vertices of K. We then select the solution that minimizes the sum of
the cost of Mmn and II(x,)l / IB(xn)l and construct the minimum cardinality FIVC
as in the 2-tree case (with Xm and xn as the vertices x, and x+l, respectively).

If k is odd, the feasible sequences are similar as above but the number of the
initial I covers is even. To find the minimum cardinality FIVC, one has to remove a
vertex x, of K, find the solution M, for the matching problem for the subgraph of
K induced by the remaining vertices, and then join with the removed vertex as
minimizing the sum of the cost of Mm and

The other five types of covers for partial 2-trees can be constructed in a similar
manner, based on the analyses of the full 2-tree cases.

596 A. PROSKUROWSKI, M. M. SYSLO, AND P. WINTER

REFERENCES

[1] S. ARNBORG AND A. PROSKUROWSKI, Linear time algorithms for NP-hard problems on graphs
embedded in k-trees, Discrete Appl. Math., 23 (1989), pp. 11-:24.

[2] M. FELLOWS, Personal communication, 1986.
[3] M. FELLOWS, F. HICKLING AND M. M. SYSLO, A topological parameterization and hard graphs

problems, Congr. Numer., 59 (1987), pp. 69-78.
[4] S. M. HEDETNIEMI, A. PROSKUROWSKI, AND M. M. SYSLO, Interior graphs of maximal outer-

plane graphs, J. Combin. Theory Ser. B, 38 (1985), pp. 156-167.
[5] S. MAC LANE, A structural characterization of planar combinatorial graphs, Duke Math. J., 3

(1937), pp. 460-472.
[6] A. PROSKUROWSKI, Separating subgraphs in k-trees: Cables and caterpillars, Discrete Math.,

49 (1984), pp. 275-285.
[7] D. ROSE, On simple characterization of k-trees, Discrete Math., 7 (1974), pp. 317-322.
[8] K. TAKAMIZAWA, W. NISHIZEKI, AND N. SAITO, Linear-time computability of combinatorial

problems on series-parallel graphs, J. Assoc. Comput. Mach., 29 (1982), pp. 623-641.
[9] M. M. SYSLO, Independent face and vertex covers in plane graphs, Banach Center Publ., 25

(1989), pp, 177-185.
[10] M. M. SYSLO AND P. WINTER, Independent covers in outerplanar graphs, R. Karlsson, A.

Lingas, eds., Lecture Notes in Computer Science 318, Springer-Verlag, Berlin, New York,
1988, pp, 242-254.

[11] In-trees and plane embeddings of outerplanar graphs, BIT, 30 (1990), pp. 83-90.
[12] J. WALD AND C. J. COLBOURN, Steiner trees, partial 2-trees, and minimum IFI networks,

Networks, 13 (1983), pp. 159-167.

SIAM J. DISCRETE MATH.
Vol. 9, No. 4, pp. 597-601, November 1996

1996 Society for Industrial and Applied Mathematics
OO6

ON THE TRELLIS COMPLEXITY OF THE DENSEST LATTICE
PACKINGS IN It(n*

IAN F. BLAKEt AND VAHID TAROKHt

Abstract. An inequality relating the trellis complexity of lattices to their dimension and Hermite
parameter is established. Using this inequality, a conjecture of Forney is proved indicating that the
trellis complexity of the densest lattice packings in R grows exponentially as a function of their
coding gain.

Key words, rational lattices, coding gain, trellis complexity

AMS subject classification. 94B12

1. Introduction. In two remarkable papers [2], [3], Forney observed that ev-
ery rational lattice has a finite trellis diagram which can be employed for maximum
likelihood decoding over the additive white Gaussian noise channel via the Viterbi
algorithm. He also conjectured [3] that the trellis complexity of the densest lattice
packings grows exponentially as a function of their coding gains. It is proved that
this is indeed the case.

To formalize his conjectures, consider the category/: of all lattices having finite
trellis diagrams. This category trivially contains all the rational lattices, and it is well
known that a lattice L of dimension n is in if and only if there exists a sublattice
of L of dimension n with a basis consisting of mutually orthogonal vectors.

For L E 2 of dimension n, let C(L) denote the category of all finite trellis diagrams
for L; then C(L) is nonempty. Let S and B, respectively, denote the minimum number
of states and branches of elements of C(L). Define $(L), the average state trellis
complexity of L, to be (S- 1)In and B(L), the average branch trellis complexity of
L, to be B/n [5].

For L E , let d(L) denote the minimum length of nonzero elements of L and
V(L) denote the fundamental volume of L [1]. For any lattice L, let i(L) d(L)2/
IV(L)] 2/’ denote the coding gain of L. The coding gain is also known as Hermite’s
parameter in the number theory literature.

For />_ 1, define the functions

T(7) inf{$(L) 5(L) >_ 7 and L e },
T2(7) inf{B(L) 5(L) _> 7 and L e },

which are referred to as the state trellis complexity and the branch trellis complexity
functions, respectively, [5].

Forney conjectured that q(Ln) grows at least exponentially in 7n, where Ln is
the densest (rational) lattice in dimension n and /n is the coding gain of Ln. He has
also conjectured that the complexity functions grow at least exponentially in [4].

Here an explicit lower bound relating the trellis complexity of a lattice L, its

gain, and its dimension is derived. This inequality will imply Forney’s conjecture for
any chain of densest lattices in n, as well as any chain of lattices with relatively

Received by the editors March 20, 1995; accepted for publication (in revised form) November
13, 1995. This research was supported in part by the National Sciences and Engineering Research
Council of Canada grant A7382.

Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, Ontario
N2L 3G1, Canada.

597

598 IAN F. BLAKE AND VAHID TAROKH

high effective coding gain per dimension, a parameter that will be defined. It should
be clear that a proof of the first conjecture gives supporting ground for the second
conjecture.

2. Preliminaries. Using the notation of Forney [3], let the normalized density
k’length profile (DLP) of an n-dimensional lattice L be the sequence (L) whose ith

component ki(L is the maximum normalized log density

k’ (L) log V(L) + (i/n)log V(L)

of any /-dimensional cross section L, 1 _< _< n, where log denotes the natural
logarithm function. The normalized inverse DLP of L is defined to be the sequence

’ (L) whose ith component (L) is the minimum log density -logY(Pi(L))+ (i/
n) log Y(L) of any/-dimensional projection P(L) of L.

The following lemmas are due to Forney.
LEMMA 2.1. For any lattice L and for any 1 <: _< n,

(1) n_i(L) (L)
LEMMA 2.2. For any lattice L of dimension n and for 1 _< <: n,

ki(L) <_ (i/2)log(i/5(L)),

where i is the coding gain of the densest lattice in dimension i. (’i is sometimes
referred to as "the Hermite’s constant in dimension i" in the number theory literature.)

If L is a lattice in , given an arbitrary trellis F for L, let s(F) denote a vector
whose ith component si(F), 0 <_ _< n is the number of states in level of F. The
following lemma is proved in [3].

LEMMA 2.3. For any lattice L E/: and any trellis diagram F for L,

(3) s(F) >_ exp(’ (L) k’ (L)).

The following result is from [1] and is a combination of the Minkowski-Hlawka
lower bound and the Kabatiansky-Levenshtein upper bound.

LEMMA 2.4. For n large, the coding gain ’n of the densest lattice packing in ltn

satisfies the inequality

(4) n/2re <_ n -- 1.744 n/2re.

3. The main results. The main results are presented by a sequence of lemmas.
LEMMA 3.1. Let L E . Let F be a trellis diagram for L. For any satisfying

1

_
<: n- 1, we have

si(F) + Sn-i(F) _> 2exp(-ki(L))exp(-kn_i(L)).

Proof. By Lemma 2 1 -k’ ’n_(L)-- (L) and -k(L) n_i(L). Using these
relations in Lemma 2.3 yields

(6) s(F) _> exp((L) k(L)) exp(-kn_(L k(L)),
(7) s_(r) >exp(_ n_(L) k_(L)) exp(-k(L) k’_(L)),

and the result follows by adding the inequalities. El

ON THE COMPLEXITY OF THE DENSEST PACKINGS 599

LEMMA 3.2. Given 0 < e < 0.2, there exists sufficiently large such that for any
L E of dimension n > l,

(8) S(L) > 2[M(L)]n/2
"1/2-

exp InHe(X) l
where M(L)= 2eh(L)/(1.744 n), and

(9) He (x) -x log x (1 x) log(1 x)

is the natural binary entropy function.
Proof. Given 0 < c < 0.2, we choose m such that (4) holds for all n _> m. Let

n >_ rn/c and j en. It follows immediately from (5) that

(0)
n n-j Ln/2J

E sy(F)>_ E sy(F)>_ 2 E exp(-ki(L))exp(-k’n-i(L))’
i--1 i--j i--j

where F is an arbitrary trellis of L.
It follows from (2) that

Ln/2J Ln/2J

E exp(-ki(L))exp(-kn-i(L)) >- E (5(L)/9/i)i/2(5(L)//n-i)(n-i)/2
i--j i--j

where /i is the maximum density of lattice packings in dimension i. By (4) and the
assumption on rn, it follows that / <_ i(1.744/2re) for all j _< <_ (n- j), and hence
the right side of (11) is

(12)
Ln/J

>- E (27eh(L)/1.744 i)i/2(27eh(L)/1.744 (n -i)) (n-i)
i=j

For any lattice L, define M(L) 2reh(L)/(1.744 dimL). Thus M(L) is a mea-
sure of comparison between the coding gain of L with that given by the upper bound
in (4) and is called the effective gain per dimension of L throughout this work. It now
follows from the above that

(13)
L/2J Lnl2J

E exp(-ki(L))exp(-kn-i(L)) >- [M(L)]n/2 E exp((n/2)He(i/n)).
i--j i--j

Clearly exp(nHe(x)/2) is an increasing positive function on (0, 0.5). Thus the
area given by the curve exp(nH(x)/2), lines y e, y [n/2J/n, and the x-axis is
less than that given by the left side of the inequality below; that is,

Ln/2J L/J

(l/n) E exp((n/2)He(i/n)) > exp(n(X))dx.
Since Ln/2J/n >_ 0.5- 1/2n >_ 0.5- e, it follows from the above inequality that

(14)
Ln/2j

f(I/n) E exp(-ki(L)- k’n_i(L)) >_ [M(L)]n/2
1/2-

exp (nHe(X) l

600 IAN F. BLAKE AND VAHID TAROKH

By (10) and (14),

s (r) + s (r) + + s (r) > exp dx,
n 2

where He(x) is given in (9). By taking the minimum of the left side over all the
possible trellis diagrams of L, it follows that

(16) S(L) >_ 2[M(L)]’/2
"1/2-

exp (nH(X))2

which gives the result.
COROLLARY 3.3. If {L, n 1, 2,...} is a chain of rational lattices such that

dimL n and liminfn {M(Ln)} > 0.5, then $(Ln) grows exponentially as a func-
tion of 5(Ln).

Proof. Let liminfn {M(Ln)}, and choose 0 and u such that 0.5 < 0 < u <
/. By the definition of lim inf, then there exists m such that n > m implies that
M(L) >_ u.

It is known that the entropy function He(x) is one-to-one and thus invertible on

(0, 0.5). Let max(H/i(log0), 0.3) and e (0.5-)/2; then 0 < e < 0.1.
By the previous theorem, there exists _> m sufficiently large such that for n > l,

the inequality (8) holds with L substituted for L. Since the function exp(nH(x)/2)
is increasing in the interval (0, 0.5), it follows that for 0.5 2e < x < 0.5 e,

(17) exp(nile(x))2 ->exp(nH(0"5 2e))2 ->exp(nHe())2 -> 0-/2

Since 0 < e < 0.1,

2[M(Ln)]/2 fe-}- nile(x) dx > 2[M(Ln)]n/2 exp dxexp
2 o.5-2 2

>_ 2[M(Ln)]n/eO-n/2 >_ 2e(p/O)n/2

for all n > 1. By (4) and (8), since 5(Ln) <_ /, the above implies that

(18) $(Ln)

_
(12/0)n/2

_
(l//O)reh(L’)/1"744.

Since u/0 > 1, the result follows.
COROLLARY 3.4. For n 1, 2, 3,..., let L, denote a rational lattice achieving

the maximum center density of lattice packings in dimension n. Let /, denote the
coding gain of L,. Then S(L,) grows at least exponentially as a function of

Remark. For an arbitrary dimension n, it is known that there exist rational
lattices achieving the maximum possible center density of lattice packings in dimension

Proof. By (4), it follows that M(Ln) >_ 1/1.744 > 0.573 for n sufficiently large
and thus liminfn{M(Ln)} >_ 0.573. Corollary 3.3 now gives the result.

4. Comments. Since B(L) >_ S(L) for an arbitrary lattice, it follows that
Corollary 3.3 is valid with B replacing S. It may seem from (8) that in terms of the
complexity of achieving a certain gain, lattices with lower effective gain per dimension
are more promising. However, Tarokh [5] proves that even lattices of low effective gain

ON THE COMPLEXITY OF THE DENSEST PACKINGS 601

per dimension are not good when considering the best trade-off between the coding
gain and trellis decoding complexity.

Acknowledgments. The authors thank G. D. Forney, B. M. Hochwald, and
C. L. Stewart for valuable comments and suggestions.

REFERENCES

[1] J. H. CONWAY AND N. J. A. SLOANE, Sphere Packings, Lattices and Groups, Springer-Verlag,
Berlin, New York, 1993.

[2] G. D. FORNEY, Coset codes-part II: Binary lattices and related codes, IEEE Trans. Inform.
Theory, 34 (1988), pp. 1152-1187.

[3] , Density/length profiles and trellis complexity of lattices, IEEE Trans. Inform. Theory,
40 (1995), pp. 1753-1772.

[4] , Private communication, 1995.
[5] V. TAROKH, Trellis Complexity Versus The Coding Gain of Lattice-Based Communication

Systems, Ph.D. thesis, The University of Waterloo, Waterloo, Ontario, Canada, 1995.
[6] M. A. TSFASMAN AND S. G. VLADUT, Algebraic-Geometric Codes, Kluwer Academic Publishers,

Norwell, MA, 1991.

SIAM J. DISCRETE MATH.
Vol. 9, No. 4, pp. 602-624, November 1996

() 1996 Society for Industrial and Applied Mathematics

OO7

THE GRAPHICAL ASYMMETRIC TRAVELING SALESMAN
POLYHEDRON: SYMMETRIC INEQUALITIES *

SUNIL CHOPRA AND GIOVANNI RINALDI :

Abstract. A present trend in the study of the symmetric traveling salesman polytope is to use,
as a relaxation of the polytope, the graphical traveling salesman polyhedron (GTSP). Following a

parallel approach for the asymmetric traveling salesman polytope, we define the graphical asymmetric
traveling salesman problem on a general digraph D and its associated polyhedron GATSP(D). We
give basic polyhedral results and lifting theorems for GATSP(D) and we give a general condition
for a facet-defining inequality for GTSP to yield a symmetric facet-defining inequality for GATSP.
Using this approach we show that all known major families of facet-defining inequalities of GTSP
define facets of GATSP. Finally, we discuss possible extension of these results to the asymmetric
traveling salesman polytope.

Key words, traveling salesman problem, directed graph, polyhedron, facet, linear inequality

AMS subject classifications. 05C35, 68E10

1. Introduction. Let D (V, A) be a directed graph. We denote by a

(u, v) the arc of A having tail u and head v. For every nonempty proper subset
W of V, we denote by 5+D(W) and 5D(W the sets of arcs defined by 5+D(W)
{(u, v) u E W, v W} and 5(W) {(u, v) v W, u W}, respectively. When W
is a singleton node {w}, we simply write 5D+(W) and 5D(w). Let IRA be the space of
all real vectors whose components are indexed by A. For x in IRA we denote by xa
(or x(u, v)) the component of x indexed by a (u, v); for J c_ A we denote by x(J)
the sum aej x.

A family of arcs of D is a collection F of elements of A. Several copies of the
same element of A may appear in the collection. For every element a of A, we call
multiplicity of a in F the number of times a appears in F. A set of arcs of A is a

family where every element has multiplicity 1. With every family F of arcs of D we
associate a unique incidence vector XF IRA by setting XF equal to the multiplicity
of a in F for every a A. Let F1 and F2 be two families of arcs of D. We denote by
F1 + F2, F1 F2, and kF the families having incidence vectors XF1 + XF2 XF1 XF2

and kXF respectively.
Let F be a family of arcs of D. By D[F] we denote the support digraph of F,

i.e., the subgraph obtained from D by removing the arcs not contained in F. By D[F]
we denote the directed multigraph obtained by replicating every arc a as many times
as the multiplicity of a in F.

Let G (V, W) be an undirected graph. We denote by e [u, v] the edge of E
with endpoints u and v, and for x IRE we denote by x (or x[u, v]) the component of
x indexed by e. For every nonempty proper subset W of V, we denote by 5G(W) the
set of edges defined by 5G(W) {[u, v]lu e W, v W}, and if W is a singleton node
{w} we simply write ha(w). All the above definitions and notation on the families of

*Received by the editors November 20, 1991; accepted for publication (in revised form) Novem-
ber 13, 1995.

J. L. Kellogg Graduate School of Management, Northwestern University, 2001 Sheridan, Evan-
ston, IL 60208-2009 (schopra@casbah.acns.nwu.edu).

: Istituto di Analisi dei Sistemi ed Informatica, Consiglio Nazionale delle Ricerche, viale Manzoni

30, 00185 Rome, Italy (rinaldi@iasi.rm.cnr.it).

602

THE GRAPHICAL ASYMMETRIC TRAVELING SALESMAN 603

arcs apply also to the families of edges when the directed graph D and its arc set A
are replaced with the undirected graph G and its edge set E, respectively.

A tour of D is a family T of arcs of D such that
(a) 15D+[T](lt)I--1(9[T](U)I for all u in V;
(b) D[T] is connected.
An undirected tour of G is a family O of edges of G such that
(a’) 15a[o](u)l is even for all u in V;
(b’) G[O] is connected.
In the following we use a roman or a Greek letter to denote a tour or an undirected

tour, respectively. For the sake of simplicity we use the term "tour" also in the
undirected case, every time this does not generate any ambiguity.

A tour T is minimal if no proper subfamily of T is a tour, i.e., if the removal
of any directed cycle from D[T] produces a disconnected multigraph. A tour of D is
extremal if its incidence vector is not a convex combination of other tours of D. An
extremal tour is minimal, but the converse is not necessarily true (see 2). An equality
tour T for an inequality cx >_ co of IRA is a tour with cxT co. The sets of all tours
and of all extremal tours of D are denoted by Tr and TD, respectively.

The definitions and notations of the previous paragraph apply, mutatis mutandis,
to the undirected tours.

Given arc weights wa E IR, the graphical asymmetric traveling salesman problem
(gatsp) is to find a minimum weight tour in Try. The graphical asymmetric traveling
salesman polyhedron associated with D (GATSP(D)) is the convex hull of the incidence
vectors of the elements of Tr; i.e.,

GATSP(D) cony {XT IT T)}

A directed Hamiltonian cycle of D is a tour H with 5D+[H](U)I 1 for every u in V.
Given a complete directed graph Dn, the asymmetric traveling salesman problem
(atsp) is to find a minimum weight Hamiltonian cycle in Dn. We denote by
the set of all directed Hamiltonian cycles of D. The asymmetric traveling salesman
polytope associated with D (ATSP(n)) is the convex hull of the incidence vectors of
the elements of 7-/; i.e.,

ATSP(n) =conv {XH H 7-{n}

For a directed graph G, with edge weights we IR, the graphical traveling salesman
problem (gtsp) and the graphical traveling salesman polyhedron associated with G
(GTSP(G)) are defined similarly.

We refer to [3] and [4] for the necessary background in polyhedral theory and for
a survey on the polyhedral aspects of the traveling salesman problem.

The counterpart of gatsp for undirected graphs (gtsp) has been studied in [1], [2],
[6], and [7]. To the best of our knowledge gatsp has not been investigated yet. The
advantages in studying gatsp as a relaxation to atsp are the same as those mentioned
in [1] and [2] for gtsp. In particular,

(a) if the objective function coefficients satisfy the triangular inequality (like in
most of the real-world applications), gatsp has a directed Hamiltonian cycle among
the optimal solutions and so atsp can be solved as a gatsp;

(b) in some applications the requirement that a tour visit a node only once may
not be necessary and so gatsp may be a more appropriate formulation for the problem;

604 SUNIL CHOPRA AND GIOVANNI RINALDI

(c) gatsp is defined for general (even not Hamiltonian) graphs, and for these
graphs it is not necessary to add artificial arcs, as for the case when to formulate the
problem atsp is used instead;

(d) several facets of GATSP are defined for very sparse graphs and the coefficients
of the missing edges can be computed by a sequential lifting procedure; often these
coefficients can be given in closed form (see Remark 3.1);

(e) it is often possible to extend results on the polyhedral structure of GATSP
to obtain results on ATSP, like has been done for the undirected case (see [8] and [5]);

(f) several results on the polyhedral structure of GTSP can be extended to
GATSP (see 3). An unnecessary duplication of work can be saved in this way in
the proofs.

In 2 we give general results on GATSP, we define its basic facet-defining inequal-
ities and give some general lifting theorems. In 3 we give conditions under which a

facet-defining inequality for GTSP yields a facet-defining inequality for GATSP. We
use these conditions to show that several families of symmetric inequalities define
facets of GATSP. In 4 we discuss possible extensions of the results of 3 to ATSP and
we show some pathological cases of facet-defining inequalities for GATSP that do not
define facets of ATSP.

2. Basic properties of GATSP(D). It is straightforward to see that GATSP(D)
is nonempty if and only if D is strongly connected.

For every tour T of D, xT(5;[T](U))- xT(55[T](U)) 0 for all u in V, and

XT(5+D[T] (W)) + XT(5)[T (W)) _> 2 for every nonempty proper subset W of V. It

follows that GATSP(D)

_
{x E 1RAIFDx- 0}, where FD is the node-arc incidence

matrix of D. Hence GATSP(D) is not a full-dimensional polyhedron.
THEOREM 2.1. If D is strongly connected, the dimension of GATSP(D) is IAI-
+ 1.

Proof. Assume that GATSP(D) is nonempty and that the incidence vectors of
all tours of D satisfy rx r0. Let T be a minimal tour of D and let DI[T] be its
associated support subgraph of D. Let C be a directed cycle of D IT]. By minimality
of T there is an arc g E C with multiplicity 1 in T. By adding a linear combination of
the equations FDX 0 to 7rx 7r0 we can obtain a new equation 7rx 7r0, satisfied by
the incidence vector of all tours of D, with r 0 for a C- {g}. Consider the tour
T + C. Its incidence vector satisfies rx r0; thus r- 0 If f is a chord of C, therea

is a directed cycle Cf of DI[T] containing f and only edges of C and the incidence
vector of T + Cf satisfies rx r0; thus r) 0. Now we shrink the nodes of C into
a single node and remove all loops from the resulting shrunk graph. We iteratively
repeat this process to the shrunk graph until it is reduced to a single node. At this
point we have produced an equation r1z r0 as a linear combination of rx r0

l!and of the equations FDX 0 by imposing that ra 0 for every arc a belonging to a

spanning tree of D IT], which has r 0 for every arc a in D IT]. Let f be any arc
of D which is not in D[T]. There exists a directed cycle CI containing f and only
arcs of D[T]. The incidence vector of T + CI satisfies r"x r0; thus r 0. This
shows that the equation rx r0 is a linear combination of the flow equations and
since the rank of FD is IVI- 1, the theorem follows.

Since GATSP is not full dimensional, two inequalities, rx _> r and
are equivalent, i.e., define the same facet of the polyhedron, if and only if there exist. > 0 and IRV’ such that r’ r"+/F) and r r. Here V’ denotes the node
set V {} for some V, and F) denotes the submatrix of FD obtained by taking
the rows corresponding to V. Consequently, recognizing when two facet-defining

THE GRAPHICAL ASYMMETRIC TRAVELING SALESMAN 605

inequalities for GATSP are equivalent is not as easy as in the case of a full-dimensional
polyhedron. To overcome this problem we use the following definition of standard
form for an inequality.

A facet-defining inequality for GATSP, 7rz _> 7r0 is in standard form if FDZr 0. It
follows that two inequalities in standard form defining facets of GATSP are equivalent
if and only if one is obtained by multiplying the other by a nonzero number. For a
complete digraph, any facet-defining inequality 7rx _> 7r0 has an equivalent inequality
(Tr + AF)n)x >_ 7to in standard form, where the vector A is defined by

1 1
N

u#v
,)) forveV’.

A facet-defining inequality rx _> r0 for GATSP(Dn) is said to be symmetric if

(2.1) r(u, v) r(v, u) for every (u, v) E A.

Observe that a symmetric inequality is always in standard form. It follows that to
verify whether or not an inequality is equivalent to a symmetric one, it is sufficient
to check if an inequality in standard form, equivalent to it, satisfies (2.1). A facet-
defining inequality for GATSP(Dn) is called asymmetric if any inequality in standard
form equivalent to it does not satisfy (2.1).

In order to study the facets of a polyhedron it is interesting to know the dimension
of the convex hull of its extreme points. If this dimension coincides with the dimension
of the polyhedron, several facets (those that really matter in a polyhedral cutting-
plane algorithm) are the convex hull of extreme points of the polyhedron. Otherwise,
to describe any facet of the polyhedron, except at most one, some extreme rays have
to be considered.

It is difficult to characterize the extreme points of GATSP(D) for a general digraph
D. Every extreme tour has to be minimal, but the converse does not hold. See, for
example, Figure 2.1 (a), where a minimal tour that can be expressed as a convex
combination of the tours of the Figures 2.1 (b) and (c) is shown.

(a) (b) (c)

FIG. 2.1.

Also, the dimension of the convex hull of the extreme points of GATSP(D) seems
hard to identify in general. As an example, consider the graphs Da and Db of Fig-
ure 2.2, which differ only by one arc. The dimension is zero for Db and 2 for Da.

606 SUNIL CHOPRA AND GIOVANNI RINALDI

Db Da

FIG. 2.2.

When D is a bidirected graph (that is, (u, v) in A implies (v, u) in A), the dimen-
sion depends upon the number of bridges. A bridge is a pair (u, v), (v, u) whose removal
disconnects D. In the following we study facet-defining inequalities of GATSP(D),
where D has a suitable bidirected graph as a subgraph, and so the case of a bidirected
graph is of particular interest for us.

THEOREM 2.2. IfD is bidirected and has k bridges, the convex hull of the extreme
points of GATSP(D) has dimension IAI IV k + 1.

Proof. The proof is similar to the one given in [1] for GTSP and is therefore
omitted.

The integer points of the polyhedron defined by

O,
(2.3) x(5+D(W)) + x.(53(W)) _> 2

(2.4) x _> 0

for all 0 # W c V,

are the incidence vectors of all tours of D. We call (2.2) the flow equations, (2.3) the
cut inequalities, and (2.4) the trivial inequalities. Observe that while in the directed
case (2.2), (2.3), and (2.4) provide an integer linear programming formulation of gatsp,
for the undirected case the condition that every node has an even degree in every tour
cannot be stated in. a similar simple way.

THEOREM 2.3. For a E A the trivial inequality xa >_ 0 is facet defining for
GATSP(D) if and only if the subgraph of D obtained by deleting the arc a is strongly
connected.

Proof. Since we assume that GATSP(D) is not empty then D is strongly con-
nected. If D- {a} is not strongly connected then Xa > 1 is valid for every tour of D,
and so xa _> 0 is not even supporting for GATSP(D). If D- {a} is strongly connected
then by Theorem 2.1 there are IAI- IVI / 1 affinely independent tours of the digraph
D {a} which are also tours of D satisfying xa 0. Consequently, xa > 0 is facet
defining for GATSP(D). [3

THEOREM 2.4. For 0 W C V, the cut inequality x(5+D(W)) + x(5(W)) >_ 2 is

facet defining for GATSP(D) if and only if both the subgraphs of D induced by W and
by V- W, respectively, are strongly connected.

Proof. Since we assume that GATSP(D) is not empty, D is strongly connected
and both the arc sets x(5+D(W)) and x(5(W)) are not empty. Assume that the
subgraph of D induced by W is not strongly connected. Then 5D+(W’) C 5D+(W) for
some 0- W c W, and so the inequality

+ x(63(w)) >_ 2

THE GRAPHICAL ASYMMETRIC TRAVELING SALESMAN 607

is dominated by x(+D(W’))+ x(;(W)) > 2 and cannot be facet defining. Now
assume that both the subgraphs of D induced by W and V- W, respectively, are
strongly connected. Let AW and AW be the arc sets of the subgraphs of D induced
by W and V- W, respectively. By hypothesis these two subgraphs have two sets
Tw and TW, respectively, of affinely independent tours with ITwI IAWI- IW + 2
and ITWI lAWI-IV-W[+2. Let a+ E 5+(W), a- 5-(W), Tw TW, and
TW TW. For a 5+ (W) denote by Ca+ a directed cycle containing the arcs a, a-,
and only arcs in the sets AW and AW. Analogously, for a 5-(W) denote by Cj a
directed cycle containing the arcs a, a+, and only arcs in the sets AW and AW. The
set

+ + c: }
u {w +T+ C: a 5-(W)- {a-}}

contains A-]V + 1 ffinely independent tours of D stisfying (2.5) with equMity.
The result thus follows.

An inequality x 0 in A satisfies the shortest path condition if for every
(u, v) in A and for every directed path P connecting u to v, (u, v) (P).

PROPOSITION 2.5. A facet-defining inequality for GATSP(D) either is a trivial
inequality or satisfies the shortest path condition.

Proof. Let x s0 be a facet-defining inequality for GATSP(D) that does not
satisfy the shortest pth condition. Therefore, there exists (u, v) such that (u, v)
(P}. No equality tour for the inequality cn contain (u, v)" if there ws such
tour T then the tour T- (u, v) + Pu, would violate the inequality. Consequently
equMity tours satisfy the trivial inequality x(u, v) 0 with equality, and so sx 0
is equivalent to x(u, v) O.

PROPOSITION 2.6. Let x o be a valid inequality for GATSP(D). Then
(C) 0 for every directed cycle C of D.

Proof. Let T be a tour of D. If C is a directed cycle with (C) < 0 then the tour
T + kC, for k sufficiently large, violates

The next two lemmas give liftings for facets of GATSP(D).
LEMMA 2.7. Let *x* o be a valid inequality for GATSP(D*) such that D*

has a directed cycle C with a chord - (u, v) and *(C) O. Form D from D* by
deleting . The inequality *x* o is facet defining for GATSP(D*) if it satisfies
the shortest path property and x o is facet defining for GATSP(D), where is the
restriction of* to the arcs of D.

Proof. Let P nd P be the directed paths contained in the directed cycle
C and connecting u to v and v to u, respectively. The vlidity of *x* 0 and
Proposition 2.6 imply *((u, v) + P.) 0. The shortest path property of s’x* 0
nd the assumption that *(P + P) 0 imply s*((u, v) + P.) 0, and so we
hve *((u, v} + P) 0. Since x 0 is fcet defining for GATSP(D), there exists
a set T of A[- IVI + 1 affinely independent tours of D that satisfy x s0 with
equMity. Let T be tour of T. The tours of T with the tour T + Pv + (u, v) are

set of]A- IVI + 2 affinely independent tours of D* that stisfy *x* 0 with
equMity.

LEMMA 2.8. Let s*x* o be a valid inequality for GATSP(D*) such that D*
(V*, A*) has a directed chordless cycle C with 0 for a C. Let D be the graph

608 SUNIL CHOPRA AND GIOVANNI RINALDI

obtained from D* by contracting all arcs in C and deleting all resulting parallel arcs.
The inequality 7*x* >_ 7o is facet defining for GATSP(D*) if it satisfies the shortest
path property and 7x >_ 7o is facet defining for GATSP(D), where is the restriction

of 7* to the arcs of D.
Proof. Denote by Vc the node set of the cycle C. Given two arcs al (w, vl)

and a2 (w, v2) (or a (v, w) and a (v2, w)), where w VC, we say that they
are relative if both Vl and v belong to VC. Observe that two relative arcs of A*
correspond to two parallel arcs of the graph obtained from D* by contracting all arcs
of C. Let A be a maximal subset of A* that does not contain relative arcs. There is
a one-to-one correspondence between the arcs of the graph D and the arcs in A.

Consider any valid inequality 7*x* _> 70 for GATSP(D*) such that

{x GATSP(D*)I r*x* r0} C_ {x* 17*x* 70}.

Let be any arc of C and S be a spanning tree of D* with arcs in A which contains
all the arcs of C except . Declare a node of V* as the root of S. Traverse S in a
breadth-first search (BFS) manner and use the flow equations FD. 0 for every node
ui reached in the search to set 7*(ui, uj) 7r*(ui, uj), where ui and uj are in the
parent-child relation in BFS and (ui, uj) is an arc of S.

We say that a tour T* of D* is obtained by extending a tour T of D if it is
obtained by taking the arcs of A that correspond to the arcs of T and by adding
the arcs of C that are necessary to complete a tour. Let T* be a tour obtained by
extending an equality tour for rx >_ r0. The tour T* is an equality tour for r*x* _>
and so is the tour T* + C. It follows that 7* (T*) 7" (T* + C) and 7- 0.

Since 7rx _> 7r0 is facet defining for GATSP(D), the set of equality tours for
r*x* _> r0 obtained by extending all the equality tours for 7rx _> 7r0 is sufficient to
define the coefficients 7 for a A up to a common positive multiple.

Let (w, v) be an arc of A* A’ and (w, v2) be its relative arc in d’. For u and
v in VC denote by C,. the directed path having only arcs in C that connects u to
v. From the shortest path property of r*x* >_ r0 it follows that r*((w, Vl) + Cv
r*(w, v2) and 7r*((w,v) + Cv) >_ r*(w,v), and so r*(w, v) r*(w, v2). Let
T* be an equality tour for r*x* >_ r0 containing (w,v2) and only arcs in A. The
tour T* (w, v2) + (w, vl) + Cv satisfies also 7r’x* _> 7r0 with equality, and so
7*(w, v) 7*(w, v2). One proceeds analogously for an arc (v, w) in A* A’.

Since the vector 7* is a multiple of 7r*, the inequality 7r’x* >_ r0 defines a facet
of GATSP(D*).

Note that every facet-defining inequality rx >_ r0 with r(C) 0 can be converted
to an equivalent inequality rlx _> r0 (by adding to it a suitable linear combination of
the flow equations) such that r 0 for all a in C.

Let rx _> r0 be a facet-defining inequality for GATSP(D), with D (V, A). Let
D (V, A) be a strongly connected digraph. Let D* (V*, A*) be the digraph
defined by

v, v- + v,,
A* A- 8D+ ()- ()+ A’+ { (v, u)I (v, V) A, u V- C_ V’}

+ {(u,v)](V,v) e A,u e V+ C_ V’},

where is a node of V and V- and V+ are arbitrary nonempty subsets of V associated

THE GRAPHICAL ASYMMETRIC TRAVELING SALESMAN 609

with v for v E V- {}. The inequality 7c’x* >_ 7to defined by

r(u, v) for (u, v) E A 5D+ () 5(),
r*(u v)= 0 for (u, v) A’,

r(u,) for (u, v) e 5, (V’),
(v,)

is said to be obtained from rx >_ r0 by zero lifting of the node .
THEOREM 2.9. If 7r’X* >_ 7c0 is obtained by zero lifting of a facet-defining inequal-

ity 7rx >_ ro for GATSP(D), then 7c’x* >_ ro is facet defining for GATSP(D*).
Proof. Every strongly connected digraph can be contracted to a single node by

recursively deleting all the chords of a directed cycle and then contracting all edges of
the cycle. Consequently, the theorem follows from Lemmas 2.7 and 2.8.

Due to Theorem 2.9, in the following we will restrict ourselves only to simple
inequalities, i.e., to inequalities that cannot be obtained by zero lifting of other in-
equalities. Therefore, we will derive facet-defining inequalities for GATSP from simple
facet-defining inequalities for GTSP.

3. Facets of GATSP from those of GTSP. Consider an undirected com-
plete graph with n nodes Kn (Vn, En) and the associated polyhedron GTSP(Kn).
Cornu6jols, Fonlupt, and Naddef [1] and Naddef and Rinaldi [6], [7] have studied this
polyhedron and given several families of facet-defining inequalities for it.

Assume that the inequality

(3.1) #Y >_ #o

is facet defining for GTSP(K). A subgraph G (Vn, E) of K is said to be a
skeleton for (3.1) if the restriction of (3.1) to]RE defines a facet of GTSP(G). The
inequality (3.1) is said to be stable for the skeleton G if for every edge e En E
there exists an equality tour for (3.1) containing e and only edges in E. This is
equivalent to saying that the sequential lifting coefficients of the edges in E E do
not depend on the lifting sequence. (For a definition of sequential lifting see, e.g., [3].)
From this definition it follows that if (3.1) is stable for the skeleton G, then for every
graph G’ (Vn, E’) with E C_ E’, the restriction of (3.1) to lRE’ defines a facet of
GTSP(G). The definitions of skeleton and of inequality stable for a skeleton apply,
mutatis mutandis, also to the case of a directed graph.

Remark 3.1. All the facet-defining inequalities for GTSP(Kn) described in [1], [6],
and [7] have the property that they are stable for a skeleton which is quite sparse.
Using this nice property, it is possible to simplify the proofs that these inequalities
define facets of the polyhedron. For the inequalities described in this section this
property holds as well.

Let G (V,,E) be a skeleton of (3.1) and let D (V,A) be the directed
graph obtained from G by replacing each edge e [u, uj] by the pair of arcs (u, uj)
and (uj, ui). Here we give a set of sufficient conditions under which a facet-defining
inequality for GTSP(G) gives a facet-defining inequality with symmetric coefficients
for GATSP(D).

Define the inequality

(3.2) x _> 7to,

with (ui, u.) 7(u., ui) #, where e [ui, uy] and 77o #0. For any tour T
of Dn one can form an undirected tour of K where the multiplicity of any edge

610 SUNIL CHOPRA AND GIOVANNI RINALDI

e [u, uj] in O is the sum of the multiplicity of the arcs (u, uy) and (uj, ui) in T. If T
violates (3.2) then O violates (3.1). Thus the inequality (3.2) is valid for GATSP(D).

Let S be any spanning tree of G with edges E(S). Consider the set of arcs
e E(S)}.

THEOREM 3.1. If the equality tours for the inequality (3.1) satisfy the condition
(3.3) stated below, then D is a skeleton for the inequality (3.2). Moreover, if (3.1) is
stable for G so is (3.2) for D.

(3.3)

There exists a spanning tree S of G (Vn, E) and an ordering
4 E- t IE-
E(S)I such that for each edge e there exists an equality tour
O(ei) for (3.1) with edges in E and multiplicity of ei equal to
one and a cycle C(ei) in O(e) that contains e with C(e) c_
E(S)

Proof. Let rA be the restriction of r to]pA. Consider any valid inequality 3‘x > 3‘0
for GATSP(D) such that {x e GATSP(D) IrAx r0} C {x i3‘x 3’o}.

In the same way as in the proof of Lemma 2.8 we can use the flow equations
FDX 0 to assume that

3‘(u, uj) 3‘(uj, u) for all [u, uj] E S,

where S is a spanning tree of G. Any tour O is an Eulerian graph and so can be
converted to a directed tour T by traveling the edges of in some direction. If is
an equality tour for (3.1) with edges in E, then T must be an equality tour for (3.2).
Thus all equality tours for (3.1) with edges in E can be converted to equality tours
for (3.2).

First we show that if the coefficients in 3‘ are symmetric, i.e.,

3‘(ui, uj) 3‘(uj, ui) for all [ui, uj] E,

then the inequality (3.2) is facet defining for GATSP(D). The restriction of (3.1) to
IRE is facet defining for GTSP(G); therefore we have a sufficient number of indepen-
dent equality solutions to uniquely define the coefficients of #. Each of these tours
when directed satisfies (3.2) at equality and the resulting incidence vectors are still
independent. Let B be the incidence matrix of these equality solutions. We have

(3.6) B3‘T -0

where o is a vector with each entry equaling 3‘0. If the condition (3.5) holds, then
(3.5) and (3.6) uniquely define 3‘ to be a multiple of rA, and so (3.2) defines a facet
of GATSP(D).

Given the ordering of the edges in E- E(S), assume that er [ui(r), uj()].
First consider the case r 1. By (3.3) there exists an equality tour O(el) for (3.1)
with edges in E and multiplicity of el equal to one. One can direct the edges in
O(el) to obtain the directed tour T(el). Without loss of generality assume that

T(). From (3.3) is a cycle C(e) in O(el) such that e C(e)
and C(e) _c E(S)+ {el}. Let CD(e) be the corresponding directed cycle in the
directed tour T(e). Let CD(e) be the directed cycle obtained by reversing every arc
in CD(e); i.e., (ui, uj) CD(el) if and only if (uj, ui) CD(el). Consider the tour

THE GRAPHICAL ASYMMETRIC TRAVELING SALESMAN 611

FIG. 3.1.

T(el) T(el)+ CD --CD. Since incidence vectors of both T(el) and T(el) satisfy
(3.2) at equality, we have

E "/a E a.
aeCD(el) aED (el)

Using (3.4) and the facts that CD(el) SD [3 ((ti(1),j(1))} and CD(el)
SD U {(uj(1), ui())}, we have

/(Ui(1), Uj(1)) /(Uj(1), Ui(1))

Continuing in the same manner for r 2, 3,..., t we obtain

/(u(r), uj(r))--(uj(), u())--e for 1

_
r

_
t.

This proves that (3.5) holds and that D is a skeleton for (3.2).
Let (u, uj) be an arc not contained in A. This implies that the edge [u, uj] is

not contained in E. If (3.1) is stable for G there exists an equality tour for (3.1)
containing [u, uj] and only edges in E. We can direct the edges of O to obtain a tour
T that contains the arc (u, uj) and only arcs of D. The tour T satisfies (3.2) with
equality, and so this inequality is stable for D. []

Now we use the above result to prove that several families of facet-defining in-
equalities for GTSP give facet-defining inequalities for GATSP.

3.1. The s-path inequalities. We begin with the k-path configurations de-
scribed in [1] for the undirected case. For any odd k _> 3 and any k-tuple of positive
integers (n,...,nk), with ni _> 2 for e {1,...,k}, let P(n,...,nk) be the directed
graph with node set

Vp={Y,Z}U{u} {1,...,k}; j E {1,...,ni}}

and arc set

Ap {(u,Uj+l),(Uj+l,Uj) {1,...,k}; j {0,...,n}}.

We call P(n,..., nk) a directed k-path configuration. For convenience, we label u
Y and u Z. The arc set of a directed 3-path configuration P(2, 2, 2) is shownni+l
in Figure 3.1.

Let D (Vp, A) be any graph that contains P(nl,... ,n) as a subgraph. An
s-path inequality associated with P(n,..., nk) is the inequality

(3.1.1) cx >_ co

612 SUNIL CHOPRA AND GIOVANNI RINALDI

U U2

y

u

Un

.(C)

k-1

k
bln

FG. 3.2.

on IRA where c and co are defined as follows:

c0-1+
k
n+l

ti +/-’
i=1

z) Y)

forie{1,...,k}, j, qE{O,...,ni-t-1}withO< IJ-ql <hi+l,

c(u},u) ni-1;IJ ql

fori, je{1,...,k}, i=fir j{1,...,ni}, qe{1,...,nr},
1 1 j-1 q-1

n- 1 n- 1 ni- 1 n- 1

Note that the coefficients of (3.1.1) described above are symmetric and identical to
those described in [1] for the path inequality on the corresponding undirected graph
a=

THEOREM 3.1.1. The s-path inequality is facet defining for GATSP(D).
Proof. Let G (V, E(P)) be an undirected k-path configuration, i.e., the undi-

rected graph whose edge set is

,uj+l] {1,...,k}; j{0,...,ni}}.

In [1] it is proven that the undirected path inequality is stable for the skeleton G. It
is straightforward to apply Theorem 3.1, using the spanning tree S with edge set (see
Figure 3.2)

,uj+l] j E {O,...,nl}}
+{[u}]lie{2 k}’j{0, hi-l}},tj+

and an arbitrary order for the edges in E(P)- E(S).
3.2. The s-wheelbarrow inequalities. Next we turn to the k-wheelbarrow

configuration also discussed in [1] for the undirected case. For any odd integer k > 3
and k-tuple of positive integers (nl,n.,... ,nk) with n >_ 2 for {1,2,... ,k}, we
define a directed k-wheelbarrow configuration W(nl,... ,nk) (Vw, Aw) where the

THE GRAPHICAL ASYMMETRIC TRAVELING SALESMAN 613

node set Vw is given by deleting the node Z of the k-path configuration and arc set
Aw is given by

All superscript indices are taken modulo k where 0 k. The arc set of W(2, 3, 2) is
shown in Figure 3.3.

FIG. 3.3.

Let D (Vw,A) be any directed graph that contains W(nl,..., nk) as a sub-
graph. An s-wheelbarrow inequality associated with W(nl,..., nk) is the inequality

(3.2.1) cx >_ co

on]RA, where c and co are defined as for the,s-path inequality (3.1.1). The inequality
(3.2.1) is a restriction of the s-path inequality (3.1.1). The coefficients of (3.2.1) are
symmetric and identical to those described in [1] for the wheelbarrow inequality on
the corresponding undirected graph G (Vw, E).

THEOREM 3.2.1. The s-wheelbarrow inequality is facet defining for GATSP(D).
Pro@ Let G (V, E(W)) be the undirected k-wheelbarrow configuration, i.e.,

the undirected graph whose edge set is

In [1] it is proven that the undirected wheelbarrow inequality is stable for the skeleton
G. It is a simple exercise to apply Theorem 3.1, using the spanning tree S with edge
set (see Figure 3.4)

E(S)--- {[t},tj+li]l {1,..., k}; j {0, ni- 1}}

and an arbitrary order for the edges in E(W)- E(S). D

3.3. The s-bicycle inequalities. Next we turn to the k-bicycle configuration
also discussed in [1] for the undirected case. For any odd integer k > 3 and k-tuple of
positive integers (nl,n2,...,nk) with ni >_ 2 for E {1,2,...,k}, we define a directed
k-bicycle configuration B(nx,... ,nk)= (VB,AB) where the node set

614 SUNIL CHOPRA AND GIOVANNI RINALDI

Un

0 -0 u2
l’l

k-1
Un,_

,(C)
k

Un

FIG. 3.4.

FIG. 3.5.

and arc set

All superscript indices are taken modulo k with 0 k. The arc set of the
configuration B(3, 2, 4) is shown in Figure 3.5.

Let D (VB,A) be any graph that contains B(nl,...,nk) as a subgraph. An
s-bicycle inequality associated with B(nl,..., nk) is the inequality

(3.3.1) cx >_ co

on]pA, where c and co are as defined for the s-path inequality (3.1.1). The inequality
(3.3.1) is a restriction of (3.1.1). The coefficients of (3.3.1) are symmetric and identical
to those described in [1] for the bicycle inequality of the corresponding undirected
graph G (VB, E).

THEOREM 3.3.1. The s-bicycle inequality is facet defining for GATSP(D).
Proof. Let G (V, E(B)) be the undirected k-bicycle configuration. In [1] it is

proven that the undirected bicycle inequality is stable for the skeleton G. To apply
Theorem 3.1 we need only exhibit a spanning tree S of G, an ordering of the edges
in E(B) E(S), and a suitable equality tour for each of these edges. Consider the
spanning tree S with edge set

THE GRAPHICAL ASYMMETRIC TRAVELING SALESMAN 615

UlO 0 0 9
0

o

0 OU
k

FIG. 3.6.

O

o 2
0

2
0 ukn

FIG. 3.7.

The tree S is as shown in Figure 3.6.
The edges in E(B)- E(S) are ordered as follows"

([tl, tlk]; [tln tknk]; {[tl, t{+1], [’gi+l
[" i"t-1

,-n,+.i+ {1,3,... ,k- 2}};
,.,+lli{1,,...,}}

For the edge e [ul, u] consider the tour

O1 E(S) + { Uk kj,Uj+l]lj e {1,...,nk 1}} + {[ul,u]},

which is shown in Figure 3.7. For the edge [unl, u[k] consider the tour

We now define a collection of tours e(i). For the edge [ul, u+1] with E {1, 3,..., k-
2},consider the tour

The tour O2(1) is shown in Figure 3.8.
For the edge [u/n i+1.a+l] with {2, 4,..., k- 1}, consider the tour

616 SUNIL CHOPRA AND GIOVANNI RINALDI

FIG. 3.8.

o 2
Q

0

(C)

FIG. 3.9.

The tour O2(2) is shown in Figure 3.9.
For any edge e of the form [u u+] or [u +n+.], Cornu(Sjols, Fonlupt, and

Naddef [1] have shown equality tours using e with multiplicity one and all other edges
from the set E1 where

E1 ,+] S {1,...,k}; j S {1,...,hi- 1}}
/ { [, 1+1], [, ++1] {1,...,}}.

For example, for the edge [ul, nazi, consider the tour

e 0(2)- bl,]- 2{[1,]} + b, 1] + bl,].

Also the tours constructed so far satisfy the undirected bicycle inequality at equality.
Each of them contains a cycle that satisfies the requirements of (3.3). D

3.4. The s-crown inequalities. Now we turn to the crown inequalities de-
scribed in [7]. For any integer k _> 2, let CR(p) (Vc, Ac) be a directed crown
configuration, where p- 4k and

Vc { {1,... ,p}},

Ac { (ui, ui+), (ui+, ui), (ui, u2+i),
(u.k+i, ui), (ui, ui+.), (ui+, ui) e {1,... ,p}}.

All indices are modulo p with 0 p. The arcs entering and leaving Ul in CR(8) are as
shown in Figure 3.10 (a). The edges of the form [u, u+l] are called cycle edges and
those of the form [ui, u2k+i] are called diameters.

Let D (Vc, A) be any directed graph that contains CR(p) as a subgraph. An
s-crown inequality associated with CR(p) is the inequality

(3.4.1) cx >_ co,

THE GRAPHICAL ASYMMETRIC TRAVELING SALESMAN 617

u u

UT; l Q)’4 bt3 u74
u5 u5

(a) (b)

u

FIG. 3.10.

where co 12k(k- 1) 2, and

4k 6 + IJl for 1 _< J < 2k- 1,
for j 2k.

The coefficients of (3.4.1) are symmetric and identical to those described in [7] for the
crown inequality on the corresponding undirected graph G (Vc, E).

THEOREM 3.4.1. The s-crown inequality is facet defining for GATSP(D).
Proof. Let G (V, E(CR)) be the undirected crown configuration, i.e., the undi-

rected graph whose edge set is

E(CR) {[ui, ui+l], [u{, u2k+{], [ui, u{+2] E {1,... ,p}}.

In [7] it is proven that the undirected crown inequality is stable for the skeleton G. As
usual, to apply Theorem 3.1 we need only exhibit a spanning tree S of G, an ordering
of the edges in E(CR) E(S), and a suitable equality tour for each of these edges.
Consider the spanning tree S with edge set

E(S) {[ui, ui+2k]]i E {1,..., 2k}} + {[u2i-l,u2i]li {1, 2,..., k}}
+ {[U2(k+i),u2(k+i)+] e {1,..., k 1}}.

For k- 2, the tree S is as shown in Figure 3.10 (b).
The edges in E(CR) E(S) are ordered as follows:

{ [2k-j-+-l, t2k-j+2]; [’lt4k--j, t4k--j+l]; [t2k+j, ’2k+j-t-1];

[Uj+l,Uj+2]lj e {1,3,...,k (or k 1 if k is even)}};
e

For {1, 2,...,4k}, let

E+(i) {[ui, ui+], [ui, u+i]} and E-(i) {[ui, ui-], [ui, u2k+i]}.

For the edge [u4, u], consider the tour

04(0) 04(--2) E(S)-+- E-(1).

618 SUNIL CHOPRA AND GIOVANNI RINALDI

For k 2, the tour O4(0) is as shown in Figure 3.11 (a).
For j 1, 3,... ,k (or k- 1 if k is even) and for the edges [u,k-j+l,

[u4-j, u4-j+l], [u.+j, u+j+l], [Uj+l, uj+.], consider the following tours (see Figure
3.11 (b) for the case k 2):

O4(2j 1) O4(2j 4) + E+(2k j + 1) E-(4k j + 2),
O4(2j) O4(2j 1) + E+(4k- j) E-(2k -j + 1),
O4(2j + 1) O4(2j 2)+ E-(2k + j + 1)- E+(j),
O4(2j + 2) O4(2j + 1) + E-(j + 2) E+(2k + j + 1),

respectively.

u

Us u2

/6
U5

U

(a) (b)

u3

FIG. 3.11.

For any edge e [ui, ui+.], Naddef,and Rinaldi [7] have exhibited equality
Hamiltonian cycles using only e, cycle edges, and diameters. Each of these cycles
is easily constructed by taking the cycle edge [Ui+l, ui+u], all the diameters except
[ui+2+k, ui+.], and the other cycle edges necessary to complete the cycle (see Fig-
ure 3.11 (b) for k 2).

All the tours considered so far satisfy the undirected crown inequality with equal-
ity. Each of them contains a cycle that satisfies the requirements of (3.3). D

3.5. Composition of symmetric inequalities. Let G (Vnl, El) and G2

(Vn., E) be the skeletons of the inequalities

(3.5.1) lyl
(3.5.2) #2y > #0,
facet defining for GTSP(Knl) and GTSP(Kn), respectively. Let V {v1, v,..., vl }
and V {v, v,..., v}, with s > 2, be subsets of Vnl and V., respectively. For
simplicity we assume that the subgraph of G induced by V is isomorphic to the

2 fori-- 1,2, s, incorresponds to visubgraph of G induced by V and that v
the isomorphism.

The s-sum of G and G2 is the graph G (V, E), obtained by identifying the
2 for 1, 2, s and removing the resulting parallel edges. Herenode v with vi

n=nl +n-s, Vn- (VI-V1)+(V2-V2)+W, W= {wl,w2,...,ws}, w results
and 2 fori E {1,2, s}, and, finally, E is such thatfrom the identification of vi vi

the subgraph of G induced by (Vn.- Vi) + W is isomorphic to G for 1, 2.
If the condition

#l(v,vj vj) for alliCje{1,2,...,s}

THE GRAPHICAL ASYMMETRIC TRAVELING SALESMAN 619

is satisfied (for s 2 this can always be obtained by multiplying (3.5.2) by a suitable
multiplier), we can define an inequality

(3.5.4) #y >_ #o

on]REn obtained by s-sum of (3.5.1) and (3.5.2) in the following way. To the edges
with one endpoint in V1 W and the other in V2 W, which we call the crossing
edges of (3.5.4), we assign an ordering

(3.5.5)

Then
for {vi,vj} Vr and r E {1, 2}.

The right-hand side #0 is the length of an optimal solution of gtsp in G when the
weights are given by #. Finally, for a crossing edge e the coefficient #e is computed
by a sequential lifting procedure based on the ordering (3.5.5).

If (3.5.3) and

j-1

+) .(.Vp+
p=l

for all j E {1,2,...,8}

hold (for 8 2 this is clearly always the case), the inequality (3.5.4) is said to be
obtained by a linear s-sum of (3.5.1) and (3.5.2). In [6] it is shown that for the linear
s-sum,

0 01 -- # 2 E’I(Vpl’ Vp+
p--i

A subset V {vl, v2,..., vs} of nodes of the skeleton of an inequality is called iden-

tifiable if there exists an equality tour for the inequality that contains the family
2 {[vi, vi+l]li {1, 2,..., s 1}}. The following theorem is proven in [6].

THEOREM 3.5.1. Let (3.5.4) be obtained by a linear s-sum of (3.5.1) and (3.5.2).
If V and V2 are identifiable, the graph G is a skeleton of (3.5.4). The set W and all
the subsets of V and V= which are identifiable for (3.5.1) and (3.5.2), respectively,
also are identifiable for (3.5.4).

By Theorem 3.5.1 it is possible to show by induction that the graph obtained by
repeatedly applying the s-sum operation is a skeleton for the corresponding inequality
that is produced with this procedure.

The following theorem extends Theorem 3.5.1 to GATSP, using basically the
same proof given in [6]. As done for Theorem 3.1, let us denote by D (Vnl, A1),
D2 (Vn., A2), and D (Vn, A) the bidirected graphs obtained from the skeletons
G1, G2, and G, respectively, by replacing each edge [vi, vii of the three graphs by the
pair of arcs (vi, vj) and (vj, vi). Define the inequalities

(3.5.6) 71"1X

(3.5.7) 72X2

__
7,

(3.5.8) x _> 7r0,

with 7rl(vi. Vj) 7rl(vj. Vi) #lf. 72(Vi. Vj) 7r2(Vj. Vi) #2f. and 7r(vi, vj)
7r(vj, vi)= #(vi, vj), where 7r #, 7to

2
#02, and 7r0 #o.

620 SUNIL CHOPRA AND GIOVANNI RINALDI

THEOREM 3.5.2. Let (3.5.4) be obtained by linear s-sum of (3.5.1) and (3.5.2). If
V and V are identifiable and if D and D2 are skeletons for the inequalities (3.5.6)
and (3.5.7), respectively, then D is a skeleton for the inequality (3.5.8).

Proof. The inequality (3.5.8) is clearly valid for GATSP(D). For 1, 2, let Oi be
an equality tour of #iy > #o containing the family 2 { [v, ; e {1, 1}};
such a tour exists since V is assumed to be identifiable. Let T be the directed tour of
D obtained by traveling the edges of the tour Oi 2 { IvY, vp+llpe {1,2,...,s-1}}
in some direction. Let 7z 70 be any valid inequality for GATSP(D) for which

{x E GATSP(D) lzCAX :r0} C {x I’Yx /0}.

To prove the theorem we have to compute all the coeicients of the vector y by using
equality tours for (3.5.8). Consider a set T of (IAll- n + 1) linearly independent
directed tours satisfying (3.5.6) at equality (this set exists since (3.5.6) is facet defining
for GATSP(D)). The directed tours obtained by adding T2 to each tour of T are
also linearly independent and satisfy (3.5.8) at equality. From these tours and from
the flow equations FDX O, it follows that there exists pl > 0 such that 7a p
for all a in A isomorphic to an arc of A. By the same argument, interchanging the
rSles of D and D2, it follows that there exists p > 0 such that ya p22 for all a in
A isomorphic to an arc of A2. Since the arc a of D which is isomorphic to (viI, v) is
also isomorphic to (v2, v2), it follows that # plz(v, v) pz(v, v), and since
71 (v, v2) -72(v2, v) we have p p2 and the theorem follows. [:]

For simplicity, let us call in this subsection any of the configurations of 3.1,
3.2, and 3.3 a path configuration and let us call the corresponding inequality a .path
inequality. A path configuration (or a path inequality) is called regular if ni n for

1, 2,..., k. The nodes Y and Z are called the odd nodes of the configuration; all
the other nodes are called even.

We consider now the 2-sum of path inequalities. In this case the only sets that
qualify to be identifiable are the pairs {u} ,uj+} for some E {1,2,...,k} and j
{0,..., ni}. When two nodes u and u" are identified in the 2-sum, the resulting node
is even only if both u and u" are even and odd in all the other cases.

Next we consider the regular parity path tree inequality, defined recursively as

(i) a regular path, wheelbarrow, or bicycle inequality,
(ii) the 2-sum of a regular parity path tree inequality and a regular path, wheel-

barrow, or bicycle inequality, with the condition that an odd node be identified only
with an odd node.

A regular parity path tree configuration and a directed regular parity path tree
configuration are defined analogously. In [6] it is shown that a regular parity path
tree inequality is stable for the corresponding regular parity path tree configuration;
i.e., the coefficients of the crossing edges do not depend on the sequence (3.5.5) and
thus can be given in closed form. If (3.1) is a regular parity path tree inequality, the
corresponding inequality (3.2) for the directed case is called a regular parity s-path tree
inequality. By applying Theorem 3.5.2 to the regular parity path tree configurations,
we have the following.

THEOREM 3.5.3. Let D be any directed graph that contains a directed regular
parity path tree configuration as a subgraph. Then the corresponding regular parity
s-path tree inequality is facet defining for GATSP(D).

3.6. Extensions of symmetric inequalities. Let

(3.6.1) CX CO

THE GRAPHICAL ASYMMETRIC TRAVELING SALESMAN 621

be a facet-defining inequality for GTSP(Kn) and let e be an edge in En. We say that
the inequality

(3.6.2) c’x* >_ c
defined in IREn+2h with h _> 1, is obtained from (3.6.1) by cloning the edge e (h times)
if

(a) the restriction of (3.6.2) to IREn coincides with (3.6.1),
(b) the remaining coefficients of (3.6.2) are defined as follows (where we assume,

without loss of generality, that e- [vn-1, vn]; see Figure 3.12 for h- 1)"

C*[Vi, Vn+j] C[Vi, Vn--1]

c* [v+, v+] 2c
c*[v+.,v+] =c

c co + 2hc,

for l_<i<_n-2, 1_<j_<2h-1 and jodd,
for 1_<i_<n-2, 2_<j_<2h and jeven,
for -l<_i<j_<2h and j-ieven,
for -l_<i<j<_2h and j-iodd.

Roughly speaking, cloning the edge e Ivy_l, v] (h times) amounts to replacing e
and the edge sets 5(v_) and 5(v) with h their replicas.

Vi Vn-
ca

c

vn

C

l"n- "’". l"n +

C

Vn+2

b

FIG. 3.12.

An edge e [u, v] E En is called c-clonable if c(O) > co + (t- 2)ce for every tour
of Kn, where t is the minimum of the degrees of u and v in (9. We call a node,

v V, q-critical for (3.6.1) if for an optimal solution * of gtsp in Kn {v}, when
the weights are given by the restriction of (3.6.1), c(O*) co q.

THEOREM 3.6.1. If e [Vn-, V] is a c-clonable edge such that Vn- and v are

2c-critical for (3.6.1), then the following hold:
(3.6.e)

(b) if f [z, z2] e is an edge in E such that zl and z2 are 2cf-critical for
(3.6.1), then zl and z2 are 2c’f-critical for (3.6.2);

(c) if G (V, E) is a skeleton for (3.6.1), then the graph G’ (Vn+2h, E’) is a
skeleton for (3.6.2), where

E’ E [.J {[Vn+i, Vn+i+l], [Vn+i, Vn+i-1], [Vn+i+l, Vn+i--2] 1, 3,..., 2h 1}
U {[w, vn+i] [W, Vn-] E, 1,3,...,2h- 1}
U {[w,v+i+l]l[w,v] e E, i= r,3,...,2h-1}.

622 SUNIL CHOPRA AND GIOVANNI RINALDI

Pro@ In [6], (a) and (b) are explicitly proven. One can easily show that (c)
holds, following the same technique used in [6].

The following theorem gives sufficient conditions under which cloning preserves
the properties required in (3.3).

THEOREM 3.6.2. If (3.6.1) satisfies the conditions of Theorem 3.6.1, (3.3) holds
for (3.6.1) and if the spanning tree S and all the tours O(ei) of (3.3) contain the edge
e, then (3.3) holds also for (3.6.2).

Proof. We show that if the theorem is true for h 1, then the proof can be
completed by induction on h. Let G (Vn, E) and G’ (V+2, E) be the skeletons of
(3.6.1) and (3.6.2), respectively. Let S, (el, e2,..., et}, and O(ei) be the spanning tree,
the edge ordering, and the equality tours, respectively, that satisfy (3.3) for (3.6.1).
Consider the spanning tree S of G whose edge set is the union of the edge set of S
and the edges {Ivy, v+l], [Vn+l, Vn+2]}. Consider the following ordering of the edges
of G:

Let be a solution of gtsp with weights given by (3.6.1) in G- {v}. Then ’+2{e} is an equality tour for (3.6.1). Let E1 {[v_, v+2], Ivy+2, Vn+l], [vn+, v,]}.
For the edge Ivy-l, v+2] consider the tour ’-[Vn-, Vn] + El. This tour satisfies
(3.3) for (3.6.2). For the edge ei the tour O(ei)- {e} + E1 satisfies (3.3) for (3.6.2), for

1, 2,..., t. For an edge [w, V+l] consider the following equality tour for (3.6.2):

where is an equality tour for (3.6.1) that contains the edge [w, v_]. Clearly this
tour satisfies (3.3). Similarly, for an edge [w, v,+] consider the following equality tour
for (3.6.2)

(I)- [W, Vn] -Jr" [W, Vn+2] + [Vn+2, Vn+l] + [Vn+l, Vn],
where is an equality tour for (3.6.1) that contains the edge [w, v]. This tour satisfies
(3.3) as well.

Let (3.1) be an inequality obtained by cloning some of the edges
with ni 2, of a path (or a wheelbarrow or a bicycle) inequality. We call (3.1) an
extended path (or wheelbarrow or bicycle) inequality and (3.2) an extended s-path (or
s-wheelbarrow or s-bicycle) inequality. Observe that if ni > 2, then the edge e is not
/-clonable.

THEOREM 3.6.3. The extended s-path and the extended s-wheelbarrow inequalities
are facet defining for GATSP(Dn). The extended s-bicycle inequality is facet defining
for GATSP(Du) if none of the edges Iu u+21 Iu -r+2,+:1 for r 1,2,...,k, is
adjacent with more than one cloned edge.

Proof. In I51 it is proven that any edge f [u, ul for (1,..., k with ni 2,
of an undirected k-path (or k-wheelbarrow or k-bicycle) configuration that defines an
inequality cx >_ co is c-clonable and that u/ and u are 2cf-critical. Consequently the
extended path, wheelbarrow, and bicycle inequalities are facet defining for GTSP(Ku).
Moreover, for the path, the wheelbarrow, and the bicycle inequalities, (3.3) holds and
the spanning trees given in the proofs of the Theorems 3.1.1, 3.2.1, and 3.3.1, as well
as the tours O(ei), contain all the edges Iul, u] for (1,..., k. The only exceptions
occur for the bicycle inequalities and concern the tours O(ei) when ei Iu, u+l and

,an+.] for r 1,2,...,k. Consider, for example, the edge [u,u31]. The
corresponding tour, denoted by ()3 in the proof of Theorem 3.3.1, does not contain

THE GRAPHICAL ASYMMETRIC TRAVELING SALESMAN 623

the edge [u, u]. If this is a cloned edge, then the edge [u, u] is not cloned, by
the assumption of the theorem. It is now easy to construct another equality tour
satisfying (3.3) that does not contain [u, u] but contains [ua, u3], [u, Ula], and all the
edges in the set [u, u] for r E {2, 4,..., k}.

+ +
where O.(0) is defined in the proof of Theorem 3.3.1. By repeating this argument

u+] [u ur+2 for r 1 2 k we construct a set of toursfor all the edges [u[, n+2j

O(ei) satisfying the conditions of Theorem 3.6.2.
Let (3.1) be an inequality obtained by cloning a subset of the diameters of a crown

inequality. We call (3.1) an extended crown inequality and (3.2) an extended s-crown
inequality.

THEOREM 3.6.4. The extended s-crown inequality defines a facet of GATSP (Dn)
if none of the edges [ur, u+.], for r 1,2,..., 4k, is adjacent with more than one
cloned diameter.

Proof. In [7] it is proven that any diameter f [ui, uk+i] for E {1,...,2k}
of an undirected crown configuration is c-clonable and that u and uk+i are 2cf-
critical for the corresponding inequality cx > co. By repeating the argument for each
cloning, one has by induction that the extended crown inequalities are facet defining
for GTSP(K). Moreover, for these inequalities (3.3) holds and all the diameters are
contained in the spanning tree given in the proof of Theorem 3.4.1 and in all tours
O(e), with the exception of the tours O(ei) with e [u, u+] for r 1, 2,..., 4k (see
Figure 3.11 (b)). If the tour O([u, ur+2]) does not contain the diameter [u, r2+r]
and this diameter is cloned, then by the assumption of the theorem the diameter
[u+2, u.++] is not cloned. It is easy to construct an equality tour that satis-
ties (3.3), does not contain [ur+, u++2], and contains [u, r+], [u, ur+], and all
the remaining diameters (see [7]). Thus the conditions of Theorem 3.6.2 are
satisfied. [-1

4. Conclusions. We have defined several inequalities and shown that they de-
fine facets of GATSP. These inequalities are derived from facet-defining inequalities
for GTSP. These facet-defining inequalities for GTSP are the path inequalities [1] and
their extensions [5] (the classical comb (see, e.g., [3]) and chain [9] inequalities are a
small subset of these inequalities), the path-tree inequalities [6] (the classical clique-
tree inequalities (see, e.g., [3]) are a small subset of these inequalities), and the crown
inequalities [7].

Which of these inequalities are also facet defining for ATSP? A possible way to
answer this question could be to use the technique introduced in [8] and applied in [5] to
several facet-defining inequalities in the undirected case. We have checked, for all the
inequalities described in 3, whether they define facets of ATSP(n), with 6 _< n _< 12,
and we found that all of them do with only two exceptions. The two exceptions are
the bicycle inequality for ATSP(6) and the crown inequality for ATSP(8).

By adding a- 2 to the coefficients of a bicycle inequality associated to the arcs
shown in Figure 4.1 (a) and by adding 2 -a to the coefficients of the arcs shown in
Figure 4.1 (b), we obtain a valid inequality for ATSP(6) for all values of a in the open
interval (0, 4). The inequality defines the same face of ATSP(6) defined by the bicycle
inequality. For a 0 and a 4 the inequality is facet defining for ATSP(6).

By adding a-2 to the coefficients of a crown inequality associated to the arcs that
are shown in Figure 4.2 (a) and by adding 2 a to the coeificients of the arcs shown
in Figure 4.2 (b), we produce an inequality that is valid for ATSP(8) for all values of

624 SUNIL CHOPRA AND GIOVANNI RINALDI

(a) (b)

FIG. 4.1.

u
u

U70 u3

(C)
u6 0 u4

U

u
u8 0 u2

(C)

U7

u4
u

(a) (b)

0 u3

FiG. 4.2.

a in the open interval (0, 4) and that defines the same face of ATSP(8) defined by the
crown inequality. For a 0 and a 4 the inequality is facet defining for ATSP(8).

Acknowledgments. The authors wish to thank two anonymous referees for
comments that led to improvements in the presentation.

REFERENCES

[1] G. CORNUtJOLS, J. FONLUPT, AND D. NADDEF, The traveling salesman problem on a graph and
some related integer polyhedra, Math. Programming, 33 (1985), pp. 1-27.

[2] B. FLEISCHMANN, A new class of cutting planes for the symmetric travelling salesman problem,
Math. Programming, 40 (1988), pp. 225-246.

[3] M. GRTSCHEL AND M. PADBERG, Polyhedral theory, in The Traveling Salesman Problem, E. L.
Lawler et al., eds., Wiley & Sons, Chichester, 1985, pp. 251-305.

[4] M. J/JN(ER, G. REINELT, AND G. RINALDI, The traveling salesman problem, in Network Models,
M. O. Ball et al., eds., Handbooks of Operations Research and Management Science, Vol. 7,
North-Holland, Amsterdam, 1995, pp. 225-330.

[5] D. NADDEF AND (I. RINALDI, The Symmetric Traveling Salesman Polytope: New Facets from
the Graphical Relaxation, Report R. 248, Istituto di Analisi dei Sistemi ed Informatica,
Consiglio Nazionale delle Ricerche, Rome, 1988.

[6] , The symmetric traveling salesman polytope and its graphical relaxation: Composition
of valid inequalities, Math. Programming A, 51 (1991), pp. 359-400.

[7] , The crown inequalities for the symmetric traveling salesman polytope, Math. Oper.
Res., 17 (1992), pp. 308-326.

[8] The graphical relaxation: A new framework for the symmetric traveling salesman
polytope, Math. Programming A, 58 (1993), pp. 53-88.

[9] M. PADBERG AND S. HONG, On the symmetric travelling salesman problem: A computational
study, Math. Programming Study, 12 (1980), pp. 78-107.

SIAM J. DISCRETE MATH.
Vol. 9, No. 4, pp. 625-642, November 1996

() 1996 Society for Industrial and Applied Mathematics
OO8

CAYLEY GRAPHS WITH NEIGHBOR CONNECTIVITY ONE*

L. L. DOTY, R. J. GOLDSTONE$, AND C. L. SUFFEL

Abstract. We give an ,algebraic characterization of the generating sets of Cayley graphs with
neighbor connectivity equal to one for a class of Cayley graphs that includes the Cayley graphs of
all abelian groups. We also show that the determination of the neighbor connectivity of a graph is
NP-hard.

Key words. Cayley graphs, neighbor connectivity

AMS subject classifications. 05C25, 05C40

1. Introduction. In a series of papers, [1], [3], and [4], Gunther and Hartnell
proposed modelling an underground resistance movement as a graph in which the
vertices represent members of the resistance and the edges represent lines of commu-
nication. Unlike the conventional situation where the vertices of a graph represent
components of a communication network that fail as individual elements, in the re-
sistance movement scenario if a member of the underground is arrested, all of his
or her neighbors are betrayed and so are rendered ineffective. Hence in the graph
model, whenever a vertex is "subverted," the entire closed neighborhood of the vertex
is deleted from the graph. The minimum number of vertices whose subversion results
in an empty, complete, or disconnected subgraph is called the neighbor connectivity
of the graph.

In order to describe these ideas more precisely, the following definitions are used:
suppose F is a graph with vertex set V. For any subset A c V, N[A] A U {v E
V v is adjacent to a for some a E A} is called the closed neighborhood of A, while
N(A) N[A] \ A is called the open neighborhood of A. If A {a}, then we write

N[a] and N(a), respectively. The remaining definitions essentially follow Gunther
[4] and Gunther, Hartnell, and Nowakowski [6]. To subvert a vertex v F means
to remove all elements of N[v] from F. The resulting induced subgraph, called the
survival subgraph, is exactly the subgraph of F induced by V \ N[v]. A set of vertices
B is called a subversion strategy whenever all of the vertices in N[B] are deleted from
the graph. The survival subgraph for B is the subgraph of F induced by V \ N[B]. If
the survival subgraph for B is empty, complete, or disconnected, then B is called an

effective subversion strategy. We say that a graph F has neighbor connectivity k, and
we write NC(F) k if k is the minimum size of an effective subversion strategy.

Neighbor connectivity is a variation on connectivity and in some ways is related
directly to connectivity. Gunther, Hartnell, and Nowakowski [6] have shown, for ex-
ample, that NC(F) _< (F). Other properties of this new invariant, however, are
decidedly unlike the corresponding connectivity properties. For example, whenever
rn _> 6, NC(Cm) 2. If an edge is added to Cm in such a way as to avoid forming a

Received by the editors April 4, 1994; accepted for publication (in revised form) December 12,
1995.

Department of Computer Science and Mathematics, Marist College, Poughkeepsie, NY 12601
(jzca@maristb.marist,edu).

Department of Mathematics, Bard College, Annandale-on-Hudson, NY 12504 (goldstone@
bard.edu).

Department of Pure and Applied Mathematics, Stevens Institute of Technology, Hoboken, NJ
07030 (csuffelsitvxa.stevens-tech.edu).

625

626 L.L. DOTY, R. J. GOLDSTONE, AND C. L. SUFFEL

triangle, then the neighbor connectivity of the graph with the additional edge is less
than the neighbor connectivity of the original one. The computation of connectivity
is polynomial, while (as we show in the appendix) the decision problem for neighbor
connectivity is NP-complete. This essential difference provides striking evidence that
neighbor connectivity is fundamentally a more complex idea than connectivity.

Most previous work on neighbor connectivity has centered around the synthesis
problem, that is, the design of graphs that have maximum neighbor connectivity or
that are in some sense secure against subversion. For example, see [1]-[6]. Critically
k-neighbor-connected graphs are investigated in [7].

In this paper, we begin to study the analysis problem for neighbor connectivity
by narrowing the focus to Cayley graphs of neighbor connectivity one. In this context,
we pursue the idea that algebraic properties of the generating set determine whether
or not a finite Cayley graph has the neighbor connectivity analog of a cutvertex.
We find algebraic conditions on the generating set that are sufficient to force neighbor
connectivity one, and we prove that these conditions are also necessary for a large class
of finite Cayley graphs that includes the Cayley graphs of all finite abelian groups.

In the appendix, we show that the decision problem for neighbor connectivity of
an arbitrary graph is NP-complete.

1.1. The three main results. Our first main result is that the survival sub-
graph for the subversion strategy {1} of a Cayley graph of a group G has isolated
vertices if and only if the generating set S is a union of cosets for a nontrivial sub-
group disjoint from S (Theorem 2). Whenever a subset of elements of G is a union of
cosets of a nontrivial subgroup of G, we refer to the set as being periodic.

If the survival subgraph has no isolated vertices, we pass from the original Cayley
graph to a certain type of minimal Cayley subgraph that we call irreducible (unless,
of course, the original Cayley graph is already irreducible). The irreducible Cayley
subgraph has the same survival subgraph for {1} as the parent Cayley graph but is
more tightly related to their common survival subgraph because the reduction process
pares away vertices and edges that are irrelevant to the structure of the survival
subgraph. In particular, the reduction process provides a mechanism for focusing on
the portion of the generating set whose algebraic properties are decisive for neighbor
connectivity.

The irreducible Cayley subgraph can be disconnected, in which case there is a
simple description of the disconnectedness of the survival subgraph of the original
graph. If the irreducible Cayley subgraph is connected (and its survival subgraph has
no isolated vertices), our second main result is that the survival subgraph for {1} is
disconnected if the generating set is a union of cosets of a nontrivial subgroup H of
G together with some--but not all--of the nonidentity elements of H (Theorem 7).
Whenever a subset of elements of G has the property just described, we refer to the
subset as being nearly periodic.

Our third main result concerns the necessity of the condition of near periodicity.
For this we restrict our attention to finite Cayley graphs whose generating sets are a
union of conjugacy classes--a condition that is trivially true for abelian groups but
which may obtain in nonabelian groups as well. We call such generating sets normal.
For groups with normal generating sets, we conclude that an irreducible connected
Cayley graph whose survival subgraph has no isolated vertices is disconnected if and
only if the generating set is nearly periodic (Theorem 14). The relation between the
irreducible Cayley subgraph and the parent Cayley graph is controlled enough to allow
us to rephrase these results entirely in terms of the structure of the generating set of

CAYLEY GRAPHS WITH NEIGHBOR CONNECTIVITY ONE 627

the original graph (Theorem 16).
1.2. Outline of the proof. The isolated vertex equivalence is easily settled with

direct algebraic arguments (Theorem 2), and it is also straightforward to show that
an irreducible Cayley graph with a nearly periodic generating set has a disconnected
survival subgraph for {1} (Theorem 7). We need a much more involved argument to
establish a converse for Theorem 7. We consider Cayley graphs arising from a group
with a normal generating set, and we show that whenever the survival subgraph of
such a Cayley graph is disconnected but without isolated vertices, the Cayley graph
has a nearly periodic generating set (Theorem 14). In the course of that argument,
the following two critical concepts related to components emerge:

(1) A component C is said to be nongenerating if the subgroup generated by the
vertices of C is a proper subgroup of G. Nongenerating components are important
because we can show that S is nearly periodic if and only if the survival subgraph for
{1} has a nongenerating component (Proposition 3). In light of this equivalence, the
form of our argument is that if the survival subgraph is disconnected without isolated
vertices, then it must have a nongenerating component.

(2) In order to find a nongenerating component, we employ the concept of gen-
erators that are invisible from a component. For any component C of the survival
subgraph, we say that S has elements invisible from C if S

_
N(C). We show that

if the Cayley graph is irreducible and if its survival subgraph for {1} is disconnected
without isolated vertices, then S must contain elements that are invisible from a com-

ponent C of maximum vertex cardinality (Proposition 9).
Once we have a set of generators Ic C S that are invisible from the component

C, we inspect the subgroup generated by Ic..If this subgroup is not contained in the
generating set, the portion that lies outside the generating set will contain at least one

nongenerating component. If the subgroup generated by Ic lies inside the generating
set, then a coset of the normal subgroup generated by Ic will be a nongenerating
component. Thus nongenerating components are present in all cases, and we conclude
that S is nearly periodic (Theorem 14).

2. Preliminary definitions and results. Let CAY(G,S) denote a Cayley
graph whose vertices are the elements of the finite group G (written multiplicatively
with identity 1) and whose edges connect g,h E G whenever g-lh S. Since
CAY(G,S) is a graph, we always require S S-1 and 1 S. The results pre-
sented in this paper characterize the set of generators of a large class of Cayley graphs
(including all abelian Cayley graphs) with neighbor connectivity equal to one. Cayley
graphs are vertex-transitive; thus we assume without loss of generality that the sub-
version strategy is {1}. Since NIl] S U {1}, we use $1, instead of the usual NIl],
to denote the closed neighborhood of {1}. Further, we use SCAY(G, S) to denote the
survival subgraph induced by the vertex set G \ S1. If H is a nontrivial subgroup of
G, then a subset Y c G is called left H-periodic (or left periodic if we do not need to
refer to H), provided that HY Y. This condition is equivalent to Y being a union
of right cosets of H. For any subset A c G, we use (A) to denote the subgroup of
G generated by A. Since G is finite, an arbitrary element of (A} can be viewed as a
product of elements of A without recourse to inverses.

Lemma 1 collects some easily derivable algebraic properties that are useful when
describing either the behavior of components in SCAY(G, S) or the periodic nature of
subsets of G.

LEMMA 1. Let CAY(G, S) be a Cayley graph.

628 L.L. DOTY R. J. GOLDSTONE AND C. L. SUFFEL

(a) If X is a subset of G, then N(X) (XS) \ X.
(b) If X is a left H-periodic subset of G, then either H C X or H N X . In

particular, if X is left H-periodic and 1 X, then H C? X .
(c) For any nonempty subsets X, Y of G, X-1Y c Y if and only if XY c Y if

and only if (X) Y Y.
(d) If X is a left H-periodic subset of G, then N(X) is left H-periodic.
(e) For any subset U of G \ St, U is a union of components of SCAY(G, S) if

and only if US c U kJ S.
Proof. The conclusion in part (a) follows directly from the definition of N(X).
The conclusion in part (b) is a direct consequence of the fact that cosets form a

partition of G.
For part (c), note that it is always true that Y c (X) Y. The reverse containment

follows from XY C Y and the obvious induction on the length of an element of {X}.
The proof for the hypothesis X-1Y C Y is similar.

In part (d), the conclusion that N(X) is left H-periodic follows immediately from
part (a) and the observation that if A and B are left H-periodic and Y is any subset
of G, then AY and A \ B are left H-periodic.

To establish the equivalence in part (e), first note that if C is a component, then
CS c Ct_J S, by the definition of component. Since (A B)S ASUBS, the inclusion
with C replaced by U follows directly. Conversely, suppose U is a set of vertices of
SCAY(G, S) with the property that US c U t2 S. Let u E U. We claim that if x
is adjacent to u in SCAY(G, S), then x E U. If x is adjacent to u, then x us for
some s S, from which we conclude that x US C U t2 S. But x G \ S, and so
x (U t3 S) \ S c U. Using an obvious induction on path length, we conclude that
whenever x is joined by a path to u in SCAY(G, S), then x E U. Hence U is a union
of components. Yl

Recall that NC(CAY(G,S)) 1 if SCAY(G,S) is empty, complete, or discon-
nected. It is clear that the survival subgraph SCAY(G,S) is empty if and only if
S G \ { 1 }. Furthermore, it is easy to see that (G \ S)(G \ S) c S is a necessary
and sufficient condition for the survival subgraph to be complete. In the remainder of
the paper, therefore, we investigate when SCAY(G, S) is disconnected.

3. Necessary and sufficient conditions for the survival subgraph to have
isolated vertices. In this section we deal with the case in which SCAY(G, S) has
an isolated vertex. We first characterize the generating set of a Cayley graph whose
survival subgraph has an isolated vertex.

THEOREM 2. Let CAY(G,S) be a Cayley graph with v G \ St. Then the
following statements are equivalent:

(a) the element v is an isolated vertex in SCAY(G,S);
(b) S is left (v}-periodic;
(c) the nonidentity elements of (v) are isolated vertices of SCAY(G, S).
Proof. For (a) = (b), let v be an isolated vertex of SCAY(G,S). Then vS

g(v) C S. Using Lemma l(c), we conclude that (v} S S. Hence S is left
periodic.

For (b) = (c), let S be left (v}-periodic. Since 1 S, Lemma l(b) implies
(v} gl S , and so each nonidentity element of (v} is a vertex of SCAY(G, S). The
left (v}-periodicity of S gives (v} S S. From these two facts we conclude that each
nonidentity element of (v} is an isolated vertex in SCAY(G, S).

The implication (c) = (a) is immediate. [:]
COROLLARY 2.1. Let D be the set of all isolated vertices in SCAY(G, S). The

CAYLEY GRAPHS WITH NEIGHBOR CONNECTIVITY ONE 629

set D t {1} is a subgroup. Furthermore, S is left H-periodic if and only if H is a
subgroup of D U { 1}.

Proof. To show that D U { 1} is a subgroup, it is enough to verify that it is closed
under multiplication. To see this, let v and w be elements of D. Since S-1 S,
we cannot have v-1 E S. If vw S, the equation v-(vw) w indicates that
an edge in SCAY(G,S) links v- and w, contradicting the assumption that w is
isolated. Consequently, vw SCJkY(G, S). Since both v and w are isolated vertices
in SCAY(G, S), we havevS= SandwS= S. But thenvwS=v(wS) =vS= S,
which shows that vw is n isolated vertex of SCAY(G,S). Thus D t2 {1} is closed
under multiplication and is a subgroup as claimed.

Let S be left H-periodic. Then HS S, so each vertex of H is isolated in

SCAY(G, S), establishing that H C D {1}. To establish the converse, let H C
D {1}. Then by part (b) of Theorem 2, S is left (h}-periodic for each h e H \ {1}.
It immediately follows that S is left H-periodic. Yl

COROLLARY 2.2. If S is left periodic, then NC(CAY(G, S))= 1.

Proof. Since S is left periodic, Corollary 2.1 guarantees that SCAY(G,S) has
isolated vertices. Thus D t2 {1} is a nontrivial subgroup of G. If the cardinality of
Did{l} is two, then SCAY(G, S). has only one isolated vertex, and NC(CAY(G, S)) 1
whether or not SCAY(G, S) has another component. If the cardinality of D U {1} is
at least three, then SCAY(G, S) has at least two isolated vertices and is disconnected.
Therefore, the neighbor connectivity of CAY(G, S) is one in all cases. Yl

4. Sufficient conditions for disconnectedness when the survival sub-
graph has no isolated vertices. In the previous section, we established that the
presence of isolated vertices in the survival.subgraph of CAY(G, S) is equivalent to
the periodicity of S for a subgroup contained in G \ S. In the rest of the paper, we
investigate disconnectedness in SCAY(G,S) when there are no isolated vertices or,
equivalently, when S is not periodic for any subgroup contained in G \ S. In this
section, we introduce the concept of near periodicity for generating sets and show it is
equivalent to the existence of components whose vertex set does not generate G. We
then describe the concept of an irreducible Cayley graph and show that in such graphs,
either of the above two equivalent conditions is sufficient for the survival subgraph to
be disconnected.

4.1. Nongenerating components and near periodicity. The following ex-
ample illustrates a generic situation that motivates our next pair of definitions: let
G (Z20, +) and, shifting to additive notation, let H (5} and S (H+l)t(H+5).
Then S is H-periodic and the isolated vertices of SCAY(G, S) are the set H \ {0}.
In addition to the isolated vertices, SCAY(G,S) has a single connected component
whose vertex set is (H + 2) (H + 3).

Suppose now that we enlarge S by adding the isolated vertex 10 to S, forming
S* (H+l) t2(H+5)t{10}. (Since 10-_--10 (mod20), we haveS* =-S* as

required.) What happens is that SCAY(G, S*) becomes disconnected with no isolated
vertices. The formerly isolated vertices 5 and 15 are now joined by an edge corre-
sponding to the new generator 10 and form a connected component of SCAY(G, S*).
The component of SCAY(G, S) whose vertices are (H + 2) U (H + 3) is still a compo-
nent of SCAY(G, S*), although it now has more edges. S* is no longer periodic--it is
now a union of cosets of H together with part, but not all, of H. The new component
with vertex set {5, 15} is contained in H and so is a nongenerating component in the
sense that its vertex set does not generate G.

630 L.L. DOTY, R. J. GOLDSTONE, AND C. L.. SUFFEL

These observations provide some motivation for making the following definitions.
A component C of a subgraph of CAY(G, S) is called a nongenerating component if
and only if <C> G. A subset Y C G is called nearly H-periodic (or just nearly
periodic if we do not need to refer to H) if H is a nontrivial subgroup of G, Y \ H is
left H-periodic, H \ { 1 } Y, and Y F H \ {1 } - . The next proposition establishes
that, in the absence of isolated vertices in SCAY(G, S), the two concepts defined above
are equivalent. This equivalence will be fundamental to our analysis in 5 of the near
periodicity of S when SCAY(G, S) is disconnected with no isolated vertices.

PROPOSITION 3. Let CAY(G, S) be a Cayley graph for which SCAY(G, S) has no
isolated vertices. The survival subgraph SCAY(G, S) has a nongenerating component
if and only if S is nearly periodic.

Proof. Let C be a nongenerating component of SCAY(G, S); this means <C> = G,
and <C/contains at least one nonidentity vertex outside S. Since C is not an isolated
vertex, /C/ contains at least one generator in S. Thus in order to conclude that S
is nearly /C>-periodic, it remains to show that S \ <C> is left <C>-periodic. Since S
generates G and C does not, S \ (C> : 0. In order to establish that (C> (S \ (C>) c
S\(C>, let s e S\(C>. Then CsF<C) . Since C is a component, we have
CS c C L S. We may conclude, therefore, that Cs C (C L2 S) \ <C> S \ <C>. Thus
C(S \ <C/) C S \ (C>. Therefore, by Lemma l(c), S \ <C> is left <C>-periodic.

Conversely, suppose S is nearly periodic. Then there is a nontrivial subgroup
H < Gsuchthat H\{1} S, SFH\{1} , andS\Hisleft H-periodic. We
claim that H \ S1, which is nonempty by assumption, is a union of components of
SCAY(G, S). Since the vertices of H \ $1 can generate no more than H, the claim
implies that H \ $1 is a union of nongenerating components. To establish this claim
we decompose (H \ S1)S as the union of two terms:

(H \ S1)S (H \ S)(S F H) L (H \ SI)(S \ H).
Since H is a subgroup, the first term of the union is contained in H. Since S r H
(SFH)- 1 does not belong to the first term of the union, thus that term is contained
in H \ { 1 }. Because S \ H is left H-periodic, (H \ S)(S \ H) C S \ H. Since S \ H
is finite, a simple cardinality argument implies that (H \ S)(S \ H) S \ H. Hence
the second term of the union is S \ H. Thus

(H \ Sl)S a (H \ {1}) L) (S \ H) (H L) S) \ {1} (H \ Sz) L S,

and we conclude by Lemma l(e) that H \ S is a union of necessarily nongenerating
components. E]

Remark. Proposition 3 is phrased to coordinate with our plan of attack, which
excludes the isolated vertex case already dealt with in 3. However, the proof of Propo-
sition 3 does not require the assumption that SCAY(G, S) has no isolated vertices.
What we actually proved is, first, that if SCAY(G, S) has a nongenerating component
C that is not an isolated vertex, then S is left (C/-periodic and, second, that if S is
left H-periodic, then H \ Sz is a union of nongenerating components (some of which
could be isolated vertices).

4.2. Irreducible Cayley graphs. We have seen that the periodicity of the
generating set S is sufficient (and necessary) for the presence of isolated vertices in
SCAY(G,S) and that the near periodicity of S is sufficient for the existence of a

nongenerating component in SCAY(G, S). One might hope that the existence of a
nongenerating component would imply that SCAY(G,S) is disconnected, in which
case the near periodicity of S would imply that SCAY(G, S) is disconnected. It is

CAYLEY GRAPHS WITH NEIGHBOR CONNECTIVITY ONE 631

possible, however, for SCAY(G, S) to consist of a single component which is, nonethe-
less, nongenerating.

For example, let G (Z25,+), H (5}, and S (G\H) U{10,15}. Then
SCAY(G, S) consists of a single component with vertices 5 and 20 joined by the edge
corresponding to +/-15. This is a nongenerating component, since its vertex set is
contained in H. Hence we have SCAY(G, S) connected even though S is nearly H-
periodic.

To analyze the situation described above, we must consider subgraphs of CAY(G, S)
of the form CAY(H, H N S), where H is a subgroup of G. Since H N S may not gen-
erate H, we must use a broader definition of Cayley graphs in order to include these
new examples. The new more inclusive definition is exactly the same as the definition
given in 2, except that we do not automatically require, when we write CAY(G, T),
that T generates G. The nature of CAY(G, T) when T does not necessarily generate
G is well known:

(1) CAY(G, T) is connected if and only if T generates G. In this case, we refer
to CAY(G, T) as a connected Cayley graph.

(2) If T does not generate G, then CAY(G,T) is a disjoint union of [G HI
connected components, each of which is isomorphic to CAY(H,T), where H
We refer to these new examples as disconnected Cayley graphs.

Although there is some risk of confusion, it is conventional, when dealing with
a disconnected Cayley graph, to refer to the set T as a set of generators and to the
elements of T as generators, even though T generates a proper subgroup of G. Having
now broadened our definition, we stress that throughout this paper, CAY(G, S) always
denotes a connected Cayley graph. The only possibly disconnected Cayley graphs we
encounter are subgraphs of connected Cayley graphs CAY(G, S) that have the form
CAY(H, H N S) for some subgroup H < G.

In the situation described at the beginning of this section, SCAY(G,S) has a
nearly periodic generating set and consists of a single nongenerating component. This
condition can occur whenever G has a proper subgroup H for which G \ $1 H \
$1. (H (5} in the example given above.) If such a subgroup exists, then as we
observe in Lemma 4(5), SCAY(G, S) SCAY(H, H S) and so the connectivity of
SCAY(G, S) is determined only by the relationship of H S to H. Regardless of
what this relationship dictates, S \ H is always a union of all right cosets of H in G
except for H itself. In this case, then, S will be nearly H-periodic whether or not
SCAY(G, S) is connected.

We can ensure that the presence of a nongenerating component implies that
SCAY(G, S) is disconnected if we outlaw the situation described above by restricting
our attention to Cayley graphs in which G \ $1 = H \ S for any proper subgroup H.
We call a Cayley graph with this property irreducible. Otherwise, if G \ S H \ S
for some proper subgroup H, we call the Cayley graph reducible. If CAY(G,S) is
reducible, we can replace it with the subgraph CAY(H, HN S) which has the identical
survival subgraph. We observe in Lemma 4(b) that whenever CAY(G, S) is reducible,
H can be chosen so that CAY(H, HS) is irreducible. Consequently, everything that
contributes to the component structure of SCAY(G, S) is encoded in the periodicity
structure of H S and the relationship between H A S and H; the parts of S and G
outside of H are irrelevant.

These observations determine the following strategy: we study irreducible Cayley
graphs because their generating sets contain no elements irrelevant to the component
structure of the survival subgraph. When confronted with an arbitrary Cayley graph

632 L.L. DOTY, R. J. GOLDSTONE, AND C. L. SUFFEL

CAY(G, S), we replace it, if it is reducible, with the irreducible subgraph CAY(H, H
S), which has the identical survival subgraph. We ultimately will show (Theorem 16)
that we can use our results on all connected Cayley graphs with normal generating
sets whether or not the graph is reducible.

LEMMA 4.
(a) The Cayley graph CAY(G, S) is irreducible if and only if (G \ S) G.
(b) If CAY(G, S) is reducible, set H (G \ S}. Then CAY(H,H N S) is irre-

ducible and SCAY(G, S) SCAY(H, H N S).
Proof. For (a), we prove the contrapositive equivalence. Let H (G \ S) and

suppose that H G. It is easy to check that

(1) G \ $1 (e \ S} \ $1 H \ S,

and so CAY(G, S) is reducible. Conversely, if CAY(G, S) is reducible, then (G \ S)
(H \ S> c H for a proper subgroup H < G. Thus <G \ S> C H :/: G.

For (b), we first show that CAY(H,H S) is irreducible. According to part
(a), it suffices to check that (H \ S) H. Recalling what H is, we must verify
that ((G \ S> \ S} (G \ S>, and this is elementary. To establish the equality of the
survival subgraphs, note first that (1) above shows that the two subgraphs have the
same vertex set. Moreover, the generating set HeS for CAY(H, HS) is precisely the
set of generators that correspond to edges having both their vertices in the common
vertex set.

Although SCAY(G, S) is always equal to SCAY(H, H S) for H =/G \ S}, the
graph CAY(H, HNS) may be a disconnected Cayley graph and so will be disconnected

before subversion. The next lemma indicates that in this case, NC(CAY(G, S)) 1.
This is not immediately obvious, because we have to address the possibility that
CAY(H, H N S) might consist of two components and subversion could eliminate the
component containing 1, leaving a single component. Indeed, this can happen, but
when it does we observe that the single remaining component is a clique, so that we
still have neighbor connectivity equal to one.

LEMMA 5. Let CAY(G, S) be a connected Cayley graph and set H {G \ S}. If
the irreducible subgraph CAY(H, HS) is a disconnected Cayley graph, then SCAY(G,
is disconnected or complete, and so NC(CAY(G, S)) 1.

Proof. CAY(H, H S) is a union of components, each of which has a vertex set
equal to a right coset of (H g S} in H and each of which is isomorphic to CAY((H
H N S). Since subversion of {1} affects only the component of CAY(H, H S) con-
taining 1, we have a disjoint union

(2) SCAY(H, H S) SCAY((H S), H S) U CAY((H S), H N S),

where T is the set of all nonidentity right cosets of (H S) in H. According to
Lemma 4, SCAY(G, S) SCAY(H, S S). If SCAY(H, H S) is disconnected,
we are finished. If SCAY(H, H S) is connected, the union in (2) contains exactly
one coset. Since subversion of {1} affects only the component of CAY(H,H S)
containing 1, it follows that CAY(H, H S) consists of exactly two (H N S)-cosets:
(H S) itself and one nonidentity right coset. Moreover, every element of (H
must be deleted upon subversion of {1}; hence, (H S} c S. Consequently, all the
vertices of SCAY(G, S) SCAY(H, H S) are in the only nonidentity right (H
coset in H, and these vertices induce a complete graph. [:]

In view of Lemma 5, we are left to consider the case in which the irreducible

CAYLEY GRAPHS WITH NEIGHBOR CONNECTIVITY ONE 633

subgraph CAY(H, HN S) is connected. Specifically, the question of the connectedness
of SCAY(G, S) has been reduced to the question of the connectedness of SCAY(H, HN
S) where H {G \ S} and CAY(H, HS) is an irreducible connected Cayley subgraph
of CAY(G, S). In the rest of the paper, we address the question of the connectivity
of SCAY(G, S) when CAY(G, S) is an irreducible Cayley graph. However, some of
the results that we develop to elucidate this question do not require the assumption
of irreducibility, and so we do not impose it uniformly.

4.3. Sufficiency results for irreducible Cayley graphs.
LEMMA 6. If CAY(G,S) is irreducible and SCAY(G,S) has a nongenerating

component, then SCAY(G, S) is disconnected.
Proof. The proof is by contradiction. Suppose SCAY(G, S) is connected. Then

the nongenerating component C is the only component of SCAY(G, S). Hence (C) \
S G \ S. Since (C} G, G is reducible. [:]

THEOREM 7. Let CAY(G, S) be an irreducible Cayley graph. If S is nearly peri-
odic, then SCAY(G,S) is disconnected.

Proof. Since S is nearly periodic, we conclude from Proposition 3 that SCAY(G, S)
has a nongenerating component. According to Lemma 6, this means that SCAY(G, S)
is disconnected, since CAY(G, S) is irreducible.

5. Necessary conditions for disconnectedness when the survival sub-
graph has no isolated vertices. Beginning with a disconnected survival subgraph
with no isolated vertices, our goal is to show that we must have a nearly periodic
generating set. This means we need a special subset of generators that will generate a
proper subgroup for which the generating set is nearly periodic. Equivalently, Propo-
sition 3 allows us to search for a nongenerating component of the survival subgraph.
We use both these equivalent approaches below.

5.1. Invisible generators. In this section we show how to use components of
the disconnected survival subgraph to pick out special subsets of generators, called
invisible generators, that will generate proper subgroups for which the generating set
is nearly periodic. Define the set of generators invisible from C as Iv S \ N(C).
In Proposition 9 we show, under our standing hypotheses of no isolated vertices, that
SCAY(G, S) always has components with invisible generators. In Proposition 13 we
show that the existence of invisible generators leads to nongenerating components in
SCAY(G, S) for a large class of Cayley graphs including all those with abelian G, thus
establishing the converse of Theorem 7 for that class of graphs.

We begin with a technical lemma.
LEMMA 8. Let X C G have the property that N(X) S in CAY(G, S). If there

is a g E G such that gX X, then g is an isolated vertex of SCAY(G, S).
Proof. Let g and X be as stated in the hypothesis.

gX=X== {g}X=X byLemmal(c),

== {g} N(X) N(X) by Lemma l(d),
N(x)

==a (g} S) by Lemma l(b),

== g is an isolated vertex of SCAY(G, S).

We shall call a component C of SCAY(G, S) a maximum component if, in the set
of all components of SCAY(G, S), C has maximum vertex cardinality. The relevance

634 L.L. DOTY R. J. GOLDSTONE, AND C. L. SUFFEL

of maximum components is indicated by the following proposition.
PROPOSITION 9. Let CAY(G,S) be a Cayley graph for which SCAY(G,S) is

disconnected and has no isolated vertices. Then any maximum component has invisible
generators in S.

Proof. Let C be a maximum component and suppose that C has no invisible
generators in S. We shall obtain a contradiction. Since SCAY(G, S) is disconnected,
we may let g be a vertex ofSCAY(G,S) that lies outside of C. (To refer to such
vertices, we use the shorthand g @ C U $1.) Then g-lC N S1 }, because if g-lc s
or g-lc i with c E C, then c gs or c g, contradicting g C. Thus each element
of g-lC is a vertex of SCAY(G, S). Whenever Cl and c2 are adjacent vertices of C,
g- Cl and g- lc2 are adjacent vertices of g-1C. Consequently, g-1C is a connected
subset of SCAY(G, S) of maximum vertex cardinality and so must be a maximum
component of SCAY(G, S).

Consider the set of all components of the form g-1C as g ranges over G \ (CU $1).
In light of Lemma 8, g-lC C, so the vertices of the components g-lC are contained
in G \ (C U $1). We claim it cannot be that g-IC N h-lC 0 for all g, h C U S.
Suppose this were so. Then, on the one hand, we would have

(3) la \ (c s)l. Icl.

On the other hand, since each g-C is a subgraph of CAY(G, S) disjoint from CU S,
we have

U -lcc a\ (cus),
gCuS

which means that

(4) < (cu S)l.

Since IcI _> 2, (3) and (4) are incompatible. We conclude that g-Ch-lC 0 cannot
occur for every distinct g, h C U $1. Hence, there must be distinct g, h C U S
such that g- C h-1C :/: 0. Now g-1C and h-1C are components, so the only way
they can intersect is if g-iC h-IC. This gives us g, h C U S with gh-1 - 1 and
gh-C C. By Lemma 8, gh- is an isolated vertex of SCAY(G, S), contradicting
the hypothesis and so proving that C must have invisible generators. [3

5.2. Normal generating sets. The results of the preceding section guarantee
that if SCAY(G, S) is disconnected with no isolated vertices, then SCAY(G, S) has
a component with invisible generators. We want to show that, in most cases, S is
nearly periodic with respect to the subgroup generated by these invisible generators.
In order to do this, and hence to derive a partial converse of Theorem 7, we restrict
our attention to a class of Cayley graphs that includes all those for which G is abelian.

For a finite group G and subset X c G, we use ((X}} to denote the normal
subgroup generated by X, i.e., the subgroup of G generated by all conjugates of
elements of X. We call X a normal subset provided that gXg- X for all g E G.
In the remainder of the paper, we show that for the class of Cayley graphs CAY(G, S)
for which S is a normal subset, SCAY(G, S) is disconnected with no isolated vertices
only if S is nearly periodic.

CAYLEY GRAPHS WITH NEIGHBOR CONNECTIVITY ONE 635

For an example of a nonabelian group G with normal generating set S, take
G An, the alternating group on n elements, let n >_ 3, and take S to be the set of
all 3-cycles.

In order to understand the importance of requiring S to be a normal subset of (,
first recall that a group is abelian if and only if the inversion of elements is a group
automorphism. For nonabelian groups, inversion is not a group automorphism, but
Cayley graphs with normal generating sets are "almost abelian" in the sense specified
by the following lemma.

LEMMA 10. The inversion of elements in G induces a graph automorphism of
CAY(G,S) if and only if S is a normal subset of G. Analogously, the inversion of
elements in G induces a graph automorphism of SCAY(G, S) if and only if S is a
normal subset of G.

Proof. For g E G, the generator s E S joins g to gs if and only if gsg-1 joins
(gs) -1 to g-l, and so the statement for CAY(G, S) is true. Since S S-, inversion
preserves the generating set. Thus S is closed under both inversion and conjugation;
consequently, so is G \ $1.

COROLLARY 10.1. If S is a normal generating set, then C is a component of
SCAY(G, S) if and only if C- is also.

The next lemma lists three algebraic properties of normal subsets.
LEMMA 11. Let S be a normal subset of G in Cay(G,S) and let H

Then
(a) H N S is a normal subset in the irreducible Cayley graph CAY(H, H V)S);
(b) for any T C G, TS SI implies ((T)) S S;
(c) the group consisting of all isolated vertices of SCAY(G, S) together with 1 is

a normal subgroup of G.
Proof. Part (a) follows immediately from Lemma 4(b) and the observation that

the intersection of a normal subset of G with a subgroup of G is a normal subset of G.
Parts (b) and (c) are established by straightforward calculations using the definition of
normal subset and the fact that ((T)) is the subgroup of G generated by all conjugates
of elements of T.

5.3. Quotient Cayley graphs. In the course of the argument that follows, we
find it useful to pass from a connected Cayley graph CAY(G, S) to a Cayley graph of
G/H for a particular subgroup H that is normal in G. In the situation that arises,
the generating set S is very well adapted to the factorization--S is H-periodic with
H C S. For the rest of this section, we assume that $1 has this property.

Before considering the correspondence between the Cayley graph of G and the
Cayley graph of G/H, it is useful to describe how the condition that S is H-periodic
with H C S affects the structure of CAY(G, S) and SCAY(G, S)"

(1) The H-periodicity of S implies that whenever a vertex in Hx is adjacent to a
vertex in Hy, every vertex of Hx is adjacent to every vertex of Hy. To see why, we can
assume without loss of generality that x is adjacent to y. Then x-y S, which means
that Hx-ly C S since S is H-periodic. The normality of H then yields x-Hy C S,
so that for all h, h2 H, hlX is adjacent to h2y using the edge corresponding to
x-hh2y S.

(2) The fact that H C $1 implies that, in both CAY(G, S) and SCAY(G, S), the
vertices belonging to each coset of H induce a clique.

The two observations above imply that when S is H-periodic with H C S,
both CAY(G,S) and SCAY(G,S) are graphs whose vertex sets are partitioned (by
H-cosets) into cliques with the property that between any two cliques there are either

636 L.L. DOTY R. J. GOLDSTONE AND C. L. SUFFEL

no edges or a complete join. We may thus refer to two such cliques as being adjacent
or nonadjacent without fear of ambiguity.

We now turn to the associated Cayley graph on G/H. Let : G G/H be
the quotient homomorphism and let T S \ {1}. Then T T-1, $1 T,
and since S generates G, T must generate CG G/H. Hence we may speak of the
Cayley graph CAY(G, T). Its vertices correspond to the cosets of H in G and it is
connected if and only if CAY(G, S) is connected. Since S is H-periodic, we also have
C-iT1 S1 and so (G \ S) CG \ T1. Consequently, induces maps of graphs
CAY() CAY(G, S) CAY(G, T) and SCAY() SCAY(G, S) --* SCAY(G, T).
(The effect of CAY() and SCAY() on both vertices and edges is precisely the effect
of .)

CAY() collapses each clique in CAY(G, S) induced by a coset of H to a ver-
tex in CAY(G,T). Whenever two H-cliques in CAY(G,S) are adjacent, the ver-
tices they collapse to in CAY(G, T) are adjacent, and whenever two H-cliques in
CAY(G, S) are nonadjacent, the vertices they collapse to in CAY(G, T) are nonad-
jacent. This description indicates that we can recover CAY(G, S) from CAY(G, T)
by the following procedure: replace each vertex of CAY(G,T) by a clique on
vertices and link two such cliques by a complete join whenever the vertices they re-
placed are adjacent. In other words, CAY(G,S) CAY(G,T)[KIHI], the wreath
product (or composition or lexicographic product) of graphs CAY(G, T), and
where Kn denotes the clique on n vertices. Exactly the same reasoning shows that
SCAY(G, S) SCAY(G,

The wreath product structure of SCAY(G, S) makes it evident that each com-
ponent C of SCAY(G, S) is of the form C D[KIHI] SCAY()-D, where D is
component of SCAY(G, T). Thus SCAY(induces a one-to-one correspondence of
the components of SCAY(G, S) and SCAY(G, T).

It is easy to see that nongenerating components of SCAY(G, T) are preserved
by SCAY()-: since is a homomorphism, we have (X) (X) for any subset
X c G. Thus if the vertices of a component C generate G, then the vertices of the
component C will generate CG. Consequently, if D is a nongenerating component
of SCAY(G,T), its inverse image SCAY()-ID is a nongenerating component of
CAY(G, S).

Finally, suppose C is a component of SCAY(G, S) with invisible generators Iv
such that ((Iv}) C S and S is ((Ic}}-periodic. The normal subgroup H in the above
discussion is now ((Iv}). Then the component SCAY()C of SCAY(G,T) has no
invisible generators in T, because such an invisible generator would give rise to an
entire coset of generators invisible from C in CAY(G, S).

These results are summarized in the following lemma.
LEMMA 12. Let CAY(G, S) be a connected Cayley graph for which H is a normal

subgroup of G, H C S, and S is H-periodic. Further, let : G --, G/H be the
quotient homomorphism and let T S \ {1}.

(a) Then T is a generating set for dpG, so that CAY(G, T) is a connected Cayley
graph.

(b) The homomorphism dp induces a one-to-one correspondence between compo-
nents of SCAY(G, S) and components of SCAY(G, T).

(c) If D is a nongenerating component of SCAY(G,T), then SCAY()-ID is
a nongenerating component of SCAY(G, S).

(d) If H {{Ic)), where Ic is a set of generators invisible from a component
C of SCAY(G,S), then the component SCAY()C of SCAY(G,T) has no invisible

CAYLEY GRAPHS WITH NEIGHBOR CONNECTIVITY ONE 637

generators in T.

5.4. Necessity results for Cayley graphs with normal generating sets.
Proposition 9 guarantees that when the survival subgraph is disconnected without
isolated vertices, there will be components from which some generators are invisible.
We now have all the tools we need to show that when the generating set is normal,
the presence of invisible generators ensures that the generating set will be nearly
periodic. In Proposition 13, we obtain near periodicity in some cases. The remaining
cases are handled in Theorem 14, which summarizes all the cases in the language of
nongenerating components.

PROPOSITION 13. Let CAY(G,S) have a normal generating set S, and let
SCAY(G,S) be disconnected with no isolated vertices. Suppose C is a component
of SCAY(G, S) that has invisible generators Ic C S. Then

(a) N(C) is left (Ic}-periodic with (Iv)fi N(C)= ;
(b) if (Iv) $1, then S is nearly (Ic)-periodic;
(c) if (Ic} C St, then S is left {(Ic})-periodic with ((Iv}} C S.
Proof. We begin by proving (a). Note that Ic-C fi S 0; otherwise, there

would be c E C, s E Ic, and so S such that s-c so. But then cso- s, which
contradicts the fact that s Iv.

Using the fact that S- S, it follows immediately that Ic-Ic A S if and
only if C-Ic fi S . Since S is a normal generating set, we know from Corollary
10.1 that C- is a component of SCAY(G, S) and so

C-1Ic C C-1S
cC-US byLemmal(e).

Combining this with C-lie fi S q), we get C-IIv c C-1, and

C-1IC C C-1 C-1Ic C-1,
=::: Ic-1C C,

=== C is left <Ic>-periodic by Lemma l(c)

== N(C) is left <Ic>-periodic by Lemma l(d).

Since the generators Ic are disjoint from N(C) by definition, Lemma l(b) indicates
that <Ic> N(C) O, and this completes part (a).

For part (b), the definition of near periodicity requires that we show three things:
S\ {Ic) is {Ic}-periodic, {Ic) \ {1} 9 S, and S Cl {Ic} \ {1} # O. The second condition
has been imposed by the hypothesis for part (b), and the third condition is true
because Ic C S fi <Ic> \ { 1 }.

As for the first condition, begin by recalling that S is a disjoint union S
N(C) U Ic by definition of Ic. We have {Ic} fIN(C) from part (a). Consequently,
S \ {Ic} S \ Ic N(C), so S \ {Ic} is {Ic}-periodic by part (a). This completes
the verification for part (b).

For part (c), the conditions S1 N(C) U Ic U {1} and {Ic} fi N(C) , when
combined with the assumption that {Ic) C $1, imply that {Ic} IcU{1}. Hence, we
have the disjoint union S N(C)U{Ic}. In light of part (a), $1 is {Ic}-periodic, and
Lemma ll(b) implies that $1 must be {{Ic}}-periodic. Since {{Ic)} Cl S , Lemma
1 (b) indicates that ((Ic>> C S [’]

THEOREM 14. Let CAY(G,S) be a connected Cayley graph for which S is a
normal subset, SCAY(G, S) is disconnected with no isolated vertices, and C is a max-

638 L.L. DOTY R. J. GOLDSTONE, AND C. L. SUFFEL

imum component of SCAY(G, S). Then SCAY(G, S) has a nongenerating component
C, and S is nearly (Cl-periodic. In fact, C can be specified further:

(a) if <Ic>

_
S1, C’ C <Ic> \ S1;

(b) /f <Iv> c $1 then C’ is a clique.
Proof. Since C is a maximum component of SCAY(G, S), Proposition 9 indicates

that C has invisible generators Iv C S.
In case (a), we have (Iv>

_
St. According to Proposition 13(b), S must be nearly

(Ic}-periodiiz. By the proof of Proposition 3, <Ic> \ $1 is a union of nongenerating
components, and we can take C’ to be any one of them.

In case (b), we have (Iv> C S. Using Proposition 13(c) and Lemma 12(a), we
factor G by ((Ic>> and let : G G/<(Iv)} be the quotient mp. We set T S {1}
and so obtain a Cayley graph CAY(G,T) which, when subverted, has the same
number of components as the original graph by Lemm 12(b). Applying Lemma
12(d), we conclude that the component SCAY()C has no invisible generators. Then
SCAY()C is mximum component of SCAY(G, T) with no invisible generators,
and this would contradict Proposition 9 if SCAY(G,T) had no isolated vertices.
Hence there must be an isolated vertex in SCAY(G, T).

An isolated vertex v in SCAY(G, T) cannot generate CG, because (v> must be
contained in CG T by Theorem 2, and we now check that CG T is a proper subset of
CG by verifying that T is impossible: since T must generate CG by Lemma 12(a),
the only wy T can occur is if CG 1, nd this is impossible because Proposition
13(c) ssures us that ((Iv>> cannot be ll of G.

Thus the isolated vertex v in SCAY(G, T) is a nongenerting component. Invok-
ing Lemm 12(c), we conclude that C’ SCAY()-lv is nongenerating component
of SCAY(G, S). Finally, since SCAY()-v is a coset of ((Ic>> and since ((It>> C $1,
it follows that C’ is a clique.

Thus, regardless of whether (Iv> S or (Iv> c S, SCAY(G,S) has a non-
generating component C
periodic.

6. Periodic structure of the generating set for disconnected survival
subgraphs. Let CAY(G, S) be a connected Cayley graph. Here is the current state
of our knowledge about SCAY(G, S) when it is disconnected:

(1) Theorem 2 gives a necessary and sufficient condition on S for SCAY(G, S)
to have an isolated vertex, namely, that S be left periodic.

(2) Suppose that SCAY(G, S) has no isolated vertices.
(a) If CAY(G, S) is irreducible, Theorem 7 gives a sufficient condition on S

for SCAY(G, S) to be disconnected, namely, that S be nearly periodic.
(b) If S is normal, Theorem 14 gives a necessary condition on S for SCAY(G, S)

to be disconnected, again, that S be nearly periodic.
By combining all these hypotheses, we obtain in Theorem 15 an algebraic char-

acterization of the generating sets of a large class of Cayley graphs with disconnected
survival subgraphs. Corollary 15.1 establishes that a Cayley graph of prime order
cannot be disconnected by the subversion of a single vertex.

THEOREM 15. Let CAY(G, S) be an irreducible connected Cayley graph with nor-
mal generating set S. Then SCAY(G, S) is disconnected if and only if S is left periodic
or nearly periodic.

COROLLARY 15.1. For an irreducible connected Cayley graph CAY(G,S) with
normal generating set S and S1 G, let p be the smallest prime divisor of IGI. If
IS] < p, then SCAY(G,S) is connected. In particular, if G Zp and S Zp, then

CAYLEY GRAPHS WITH NEIGHBOR CONNECTIVITY ONE 639

SCAY(Zp, S) is connected.
Proof. We assume that SCAY(G, S) is disconnected and derive a contradiction.

By Theorem 15, S is either left H-periodic or nearly H-periodic for some nontrivial
subgroup H < G. In either case, S must contain at least one coset of H. Hence
p _< IHI _< ISI, and this contradicts the hypothesis ISI < p. [:]

In case G is abelian, there is a slightly improved version of Corollary 15.1.
COROLLARY 15.2. For an irreducible connected Cayley graph CAY(G,S) with

G abelian and $1 G, let p be the smallest prime divisor of IGI. If IS <_ p, then
SCAY(G, S) is connected.

Proof. If ISI < p then SCAY(G,S) is connected by Corollary 15.1, so all we

must show here is that ISI P implies SCAY(G, S) connected. Again, we assume

SCAY(G, S) is disconnected and obtain a contradiction. The same argument as we
used above indicates that S must contain at least one coset of a nontrivial subgroup
H < G, but now the fact that ISI P implies that S must be a single nonidentity
coset of H. Since S S-1, this coset has order 2 in G/H, and so 2 divides IGI. This
means, according to the definition of p, that p 2, and so SI 2. Thus CAY(G, S)
is a cycle and so SCAY(G, S) is connected--the desired contradiction. [3

The final theorem is an extension of Theorem 15 to all connected Cayley graphs,
irreducible or not, with normal generating sets. This extension relies on the fact, from
Lemma 4, that in CAY(G, S), CAY(H, H N S) is irreducible when H

THEOREM 16. Let CAY(G,S) be a connected Cayley graph with normal gener-
ating set for which SCAY(G, S) is neither empty nor complete, and set H
The following are equivalent:

(a) NC(CAY(G, S)) 1;
(b) SCAY(G, S) is disconnected;
(c) HNS is left periodic, HNS is nearly periodic, or HNS is a proper subgroup

of G.
Proof. (a)=(b): this equivalence follows immediately from the definition of neigh-

bor connectivity and the hypothesis that SCAY(G, S) is neither empty nor complete.
(c)=(b): we begin with the following assumptions:
(i) H S is left periodic or nearly periodic, or

(ii) H S is a proper subgroup of G.
We must show that SCAY(G, S) is disconnected. Since SCAY(G, S) SCAY(H, H
S) by Lemma 4(5), it suffices to prove that SCAY(H, H S) is disconnected.

First observe that, regardless of whether either of conditions (i) or (ii) holds, if we
ever find that CAY(H, Hg)S) is disconnected, then we can conclude that SCAY(H,H
S) is disconnected by Lemma 5 and the hypothesis that SCAY(G, S) is not complete.

Suppose condition (i) holds. There are two cases to consider. Case 1: CAY(H, HN
S) is disconnected. By the remark above, SCAY(H, H S) is disconnected. Case 2:
CAY(H,H S) is connected. By Lemma 4(5), CAY(H,H S) is irreducible so

SCAY(H, H S) is disconnected by Theorem 15.
Suppose condition (ii) holds. We claim that (H N S} =fi H and so CAY(H, H

is disconnected. By the remark above, SCAY(H, H S) would then be disconnected.
To see why (H S} H, note that {H S H S since H S is a subgroup, so
we are claiming that H $1 = H. The contrary assumption that H S H implies
that H C S, and

H C SI == <G \ S> C SI
G\ScS1

640 L.L. DOTY R. J. GOLDSTONE, AND C. L. SUFFEL

CAY(G,) is complete

== SCAY(G, S) O,

and this contradicts the hypotheses. We have now established (c)(b).
To show (b)=(c), let SCAY(G, S) be disconnected. In the case that CAY(G, S)

is irreducible, Theorem 15 applies since CAY(G, S) is connected by hypothesis. Fur-
thermore, the irreducibility of CAY(G, S) implies H A S G V/S S, and so
Theorem 15 allows us to conclude that H A S is left periodic or periodic. In the
case that CAY(G,S) is reducible, then Lemma 4 states CAY(H,H A S) is irre-
ducible and SCAY(G, S) SCAY(H,H V1 S), so SCAY(H,H A S) is disconnected.
If CAY(H, H A S) is connected, Theorem 15 insures that H A S is left periodic or pc-
riodic. Hence we may assume (i) CAY(H, H fl S) is disconnected; i.e., (H A S} -7/: H.
We know that H G, so if H A $1 is a proper subgroup of G, we are done. Hence we
also may assume (ii) H A $1 is not a subgroup of G.

Combining assumptions (i) and (ii), we are left to consider the case in which
H A S1 is a proper subset of (H A S> :fi H. Thus, (H A S> contains a component C of
SCAY(H, HAS). Since C C (H C S) H, C is nongenerating. If SCAY(H, HAS) has
an isolated vertex, then by Theorem 2, HV1S is left periodic. If SCAY(H, HV1S) has no
isolated vertices, then by Proposition 3, the existence of a nongenerating component
means that H A S is nearly periodic. V1

7. Concluding remarks. It is interesting to notice that when we move to a
subversion strategy with two vertices, the situation becomes decidedly more complex.
To see the substance of this observation, recall first that we have shown all prime
order Cayley graphs remain connected upon subversion of a single vertex. In contrast,
the variety of structure exhibited by the survival subgraphs resulting from subversion
of two vertices of a prime order Cayley graph hints at the difficulty entailed in an
analysis of this problem. It is easy to produce examples of prime order Cayley graphs
that become disconnected upon subversion of two vertices. For G (Z19, +) and
S {+1, 3, +5, +/-6}, the subversion strategy {0, 9} produces a disconnected survival
subgraph of CAY(Z9, S) with two nontrivial components. For T {-t-1, +3, :t=6}, the
subversion strategy {0, 8} produces a disconnected survival subgraph of CAY(Z9, T)
with an isolated vertex. For g {+1,-t-3,+9}, CAY(Zl9, U) is connected upon
subversion of any two vertices. So even in the case where G has prime order, anything
can happen to CAY(G, S) when two vertices are subverted. It appears, therefore, that
our methods, which rely heavily on the notion of periodicity, will not extend easily to
the case in which two vertices are subverted.

Appendix: Computational complexity. We show that the decision problem
for neighbor connectivity of an arbitrary graph is NP-complete. As membership in
NP is clear, it suffices to show that the decision problem for neighbor connectivity is
NP-hard.

Problem. The neighbor connectivity of an arbitrary graph.
Instance. Given any graph X and an integer k < IVI, where V V(X).
Question. Is NC(X) < k?
THEOREM 17. Neighbor connectivity is NP-hard.
Proof. We show a polynomial reduction of the dominating set problem to this

problem. Given graph X, construct J as follows (see Fig. 1).

CAYLEY GRAPHS WITH NEIGHBOR CONNECTIVITY ONE 641

\
v

/

k+2 KIv
FIG. 1.

Set

v {v, 1 < < IYl}

j=O

for j O, 1,...,k + 2, and

Then the subgraph induced by V0, [V0], is X, and [Vj] KIv for j 0, 1,..., k + 2.
Finally, the remaining edges are of the form {v0, vii } for 1 _< <_ IVI, 1 _< j _< k + 2.

We show that X has a dominating set of size at most k if and only if J has an
effective subversion strategy of size at most k. First suppose D is a dominating set of
X of size at most k. Then subversion of D removes all the vertices of X and leaves
k + 2 cliques of size IV]- IDI. Thus NC(2) _< k.

\ v /
remaining cliques

FiG. 2.

Next suppose that S is an effective subversion strategy of J with at most k
vertices. Consider S fl V0 D, and suppose that D is not a dominating set of X. If
subversion of S removes all the vertices of X, then there are vertices of S \ D that
are adjacent to the vertices of V not dominated by D. Thus the number of vertices
of V not dominated by D is less than or equal to the number of vertices in S \ D.
Consequently, there is a dominating set in X of size at most k. Now suppose that
subversion of S does not remove all the vertices of X. We claim that this assumption
leads to a contradiction. Indeed, if the survival subgraph contains a nonempty subset
V C V0, then the survival subgraph consists of [V] X’ and at least two complete
subgraphs each of size at least IVdI connected as shown in Fig. 2. Now nodes in
separate complete subgraphs are not adjacent, so the survival subgraph is connected
and not complete. In other words, S is not an effective subversion strategy. This is a
contradiction. Thus there must be a dominating set in X of size at most k. [:]

642 L.L. DOTY R. J. GOLDSTONE AND C. L. SUFFEL

REFERENCES

[1] G. GUNTHER, Neighbour-connectivity in regular graphs, Discrete Appl. Math., 11 (1985), pp. 233-
243.

[2] On the existence of neighbour.connected graphs, Congr. Numer., 54 (1986), pp. 105-
110.

[3] G. GUNTHER AND B. L. HARTNELL, On minimizing the effects of betrayals in a resistance move-

ment, in Proc. 8th Manitoba Conference on Numerical Mathematics and Computing, Win-
nipeg, Manitoba, Canada, 1978, pp. 285-306.

[4] Optimal k-secure graphs, Discrete Appl. Math., 2 (1980), pp. 225-231.
[5] On m-connected and k-neighbour-connected graphs, in Proc. of the 6th Quadrennial

International Conference on the Theory and Applications of Graphs, Western Michigan
University, Kalamazoo, MI, 1991, pp. 585-596.

[6] G. GUNTHER, B. L. HARTNELL, AND R. NOWAKOWSKI, Neighbor-connected graphs and projective
planes, Networks, 17 (1987), pp. 241-247.

[7] S. Y. Wv AND M. B. COZZENS, The minimum size of critically m-neighbour-connected graphs,
Ars Combin., 29 (1990), pp. 149-160.

SIAM J. DISCRETE MATH.
Vol. 9, No. 4, pp. 643-653, November 1996

() 1996 Society for Industrial and Applied Mathematics
0O9

IIS-HYPERGRAPHS*

JENNIFER RYANt

Abstract. Given an inconsistent set of inequalities Ax <_ b, the irreducibly inconsistent subsys-
tems (IIS’s) designate subsets of the inequalities such that at least one member of each subset must
be deleted in order to achieve a feasible system. Each IIS can be considered the edge of a hyper-
graph. The purpose of this paper is to present several properties of this special class of hypergraphs
(IIS-hypergraphs). IIS-hypergraphs are bicolourable, and their placement in Berge’s hierarchy of
"hypergraphs generalizing bipartite graphs" is discussed. The greedy algorithm finds the minimum
transversal for 2-uniform IIS-hypergraphs. It is shown that the greedy algorithm does not work for
general IIS-hypergraphs. However, if the IIS-hypergraph is "nondegenerate" (implying uniform),
the transversal number always can be found in time polynomial in the size of the hypergraph. An
interesting intermediate result arises regarding blocking pairs of polyhedra arising from subspaces
in Nn.

Key words, hypergraphs, linear programming, infeasibility

AMS subject classifications. 05C65, 05C70, 90C05, 90C27

1. Introduction. Let A be an m n real matrix and let b be a real m-vector.
Suppose that the system Ax <_ b is inconsistent. A subsystem Ax <_ b is an irreducibly
inconsistent subsystem (IIS) if it is inconsistent and if it has no inconsistent proper
subsystem. In general, an inconsistent system will have many overlapping IIS’s. In
order to achieve a consistent system, at least one inequality must be dropped from
every IIS. Sankaran [12] has shown that the problem of finding a minimum cardinality
set of constraints to drop to achieve feasibility is NP-hard. (See also [1] for related
complexity results.)

Given an inconsistent system Ax <_ b, let the set V index the inequalities. The
corresponding IIS-hypergraph H on V is obtained by letting edge set E of H be the
sets of indices of the IIS’s. A transversal T of a hypergraph H is a subset of V covering
the edge set E; i.e., e N T : q) for all e E E. Thus a minimal transversal of H will
be a minimal set T such that the inequalities indexed by V \ T are a consistent set.
Using notation of Berge [2] we will let TrH denote the transversal hypergraph of H.
The edges of TrH are the setwise minimal transversals of H. -(H) will denote the
minimum cardinality of a transversal of H. Thus if H is an IIS-hypergraph, T(H)
is the minimum number of constraints that must be deleted or altered in order to
achieve a feasible system. Below, the terms transversal and cover will both be used,
but transversal will be always be used when referring to hypergraphs in order to be
consistent with terminology of [2].

In [11] it is shown that 2-uniform IIS-hypergraphs are bipartite. A hypergraph
is bicolourable if its nodes can be partitioned into two subsets so that neither of the
subsets contains an edge. The following result from [11] follows immediately from an
observation of Pulleyblank [9] that an inconsistent system can always be partitioned
into two consistent systems.

THEOREM 1 (see [11]). Any IIS.hypergraph H is bicolourable.
Note that bicolourability of a hypergraph H does not imply that H is an IIS-

hypergraph. In fact any bipartite graph is a bicolourable hypergraph, and as shown

Received by the editors July 1, 1994; accepted for publication (in revised form) December 21,
1995.

US WEST Advanced Technologies, 4001 Discovery Drive, Boulder, CO 80303
(jryan advtech,uswest,com).

643

644 JENNIFER RYAN

in [11], 2-uniform IIS-hypergraphs are bipartite graphs with very special structure.
Section 2 discusses the relationship between IIS-hypergraphs and other classes of
hypergraphs generalizing bipartite graphs.

2. Relation of IIS-hypergraphs to other hypergraphs generalizing bi-
partite graphs. Let M denote the edge-node incidence matrix of an IIS-hypergraph
H. If H is 2-uniform (and so a bipartite graph from above), then it is well known
that T(H) is the value of the linear programming problem

min 1Tx
(1) Mx >_ 1,

x > O.

Note that if integrality conditions are added, the value gives the transversal number
of any hypergraph.

There are many classes of hypergraphs generalizing bipartite graphs (see, e.g.,
Berge [2]). Many of these (for example balanced hypergraphs, normal hypergraphs,
and Mengerian hypergraphs) have the property that the value of (1) is the transver-
sal number. If the value of (1) is the transversal number, the hypergraph is called
paranormal [2]. IIS-hypergraphs are not paranormal, as the following example shows.

Consider the drawing (Figure 1) of an inconsistent system lying in 2-dimensional
space.

IIS’s" abd bce cda deb eac

FIG. 1. An inconsistent system in 2-dimensional space where the value of (1) is not an integer.

The IIS’s are {{a, b, d}, {b, c, e}, {c, d, a}, {d, e, b}, {e, a, c}}. The optimal solution

IIS-HYPERGRAPHS 645

to (1) is achieved by setting x 1/3 for each which gives a value of 5/3. The
transversal number is clearly 2.

Berge [2] has detailed the relationships between many classes of hypergraphs
generalizing bipartite graphs. The diagram in Figure 2 is from [2] with the exception
of the box in dotted lines representing IIS-hypergraphs. Definitions of properties in
Figure 2 are given in the proof of Theorem 2 only if they are needed for the proof. For
definitions of the other properties, the interested reader is referred to [2]. Theorem 2
shows that IIS-hypergraphs do not share many properties with other known classes
of hypergraphs generalizing bipartite graphs.

of length at
least 3

Without odd
cycles

Totally
Balanced

Arboreal Withoutcycles
of length at
least 3 and
max degree 2.

IIS

Hypergraph"

Balanced Normal

..-...
Without odd
cycles of max
degree 2.

Bicolourable

Ummodular
property

With star as
maximum
intersecting
family

Paranormal

1_Prperty

FIG. 2. Hypergraphs generalizing bipartite graphs.

THEOREM 2. Figure 2 is complete. There are no other implications that could be
added regarding IIS-hypergraphs.

Proof. It will first be shown that there can be no additional arrows leading out
of the IIS-hypergraph box. A hypergraph has the Konig property if the transversal
number is equal to the cardinality of the maximum cardinality matching. In the ex-
ample of Figure 1, the transversal number is 2, but since every pair of edges intersects,
the maximum matching has cardinality I, so IIS-hypergraphs do not in general have

646 JENNIFER RYAN

the Konig property. By studying the implications of Figure 2, it is clear that in order
to show that there are no additional outward arrows from the IIS-hypergraph box it
suffices to show the following:

1. IIS-hypergraphs may have odd cycles with maximum degree 2.
2. IIS-hypergraphs may have a maximum intersecting family which is not a star.
3. IIS-hypergraphs are not always paranormal.

(The maximum degree of a cycle is the maximum degree of any node in the hypergraph
whose edge set is the edges of the cycle.) We have already seen that statement 3 is
true. A cycle in a hypergraph is a set of edges el, e2,..., ek such that there are nodes
xl,x2,...,xk satisfying xi, xi+ Eei for 1,...,k- 1 and Xk,Xl ek. In the
example of Figure 1, the three edges e abd, e2 bce, and e3 cda form an odd
cycle with maximum degree 2, so statement 1 is true. Finally, an intersecting family
is a set of pairwise intersecting edges. A star is a set of edges with a common element.
The five edges in Figure 1 form a maximum intersecting family which is not a star.
Hence, statement 2 is true, so there can be no additional outward arrows from the
IIS-hypergraph box.

To show that there can be no additional, arrows leading into the IIS-hypergraph
box, note that the property of having no cycles of length at least 3 implies all other
boxes. So if there hypergraphs with no cycle of length at least 3 that are not IIS-
hypergraphs, there can be no arrows leading into the IIS-hypergraph. Consider the
hypergraph whose edges are {ab, bc, cd, de}. Clearly this has no cycle of length 3 or
greater (it has no cycle at all). Any IIS of cardinality 2 must consist of nonintersecting
parallel half-spaces, and there is no way to arrange five parallel half spaces to obtain
the edge set {ab, bc, cd, de} as the set of all IIS’s. So this hypergraph is not an IIS-
hypergraph. D

3. Finding the transversal number of an IIS-hypergraph. In order to
further study transversals of IIS-hypergraphs we will need to make use of the following
theorem which is easily derived from Farkas’ lemma and elementary polyhedral theory.
If x e n, let the support of x be the set of indices S(x) {jlxj 0}. Define pos(x)
to be

ifx>0,pos(x)j
0 otherwise.

THEOREM 3 (see [8]). Let Ax <_ b denote an inconsistent set of inequalities. Then
the IIS’s are in one-to-one correspondence with the extreme points of the polyhedron
P {y nlyA O, yb -1, y _> 0}. In particular, the map y --. S(y) is a bijection
between the extreme points of P and the IIS’s of the inconsistent system.

Following Berge [2], we denote the greedy transversal number by TG(H). The
greedy transversal number is the cardinality of the transversal obtained by successively
picking the node having maximum degree among the currently uncovered edges. For
general hypergraphs (even bipartite graphs), T(H) can be much smaller than G(H).
In fact the ratio between TG and T can be as much as 1 + log(A(H)), where A(H)
is the maximum degree of a node in H. (See, e.g., Chvtal [4].) For 2-uniform
IIS-hypergraphs, the greedy algorithm finds the optimal transversal.

THEOREM 4 (see [11]). Let H be a 2-uniform IIS-hypergraph. Then T(H)
Ta(H).

Theorem 4 shows that 2-uniform IIS-hypergraphs have a very special structure.
In particular, not all bipartite graphs are IIS-hypergraphs, since the greedy algorithm

IIS-HYPERGRAPHS 647

fails on general bipartite graphs. Unfortunately, Theorem 4 does not hold for general
IIS-hypergraphs, as is shown by the example in Figure 3.

d b

e

IIS’s: adb adf abe ef cbe cdf

FIG. 3. Example of an IIS-hypergraph where

In Figure 3, several elements tie for the maximum degree (3). If a is chosen first,
the minimum transversal will not be found using .the greedy algorithm.

The remainder of this section is devoted to showing that although the greedy
algorithm does not find the minimum transversal for all IIS-hypergraphs, a minimum
transversal can be found in polynomial time if the hypergraph is nondegenerate. We
say that an IIS-hypergraph is nondegenerate if the corresponding polyhedron (as in
Theorem 3) is nondegenerate. Note that a nondegenerate IIS-hypergraph will always
be uniform, i.e., all edges will have the same cardinality. In general the problem
of finding a minimum transversal is NP-hard even for 2-uniform hypergraphs (i.e.,
graphs); see [7].

Recall that the IIS’s are in one-to-one correspondence with the supports of the
extreme points of some polyhedron P as described in Theorem 3. Thus we are inter-
ested in covering the extreme points of P or, equivalently, the basic feasible solutions
of the system

ATy 0,
(2)

> O.Y

648 JENNIFER RYAN

Bland [3] has an important result relating to the problem of covering the extreme
points of a polyhedron. In order to present Bland’s theorem, we need to establish
some notation. For background on blocking polyhedra the reader is referred to [5]
and [6].

If 7 is a vector subspace of n+l, let 7+/- denote the orthogonal complement of
T and let ’(7) denote the set of elementary vectors of 7 (the nonzero vectors of 7
having setwise minimal support). Bland considers the following sets:

C-- {pos(xl, x2,... ,Xn)l(xl,x2,...,xn,1)e

and

We now can state Bland’s result.
THEOREM 5 (see [3]). The blocker of the polyhedron B {x E n+]c.x >_ 1,Vc C}

Thus, the support .of any vector in C is a transversal of the hypergraph whose
edges are the supports of the vectors in 79. Let 7 be the row space of the m (n + 1)
matrix M = [C d]. Then 79 is the set of elementary vectors among those satisfying
the system Cx d, x >_ O. In particular, the supports of all extreme points of the
polyhedron Q {x e RICx d, x >_ 0} are covered by the support of any vector in
C. It is not hard to see the following.

LEMMA 6 (see [10]). $’(7) is contained among those rows of tableaus of the form

[B-1CIB-ld]
where B is a column basis of M.

A tableau T [B-1CIB-ld] will be called feasible if the right-hand side of T,
B-ld, is nonnegative. The elements of a row of T will mean those elements not
including the right-hand side. Let T be any tableau. The positive elements of any
row having a positive right-hand side will index an element of C. Theorem 5 and
Lemma 6 imply that all the elements of C can be found by enumerating the tableaus
(T) over all column bases B of M.

In general, tableaus T may have both positive and negative elements in the last
component. Theorem 7 says that all setwise minimal elements of C can be found by
inspecting only feasible tableaus.

THEOREM 7. Let be the row space of M above. Then any minimal set covering
the extreme points of the polyhedron Q {x RnlCx d, x >_ 0} is the support of
a vector in C. Moreover, every setwise minimal element of C is the set of positive
elements of some row with a positive right-hand side in a feasible tableau.

Proof. From the discussion above, we already have that any minimal set covering
the extreme points of the polyhedron Q {x e RICx d, x >_ 0} is the support of
a vector in (J and that all vectors of C will be the positive elements of a row with a
positive right-hand side in some tableau T. What remains to be shown is that the
search for minimal elements of C can be restricted to feasible tableaus.

Let K denote a minimal cover of the extreme points of Q. Then K is indexed
by the set of positive elements of row k in some tableau T, where the right-hand side
element of row k is positive. If the right-hand side of T is all nonnegative, we are done.
So suppose there is some row t of T with a negative right-hand side. It will be shown
that there is always a dual simplex pivot preserving the set of positive entries of row k.

IIS-HYPERGRAPHS 649

Since the dual simplex algorithm is finite (invoking anticyling rules if necessary), by
considering row k as the objective row, we can always terminate with an all positive
right-hand side. Since the set of positive elements in row k is unchanged, row k will
still index the minimal cover K.

Since T is a tableau, there is some column basis B of C such that T =
For ease of notation, assume that B is the first m column of C. Then column k of
T will be the kth unit vector ek. Let N1 be the indices of nonbasic columns having
a positive element in row k. Let N2 be the index set of nonbasic columns having
nonpositive element in row k. Then T has the following sign pattern.

k
0 0

1 0
1 0 0

0 ".

1
0 0

N N2 RHS

<0 _<0 +

Consider the N2 columns and the basic columns of row k the objective row in
execution of the dual simplex algorithm. If a pivot is available in the N2 columns,
we can eliminate all negative right-hand side values, while maintaining the entries of
row k nonpositive in all columns but k and the N columns. By the minimality of the
cover represented by row k, the entries in the N1 columns will remain positive. So it
remains to be shown that a pivot is always available in any row (such as row g) with
a negative right-hand side. That is, we must show that there is a negative element in
row g among the N2 columns. Let ij denote the element of T in the ith row and jth
column. Then, since any x E Q must satisfy row g of T we have that for any x E Q,

+ +
jEN1 jEN

If there is no pivot available in the N2 columns, atj > 0 for all j N2. Thus, since
any x Q is nonnegative for all x Q,

Again, since each x Q is nonnegative, we must have that for all x Q, jeNI xj >
0. But then N covers all extreme points of Q, contradicting the minimality of K.
So the pivot is available, and the entries of row k in column k and the N1 columns
will remain positive (the set N2 will change). The argument can be repeated (using
appropriate dual simplex anticycling rules to pick a new g until no negative right-
hand side element remains. [:1

The significance of Theorem 7 is computational, if one wants to enumerate all
minimal "covers" of the extreme points of a polyhedron P, one must consider only

650 JENNIFER RYAN

the rows of feasible tableaus, rather than all tableaus. In the case where the matrix

IV- d] is

iT -1

the supports of the minimal elements of (: are the minimal transversals of the IIS-
hypergraph on the system Ax <_ b.

THEOREM 8. Let H be a nondegenerate IiS-hypergraph. Then the size of TrH is
polynomial in the size of H.

Proof. Let P be the polyhedron corresponding to H as in Theorem 3. If H
is nondegenerate, then P is nondegenerate and there is only one feasible tableau
corresponding to each extreme point of P, i.e., each edge of H. Let r be the number
of elements in each edge of H. Since there will be at most r rows corresponding to
distinct minimal transversals in each feasible tableau, there can be at most IE(H)I. r
minimal transversals of H.

We now know that the number of minimal transversals of a nondegenerate IIS
hypergraph H is polynomal in the size of H. If we can find an algorithm to enumerate
TrH in time polynomial with respect to the size of TrH, we can find the minimum
cardinality transversal of H simply by enumerating all minimal transversals. For
simplicity, let a hypergraph H be defined by its edges. Let H (el,...,eq) and
H’= (fl,..., fp) be hypergraphs and, following [2], let

H U H’ (el,...,eq, fl,...,fp),
H V g’ {e U fie e H, f e H’},

Min H {ele E H such that e is setwise minimal in H}.

Note that Tr(H t2 H’) Min(TrH V TrH’).
Although we know that TrH has size bounded polynomially in the size of H, it is

not trivial to find a polynomial enumeration scheme for TrH. In general, the number
of intermediate steps can get too large. For example, consider the following algorithm
given in Berge’s book [2]. Suppose the edges of H have been indexed el,e2,... ,eq
and let Hi denote the hypergraph containing edges e, e2,..., el. Then the procedure
below enumerates the edges of TrH, i.e., all minimal transversals of H.

Step 1. TrH ({k}lk e e).
Step 2. TrH2 Tr(H1 t3 {e2})= Min(TrH1 V ({k}lk e e2)).
Step i. TrHi= Tr(Hi_ t2 {ei})- Min(TrHi_ V ({k}lk eei)) etc..

At the end of the procedure TrH TrHq.

Although we know that TrH is polynomial in size, the intermediate transversal
hypergraphs may not be. This is because the intermediate hypergraphs will not in
general be IIS-hypergraphs. It is easy to construct examples where these intermediate
hypergraphs get large. Thus an alternate enumeration scheme is needed. Let Gi be the
hypergraph obtained from H by considering only those edges using nodes 1, 2,..., i.
In other words, Gi is the IIS-hypergraph of the system obtained by deleting constraints
/ 1,..., m. Thus TrGi is polynomial in the size of Gi which is smaller than the size

of H.

IIS-HYPERGRAPHS 651

If H is nondegenerate, we can order its nodes 1, 2,..., rn so that G contains at
most one node more than G-I. We can also assume that the first nonempty G
contains exactly one edge. This is because for every edge e there is another edge
f differing in exactly one component. (In the event of degeneracy, it may be that
there is no way to admit one node without admitting several others simultaneously.)
Assume that the nodes of H are so ordered. Let Ei denote those edges containing
node i, but not node j for any j > i. Then the following algorithm will create TrH
in polynomial time.

MINIMAL TRANSVERSAL ENUMERATION ALGORITHM (MTEA)
Step 1. Let l be the first index such that G is nonempty. Then G contains

exactly one edge e and TrG ({k}lk E e).
Step (i >_ + 1). Let TrGi_I denote those elements of TrGi_I that cover Ei.

Let TrGi_I denote TrGi_I \ TrGi_I. Let T TrGi_I. For each edge
e TrGi_I:
Step ia:

Let F {f Eilf g)e }. Find TrFi using MTEA.
Step ib:

Let T T (e / TrF).
Set TrGi Min(T), etc.

At the end of the procedure TrH TrGm.
Theorem 9 establishes the correctness and complexity of MTEA.

THEOREM 9. Let H be a nondegenerate IIS-hypergraph. Then MTEA enumerates
all minimal transversals of H in polynomial time with respect to the size of H.

Proof. Let r be the cardinality of each edge in H. The proof is by induction
on the number of nodes p in H. Clearly if p <_ r, MTEA will terminate after Step
1 with TrH. Suppose that the nodes are ordered so that G contains at most one
more node than G-I and that MTEA correctly finds TrHI for any nondegenerate
IIS hypergraph with fewer than i nodes.

It will first be argued that Step will be executed in time polynomial in the
size of G and then that TrG is correctly identified. Since G-I is a nondegenerate
IIS-hypergraph, TrG_I can be found in polynomial time (with respect to the size of
Gi-1) by the induction hypothesis. Since G-I is contained in Gi, TrG_I (and also
TrG_I and TrGi_I) can be formed in time polynomial with respect to the size of

Note that F is also a nondegenerate IIS-hypergraph corresponding to the system
with constraints + 1,..., rn and with the constraints indexed by e deleted. Since G
contains at most one more node than G-I and since e contains at least one node, Fir
contains at most i- 1 nodes. Thus by induction TrF can be found in polynomial
time with respect to the size of F. Since F is contained in G, TrF can be found
in time polynomial with respect to the size of G. Since TrFi has cardinality that
is polynomial with respect to the size of G, Step ib can also be executed in time
polynomial in the size of G. Since Steps ia and ib are executed at most
times, the size of T is bounded polynomially with respect to the size of G. Since the
Min operation can be executed in polynomial time, the entire Step can be executed
in time that is polynomial in the size of G.

it now must be shown that Step correctly identifies TrG. Let E be defined as
in Step of the MTEA.

TrGi Tr(Gi_I U Ei) Min(TrGi_l / TrEi).

652 JENNIFER RYAN

Consider TrG_I V TrE.

TrG{_I V TrE{ UeETrG_l (e V TrE)

{UT_, (V 2i)} U {UT_, (V Mi(TFi V T(, \ Fi)))}.
If e E TrGi_I then either e E TrEi or some subset of e is in TrEi. Thus
(e V TrEi) e in this case. If e TrGi_I, then by definition of Fir, e Tr(Ei \
so e V TrFi C_ e V TrFi V Tr(Ei \"Fi]): So in this case,

Min (e V TrF V Tr(E \ F)) = Min (e V TrF).

We have that

TrG Min(TrG_ V TrE)

Min{Min (UeTrV,, (e VTrE,))

UMin (UeeTr,_, (eV Min(TrFV Tr(E, \ F)))) }

Min {TrGi-, UMin (UeeTrV_, (e V TrF))} Min(T).

Thus Step correctly identifies G in time polynomial with respect to the size of G.
Since each Gi is contained in H, algorithm MTEA correctly identifies TrH in

time polynomial with respect to the size of H. Cl

Thus we have the following.
THEOREM 10. The minimum cardinality transversal of a nondegenerate IIS-

hypergraph can be found in time polynomial in the size of H.
It is important to note that Theorem 10 does not conflict with Sankaran’s NP-

hard result, since the size of H may be exponential in the size of the original system
Ax<b.

4. Discussion. Nondegenerate IIS-hypergraphs are a class of bicolourable hy-
pergraphs where the minimum transversal problem can be solved in polynomial time.
Several interesting questions remain.

STRUCTURE OF IIS-HYPERGRAPHS. A simple characterization of 2-uniform IIS-
hypergraphs is given in [11]. The characterization is independent of the linear system
of inequalities from which the hypergraph arose. No such characterization is known.
for general IIS-hypergraphs.

MORE EFFICIENT ALGORITHM FOR FINDING TRANSVERSAL. It has been shown
here that the minimum cardinality transversal of a nondegenerate IIS-hypergraph can

IIS-HYPERGRAPHS 653

be found in polynomial time. However, the proof depends on the fact that all minimal
transversals can be enumerated in polynomial time. It would be nice to have an
algorithm that finds the minimum cardinality transversal without such enumeration.
In fact I do not know of a nondegenerate IIS-hypergraph where the greedy algorithm
fails. There probably is one, but the example is likely nontrivial.

DEGENERATE IIS-HYPERGRAPHS. It is not known whether there is a polynomial
time algorithm to find the minimum transversal of a degenerate IIS hypergraph. The
arguments given here would fail in two places. First, there could be an exponential
number of tableaus associated with each IIS, so the proof of Theorem 8 would fail.
Second, the nodes of H could not be ordered as required by the enumeration algorithm
if H was degenerate.

Note that any polyhedron P {x E nlCx d,x >_ 0}, where C is a real
matrix and d is a vector, can be transformed to the form of (2). Thus any hypergraph
whose edges are indexed by the supports of the extreme points of a polyhedron is an
IIS-hypergraph. Perhaps they should be called polyhedral hypergraphs, but I chose to
keep the name IIS-hypergraphs in reference to the original motivation for their study.

Acknowledgment. The author would like to thank Jon Lee for suggesting that
Bland’s result (Theorem 5) might be used to simplify the proof of Theorem 7 given
in an earlier version of this paper.

REFERENCES

[1] E. AMALDI AND V. KANN, The Complexity and Approximability of Finding Maximum Feasi-
ble Subsystems of Linear Relations, Technical report ORWP 93/11, Ecole Polytechnique
Federale do Lausanne, Lausanne, Switzerland, 1993.

[2] C. BERGE, Hypergraphs, North-Holland, Amsterdam, 1989.
[3] R. G. BLAND, Elementary vectors and two polyhedral relaxations, Math. Programming Study,

8 (1978), pp. 159-166.
[4] V. CHVTAL, A greedy heuristic for the set covering problem, Math. Oper. Res., 4 (1979),

pp. 233-235.
[5] D. R. FULKERSON, Blocking polyhedra, in Graph Theory and its Applications, B. Harris, ed.,

Academic Press, New York, 1970, pp. 93-111.
[6] , Blocking and antiblocking pairs of polyhedra, Math. Programming, 1 (1971), pp. 168-

194.
[7] M. GARY AND D. JOHNSON, Computers and Intractibility, W. H. Freeman, New York, 1979.
[8] J. GLEESON AND J. RYAN, Identifying minimally inconsistent subsystems, ORSA J. Comput.,

(190), . -.
.[9] W. PULLEYBLANK, Personal communication 1988.
[10] R. T. ROCKAFELLAR, The elementary vectors of a subspace of n, in Combinatorial Mathemat-

ics and its Applications, R.C. Bose and T.A. Dowling, eds., University of North Carolina
Press, Chapel Hill, NC, 1969, pp. 104-127.

[11] J. RYAN, Transverals of IIS-hypergraphs, Congr. Numer., 81 (1991), pp. 17-22.
[12] J. K. SANKARAN, A note on resolving infeasibility in linear programs by constraint relaxation,

OR Letters, 13 (1993), pp. 19-20.

SIAM J. DISCRETE MATH.
Vol. 9, No. 4, pp. 654-673, November 1996

1996 Society for Industrial and Applied Mathematics
010

A GRAY CODE FOR NECKLACES OF FIXED DENSITY*

TERRY MIN YIH WANGt AND CARLA D. SAVAGEt

Abstract. A necklace is an equivalence class of binary strings under rotation. In this paper, we
present a Gray code listing of all n-bit necklaces with d ones so that (i) each necklace is listed exactly
once by a representative from its equivalence class and (ii) successive representatives, including the
last and the first in the list, differ only by the transposition of two bits. The total time required is
O(ng(n,d)), where N(n,d) denotes the number of n-bit binary necklaces with d ones. This is the
first algorithm for generating necklaces of fixed density which is known to achieve this time bound.

Key words. Gray codes, necklaces, eombinatorial generation, Hamilton cycles

AMS subject classifications. 05A05, 05C45, 68R05, 68R10

1. Introduction. In a combinatorial family, a Gray code is an exhaustive listing
of the objects in the family so that successive objects differ only in a small way
[Will. The classic example is the binary reflected Gray code [Gra], which is a list
of all n-bit binary strings in which each string differs from its successor in exactly
one bit. By applying the binary Gray code, a variety of problems have been solved
and the complexities of the solutions to other problems have been improved [Gar,
ChLeDu, ChChCh, Los, Ric]. There are many examples of combinatorial families
for which Gray codes are known, including permutations [Joh, Tro], combinations
[BuWi, NiWi, Rusl], compositions [Kli], set partitions [Kay], integer partitions [Sav,
RaSaWe], binary trees [RuPr, Luc, LuaoRu], and linear extensions [PrRul, Prau2,
Rus2, Sta, Wes].

When an application requires an exhaustive examination of all objects in a com-
binatorial family, Gray codes can be used to speed up the task. With a Gray code
scheme, it is often possible to list a family of N objects, each of size O(n), in time
O(n / N) rather than time O(n. N), by listing the first object and thereafter listing
only the (constant size) change between successive objects. There is an additional
advantage if each object has an associated cost, for it is likely that the cost of an
object can be computed in constant time from the cost of its predecessor on the Gray
code list.

In this paper we consider Gray codes for binary necklaces. A necklace is an
equivalence class of binary strings under rotation. To be precise, let F (0, 1} and
for n _> 0 let 5]n denote the set of all strings of length n over 5]. Define the rotation
operation a" 5]n __, n by

Xn) X:

Then, strings x and y are in the same necklace if and only if ai (x) y for some integer
i. A necklace can be identified by specifying any one of its elements and frequently
the lexicographically smallest string is chosen as the representative. The density of a
necklace is the number of ones in a representative of the necklace. We use N(n) and
N(n, d) to denote the number of n-bit necklaces and the number of n-bit necklaces of
density d, respectively.

Received by the editors February 13, 1995; accepted for publication (in revised form) December
21, 1995. This research was supported by National Science Foundation grants CCR8906500 and
DMS9302505.

Department of Computer Science, North Carolina State University, Box 8206, Raleigh, NC
27695-8206 (cds@adm.csc.ncsa.edu).

654

A GRAY CODE FOR NECKLACES OF FIXED DENSITY 655

Note that distinct n-bit strings of density d must differ in at least two positions.
For this paper, by a Gray code for necklaces offixed density we mean a listing of n-bit
binary strings with d ones, exactly one from each necklace, in which successive strings
differ in exactly two bit positions. We will show that such a Gray code is always
possible and that it gives rise to the most efficient algorithm known for generating
necklaces of fixed density.

A simple and elegant algorithm for listing the lexicographically smallest repre-
sentatives of all n-bit necklaces was given in [FrMa, FrKe], and we refer to this as
the FKM algorithm. It was shown in [RuSaWa] that the time required by the FKM
algorithm is O(N(n)), that is, constant average time per necklace, which is the best
possible time. The efficiency here is achieved by amortization rather than a Gray
code, since successive representatives listed by the FKM algorithm can differ in t(n)
bits. In fact, it can be shown that, in general, there is no listing for n-bit necklaces
in which successive representatives differ in just one bit. In such a listing, the density
of successive representatives would alternate between even and odd. However, this is
impossible for even n, since the numbers of even-density and odd-density necklaces
differ by more than one when n > 0.

In contrast to the situation with all necklaces, there is no parity problem which
precludes, for any n and d, a Gray code for n-bit necklaces of density d. The main
result of this paper is to show the existence of a Gray code for any n and d. The
proof is constructive and the resulting algorithm, which has been implemented in the
programming language C, takes time O(nN(n,d)). We note here that the necklace
representative used in the Gray code is not the lexicographically smallest one, x.
Instead, it is the representative obtained from x by applying a to x until the leftmost
bit is a one.

No previous algorithm for the problem of listing all n-bit necklaces of fixed density
d is known to be as efficient as O(nN(n, d)) for general d. However, in the special case
when n 2d + I, a Gray code for n-bit necklaces of density d follows from the Gray
code of Ruskey and Proskurowski [RuPr] for balanced parentheses. This is determined
by a straightforward bijection between these two families, and this algorithm achieves
constant average time per object.

In 2 we present background and technical lemmas used for the main result. The
Gray code construction is presented in 3 and its implementation is described and
analyzed in 4.

2. Background and technical lemmas. For c, / E E*, we use _</ (c <)
to denote that c precedes (strictly precedes) / in lexicographic order. Let L(n) be
the set of lexicographically smallest representatives of the n-bit necklaces. That is,

L(n) {x e ’]n IX o.i(x) for 1 _< i < n}.

Let L(n, d) be the subset of L(n) of strings of density d. As the backbone of our Gray
code construction, we will use a tree of elements of L(n), which was introduced in
[WaSa]. For n >_ 1, let - En]n be the function

T(XlX2 Xn) XlX2 ’’n.

Then the tree, TREE(n), is defined recursively by the following:

(i) 0n is the root of TREE(n) and
(ii) if x is a node of TREE(n), then for 1 _< < n, Tai(x) is a child
of x if and only if 7oi(x) e L(n).

656 TERRY MIN YIH WANG AND CARLA D. SAVAGE

level 0

level

level 2

level 3

level 4

level

level 6

level 7

00001 101 0001011 0010101 001 11

00011(101 0011011 00110111 0111011

0111111

FIG. 1. The tree of 7-bit necklaces, TREE(7).

As an example, TREE(7) is shown in Figure 1. Note that no element of L(n) appears
more than once in TREE(n), because if x, y e L(n) and Tcr(x) TaJ(y), then
cr(x) cry (y), which means x and y are representatives of the same necklace and
therefore must be identical. Thus, TREE(n) has no cycles and, since by definition
it is connected, it is in fact a tree. It is straightforward to verify that the nodes of
TREE(n) are exactly the elements of n(n) and that L(n, d) is the set of nodes on
level d. First note that 0n appears in the tree at level 0 and 0n-11 appears at level
1. For d _> 2, assume inductively that all elements in L(n, d- 1) appear in TREE(n)
at level d- 1. Then y E L(n,d) can be written as y 0kc10l, where k, >_ 0. But
then y -cr+l(0k++cl) and x 0k++cl E L(n,d- 1). By induction, x is in
TREE(n) at level d- 1 and therefore, by definition of TREE(n), y is a child of x at
level d.

The following result, crucial to our construction, was proved in [WaSa].
THEOREM 2.1. For node x 0kl in TREE(n) with k >_ 0 and c F* and for

satisfying 1 < < k, if Tcr(x) L(n), then Tcr+ L(n).
As a consequence of Theorem 2.1, if a node x 0lc in TREE(n) has ex-

actly c > 0 children, then those children are ’a(x), Ta2(X),..., Tat(X), and none of
-crc+l(x),..., ’ak(x) is in L(n). Thus, if y is a child of x 0klc in TREE(n), there
is a unique i, 1 < < k, such that y Tffi(x).

For node x in TREE(n), let lev(x) denote the level of x in TREE(n), where
the root is at level 0. For d >_ 0, let DESC(x, d) be the set of descendants of x in

TREE(n) on level d + lev(x). A node x is called d-rich if DESC(x,d) . For
example, in Figure 1, x 0000001 is 2-rich, since

DESC(O000001,2) {0000111, 0001101, 0001011, 0010101, 0010011} .
Although we are interested in a Gray code for the set DESC(On, d) of all n-bit

necklaces of density d, we consider only d < [n/21, since, otherwise, a Gray code for
DESC(On, d) can be obtained from one for DESC(On, n- d) by interchanging the
roles of 0 and 1. Our construction will in fact give a Gray code for any set DESC(x, d)
with d + lev(x) < [n/2J.

By repeated application of Theorem 2.1, if x 0klce, any z DESC(x, d) can
be written uniquely in the form

Z Tffaa To’aZTo"hi (X),

A GRAY CODE FOR NECKLACES OF FIXED DENSITY 657

where 0 < a < n, aa... TaaTaal (X) E L(n) and al +..-d- a <: k for 1 <_ <_ d.
For a string a E E*, let max(a) be the length of the longest consecutive block of

zeros in a. We repeatedly use the facts that since x L(n) if and only if it is the
lexicographically smallest of all of its rotations, (i) if 0kla L(n) then k _> max(a)
and (ii) if k > max(a) then 0kla e L(n).

Our Gray code construction depends on the restrictive structure of the necklace
tree and requires the technical lemmas below. For a string a E*, define #ones(a)
and #zeros(a) to be the total number of ones and zeros, respectively, in a. (The
density of a is ones(a).) We denote the empty string by .

Z E X]n,LEMMA 2 2 Assume that a A or that a + and a ends in 1. For z,
/f z 0ala0b/3 is in L(n) where a >_ 1 and b >_ 1, then any n-bit string of the form

z’ O+claOb-1

must be in L(n) for any c >_ 0 and ’ * with a + c > max(/’). Furthermore, if
z e L(n,j) and j <_ n/2J, then either a > 1 or a >_ #ones(3) #zeros(Z).

Proof. Since z e L(n),

(i) a _> b and
(ii) either (a)

or (b)
a > max(a)
a- max(a) and
z <: w for any rotation w of z.

If (i) and (ii)(a) hold, then z’ e L(n). Otherwise, (i) and (ii)(b) hold so a max(a)
and a A. If z’ L(n) then there exist a, a2 E*, with lal _> 0 and la21 _> 1, such
that a2 starts with "1" and a al0aa2 and z is greater than its rotation r(z).

(1) z’ > oaa20b- 13’oa+cla r(z’).

It must follow that c 0. Let r(z) be the rotation of z"

P(Z) Oaa2ob3oala1.

Note that 0a+cla _< z, and by (ii)(b), z <_ r(z). Also, r(z) < r(z’), so 0a+cla < r(z’).
Combining this with (1), since oa+cla is a prefix of z’, 0a+cla is also a prefix of r(z’).
However, note that the prefix 0aa20b-ll of r(z) is shorter than 0a+cla.

[Oaa20b-11[a+ la2l /b
am lal +a

< a+c+l+JalJ+a+
I.

(by (i)),
(since c >_ 0 and i1 _> 0),

Therefore, 0aa20b-l is a prefix of 0a+cla. Thus,

0aa20b-ll 0a+Cla Z r(z) Oaa2ob/3oalal,

a contradiction.
If z e L(n, j) and j _< [n/2J, then #zeros(z) >_ #ones(z), so

a + b + #zeros(a) + #zeros(/3) >_ 1 + #ones(a) + #ones(3).

Thus,

a >_ (#ones(a)- #zeros(a))+ (#ones()- :/:/:zeros())+ 1 -b.

658 TERRY MIN YIH WANG AND CARLA D. SAVAGE

If a _< 1, then since a _> b _> 1, it follows that a b 1, so max(a) _< 1. Therefore c
cannot have more zeros than ones, since a ends in 1. Thus, from (2), a >_ #ones(3)-
#zeros(). V1

We introduce a notation to label key nodes of TREE(n) used in the Gray code
ttt Vconstruction. For a binary string, z, define u, u, v, and w as follows:

when d >_ 0,

when d 0,

when d _> 1,

when d _> 2,

u(z, d) (Ta)d(z);

v(z, d) z;

v(z, d) TO’2(TO’)d-1 (Z),
W(Z, d) TO’3(T(T)d-1 (Z),
u’(z,d) (Tald--lTa2(Z),
U"(Z, d) (To’ld--ITo’3(Z);

v’(z, d) Ta2(Ta)d--2Ta2(Z).
For example, in Figure 1, if z 0000001, then u(z, 2) 0000111, v(z, 2) 0001101,
u’(z, 2)= 0001011, v’(z, 2)= 0010101, and u"(z, 2)= 0010011. Note that for general
z, u(z, O) z, u’(z, 1) v(z, 1), and u"(z, 1) w(z, 1).

Let x E L(n) and let Yi Tai(X) denote the ith child of x. Further use of the
vertex labels is illustrated in Figure 2. The lemma below shows that existence of a
node at certain locations in TREE(n) forces the existence of nodes at certain other
locations in TREE(n).

LEMMA 2.3. Let x On be a node in TREE(n). Let y Ta(x) and assume
that j <_ [n/2J. For

l_<i<n-l,d>_l, (i) if u(yi+l,d) e L(n,j), then u(yi, d) e L(n,j),
(ii) if u(yi+l, d) e L(n, j), then v(yi, d) e n(n, j),
(iii) if u(yi+l,d) e n(n,j), then u’(yi, d) e n(n,j);

1 _< <: n- 1, d_> 2, (iv) if v(yi+l,d) L(n,j), then v’(yi,d) L(n,j);
1 _< < n-2, d >_ 1, (v) if v(yi+2,d) e L(n,j), then u"(yi, d) e n(n,j).

Proof. (See Figure 2.) Write x as x 0kla where a E E*. Then,

tt(yi+l,d) (T(y)dTryi+I(x)
u(yi, d) --(Tr)dT(yi(x)

d)

d)
u"(yi, d) (T(T)d--ITo’3TO’i(x)

ok-i-d-1 la0ild+l
ok-i-dlo/Oi-1 ld+l
ok-i-d-l loOi-l ld01,
ok-i-d-l loOi-l lO1d,
ok-i-d-210oildO1,
ok-i-d-210oi-11014-101
ok-i-d-310oi+l ld01,
ok-i-d-210oi-llOOld.

Cases (i)-(iii) of Lemma 2.3 follow from Lemma 2.2 with a k- i-d- 1,
i, =1d+l,and

for (i), with
for (ii), with
for (iii), with

=1dc=l,
c=O, -- ld-lo1,

/Y O1C--0,

A GRAY CODE FOR NECKLACES OF FIXED DENSITY 659

x

uO’i, I) v(y, I) w(y, I) ufYi+l, I) v(yi+ , I) u(Yi+2, I)
u’(y. i) u"fy, i)

(a)

x

u(y,d) v(y.d) u’(y.d) v’(y.d) u"(y.d) u(Yi+,d),fyi+,d) u’(y+,d)

(b)

FIG. 2. Labeling key tree nodes (a) when d 1, (b) when d >_ 2.

In each case (i)-(iii), max(/3’) _< 1. Note that by Lemma 2.2 either a > 1, so that
a+c > l+c > 1-c max(’),or

a-bc >_ #ones()-#zeros()-bc d+lq-c _> 2-be _>2 > max(3’).

Case (iv) follows from Lemma 2.2 with a k-i-d-2, b i, ld01, c 0, and
/3 014-101. Note that d _> 2 in this case and by Lemma 2.2, either a > 1 max(/3t)
or a >_ #ones(13)- #zeros(3) d _> 2 > max(/’).

Case (v) follows from Lemma 2.2 with a k-i-d-3, b i, 01d01, c 1,
andS’--001d. Note thata _> iq-1

_
2, sincev(y+2,d) EL(n). Thusa-bc

a+l > 2 max(fi’).
Let x be a node in TREE(n) with c children yl,..., yc, where yy TOrY(X). For

d_>landl_<i_<:c, define

V(x, d, i) DESC(yj, d 1).
j=i

Then note that DESC(x, d) V(x, d, 1). In Figure 1,

V(0000001, 2, 2) DESC(O000101, 1) U DESC(O001001, 1)
{0001011, 0010101, 0010011}.

The next section gives a recursive construction of a Gray code for V(x, d, i) based
on the following recursive decomposition of V(x, d, i)"

V(x, d, i) DESC(yi, d 1) A V(x, d, + 1).

660 TERRY MIN YIH WANG AND CARLA D. SAVAGE

Note that for a given d _> 1, not every child of x need be (d- 1)-rich. Let r(x, d) be
the number of (d- 1)-rich children of x. Corollary 2.4(a) below generalizes Theorem
2.1 to establish that the (d- 1)-rich children of x must be exactly yl, y2,..., Yr(x,d).

COROLLARY 2.4. Let x E L(n, b), b >_ 1, d >_ 1, b / d <_ Ln/2J. For 1 <_ i <. n,
let y T(x).

(a) If Y(x, d, i) , then u(yi, d- 1) e DESC(yi, d- 1).
(b) If IV(x, d, i)l >_ 2, then DESC(yi, d- 1) contains both u(yi, d- 1) and v(yi,

d-l).
Proof. The corollary is proved by induction on d. If d 1, the result follows from

Theorem 2.1. Assume the result is true for
then DESC(y+j, d- 1) : 0 for some j satisfying 0 _< j < n and y+j e L(n).

Let z Ta(y+j). Then u(z, d- 2) u(y+j, d- 1). Since DESC(y+j, d- 1)
Y(y+j, d- 1, 1), by induction u(z, d- 2) DESC(z, d- 2) C_ DESC(y+j, d- 1) and
therefore u(y+j, d- 1) DESC(y+y, d- 1). So by Lemma 2.3(i), u(y+j_, d- 1)
DESC(y+y_,d- 1). Part (a) follows from j 1 further applications of Lemma
2.3(i). Part (b)follows from (a)and Lemma 2.3(ii).

3. The Gray code construction. We first introduce a different collection of
necklace representatives which are a slight variation on the L-representatives. Note
that although the L-representatives x 00000011101 and y 00001110001 differ in
four bit positions, there exist rotations x, y of x, y, respectively, which differ in only
two bit positions. Although we could call x and y "adjacent" if there exist rotations
of x and y which differ in only two bit positions, we found that by using the M-
representatives, defined below, we could make explicit the rotations of x and y which
differ in only two bit positions, at least for the adjacencies which will be used in our
construction.

For a necklace representative x E L(n), either x On or x can be written uniquely
as x 0kla for some k >_ 0 and a 6 E*. Define a function M on L(n) by

’ x if X 0n,
Mix] lo0k if x Ok lc.

Since Mix] and x are in the same necklace, the set

{MIx]Ix

is an alternate set of necklace representatives, called M-representatives.
Define x, y e n(n) to be M-adjacent if MIx] and M[y] differ only by the in-

terchange of a 0 and a 1. Let Gn be the graph whose vertex set is L(n), with two
vertices adjacent in Gn if and only if they are M-adjacent. Let Gn[X, d, i] be the
subgraph of (n induced by V(x, d, i). Note that if z, z2,..., z8 is a Hamilton path in

Gn[x, d, i], then M[z], M[z2],..., M[zs] is a Gray code for the necklaces in Y(x, d, i).
For example, in Figure 1, the graph GT[0000001, 2, 1] is a graph with vertex set

Y(0000001,2,1)- {0000111, 0001101, 0001011, 0010101, 0010011}.

A Hamilton path in this graph is

0000111, 0010101, 0001011, 0010011, 0001101,

and the corresponding list of M-representatives, giving a Gray code, is

1110000, 1010100, 1011000, 1001100, 1101000.

A GRAY CODE FOR NECKLACES OF FIXED DENSITY 661

Our goal is to find a Gray code for the necklaces in DESC(On, d) V(0n, d, 1)
V(On-11, d- 1, 1) when 1 <_ d _< [n/2J. This will follow if we can show that G,[x, d, i]
has a Hamilton path for every (x, d, i) satisfying x E L(n), lev(x) + d <_ [n/2J, and
1 <_ <_ r(x, d).

The strategy will be recursive. Let yi Tai(X). Since it was shown in 2 that
V(x, d, i) V(yi, d 1, 1) t9 V(x, d, + 1), Hamilton paths/cycles recursively con-

structed in Gn[y, d- 1, 1] and Gn[x, d, i + 1] will be linked to form a Hamilton
path/cycle in Gn[x,d,i]. The full construction is contained in Theorem 3.7 at the
end of this section, following some further technical lemmas.

In the next sequence of lemmas, we examine the structure of Gn[x, d, i]. In partic-

ular we show that the graph is complete whenever d 1 or r(x, d). In addition,
we establish the existence of certain edges which will be used to link together Hamilton
cycles recursively constructed. When x is fixed, we let y Tai(x).

LEMMA 3.1. For any node x in TREE(n), Gn[x, 1, 1] is complete.
Proof. If x 0n, the only child of x is 0n-11. Otherwise, x has the form x 0klo

for some a E E*. Let Tai(X) and TaJ (X) be distinct children of x with 1 <_ i, j _< n.

Then

M[7"ai(x)] la0i-110a-i

and

M[Taj (x)] la0j-110k-j,

and these differ only by the exchange of a 0 and 1.
LEMMA 3.2. For x 0" in TREE(n) and d >_ 2, let r r(x, d). Let yi Tai(X).

Any z in DESC(yr, d- 1) has the form

Z TO’ad-ITO"ad-2"’" TO"al (Yr),

where l <_ ai <_ 2 for l <_ <_ d-1 and ai 2 for at most one i {1,...,d-1}.
Proof. Since x On, x can be written as 0klo for some a E* where a

A or a ends in 1. Any z DESC(yr,d- 1) can be written uniquely as z
T(:tad-1 Taal (Yr), where 1 _< ai <_ n for l <: i _< d- 1. We show that a +.. "+ad-
d.

By definition of r- r(x,d), z’’--u(yr+,d- 1) L(n). Expand z and z’ as

Z TO"ad-1 TO’alTO’r(X) 0k-r-al ad-1 100r--110a--i 1... 0ad-l-11,

z’ = u(yr+, d 1) (Ta)d--Tar+ (X) 0k-r-dla0r 1d.

Let s al +... + ad- and assume that s > d. Since z L(n), k- r- s _> max(a)
and

(3) k-r-d > k-r-d-1 >_ k-r- s >_ r-1.

But then since z L(n), it must be that k- r- d r and z is larger than its

rotation r(z’):

(4) Or la0r 1d z’

Let/ 0a-ll... 0aa--ll and let r(z) be the following rotation of z Ok-r-SloOr-11"
r(z) 0r-ll/3Ok-r-sla.

662 TERRY MIN YIH WANG AND CARLA D. SAVAGE

Since I 1- s > d and #ones() -- d- 1,

or-lla < ld-10rlO.

But then,

0z 0k-r-s+1100r-11,
>_ 0k-r-dlaOr-11 since s > d,

0rla0r-tl since k-r-d=r,
> z’> r(z’) by (4),

0r ld0r 10,
> 0rl0r-tla by (5),
:> 0rl0k-r-Sla by (3),

Thus 0z > Or(z), so z > r(z), which is impossible since z is a necklace.
LEMMA 3.3. For x 7 On in TREE(n) and d >_ 2, let r r(x,d). Then,

Gn[X, d, r] is complete.
Proof. Since x 7 On Ok where a E * and eitherx can be written as x la,

a , or a ends in 1. By Lemma 3.2, any vertex of Gn[x, d, r] Gn[yr, d- 1, 1] has
the form

TTaa_l T(TaITO.r(X) ok-r-a-a2 aa- la0-10a-I 1’’’ 0aa--I 1,

where l_<ai_2 forl<:i_<d-1 and ai=2 for at most oneiE{1,...,d-1}.
This means that s at +... + ad-1 is either d- 1 or d and any vertex has the form

(if s=d-1)

or

(ii) ok-r-dloOr-1101d-i (if s=d).

Clearly, any two vertices of this form are M-adjacent. El
LEMM 3.4. Let x 7t 0’ be a node in TREE(n) with d > 1 and r r(x, d). For

each of the following pairs of strings z, z, if both z and z are in L(n), then they are
M-adjacent:

(a) u(y,d) and v(yi, d) for d >_ l and l <_ <_ r,
(b) u(yi, d) and u(yi+l, d) for d >_ 1 and 1 <_ < r,
(c) u(yi, d) and v(yi+l, d) for d >_ l and l <_ < r,
(d) v(yi, d) and u(yi+t, d) for d >_ l and l <_ < r,
(e) u’(yi, d) and u(yi+l, d) for d >_ 2 and l <_ i < r,
(f) v’(yi, d) and v(yi+l,d) for d >_ 2 and l <_ i < r,
(g) u’(yi, d) and u(yi+2, d) for d >_ 2 and l <_ < r-1,
(h) v’(yi, d) and u(yi+2, d) for d >_ 2 and l <_ i < r -1,
(i) w(yi,1) and v(yi+l,1) for l <_ < r,
(j) v(yi,1) and u(yi+2,1) for l <_ i < r -1,
(k) w(yi,1) and u(yi+2,1) for 1N < r-1.

Proof. These edges are illustrated in Figure 3, when d 1, and Figure 4, when
d > 1. Using the definitions of the vertices and the fact that x has the form 0kloz

A GRAY CODE FOR NECKLACES OF FIXED DENSITY 663

u(Yi, I) v(Yi, I) w(Yi, I) u(Yi+I, I) v(Yi+l, I) u(Yi+2, I)

FIG. 3. Edges in Gn, when d 1, labeled by corresponding part of Lemma 3.4.

for k :> 0 and a E E*, the lemma can be verified directly for each pair (a)-(k). For
example, in (c),

M[u(yi, d)] M[(Ta)d(yi)]
M[(Ta)dTai(X)]
M[(Ta)dTai(Okla)]
M[Ok-i-dlao-114+
100i-1 ld+lok-i-d

and, similarly,

M[v(yi+l, d)] M[Ta2(Ta)d-l(yi+l)]
2 d z-F1=M[Ta (Ta)-Ta" (Okla)]

M[Ok--d-2laO ld01]
laO ld010k--d-2.

Exchanging the last 1 in M[v(y+l,d)] with the last 0 in the block of i zeros gives
M[u(y,d)].

The following two lemmas describe strategies which will be used repeatedly in
Theorem 3.7 for linking together Hamilton paths/cycles in Gn[y, d-l, 1] and G[x, d, i+
1] to get a Hamilton path/cycle in Gn[x, d, i]. Although linking is straightforward in

664 TERRY MIN YIH "WANG AND CARLA D. SAVAGE

Yl

u(y, d) v(, u’(y, cO v’(y, cO u(y+z, cO v(y+ , cO u’O’+,d) uO’;+2,d)

(c),
(b)

(e) (0

(c)

u(.v+ 2, d)

"O/uO,, cO ’(y v(yi+cO u’(y+,

FIG. 4: Edges in Gn, when d >_ 2, labeled by corresponding part of Lemma 3.4.

the general case, many cases require special attention if d is small or if is close to
r(x,d).

First, define Hamilton paths and cycles of special types in Gn[X, d, i] as follows:

O(x, d, i) cycle: a Hamilton cycle containing edges
u(y, d 1)v(y, d 1) and u(y, d 1)v(y+l, d 1),

E(x, d, i) cycle: a Hamilton cycle containing edges
u(y, d 1)v(y, d 1) and u(y, d 1)u(y+, d 1),

UV(x, d, i) path: a Hamilton path from u(y, d 1) to v(y, d 1),

P(x, d, i) path: a Hamilton path from v(y, d- 1) to u(y+, d- 1),

Q(x, d, i) path: a Hamilton path from u(y, d 1) to u(y+, d 1).

Note that O(x, d, i) and E(x, d, i) cycles contain UV(x, d, i) paths. The O- and
E-type Hamilton cycles are so named because for large enough d, it turns out that
Gn[x, d, i] has an O-type cycle for odd d and an E-type cycle for even d. The UV-,
P-, and Q-type Hamilton paths are actually cycles, since by Lemma 3.4 their start
and end vertices are adjacent. However, they will be used only as paths for splicing

A GRAY CODE FOR NECKLACES OF FIXED DENSITY 665

c
(E-type) e5 u(Yi 2, d- 1)

u "(yi d-

e2
u(yi d 1)

e

v(Yi d 1)

v(yi+ 1, d- 1)

e4 or

u(yi l, d- 1)

or u(Yi + 2, d- 1)

(P-type)

RA
(UV-type)

or

u(yi+ l,d- 1)
RB

C" eh’ u(yi 2, d- 1) (Q-type)

(O-type)

FIG. 5. Construction of O(x, d, i) and E(x, d, i) cycles in Lemma 3.5.

into O- and E-type cycles.
The construction of the main theorem splits Gn Ix, d, i] into two subgraphs, one of

which contains an O- or E-type cycle and the other which contains a Hamilton path of
type UV, P, or Q. An O-type cycle for Gn[x, d, i] is then formed by splicing together
a cycle and path recursively constructed in the subproblems: either an E-type cycle
plus a UV path or an E-type cycle plus a P-type path. Similarly, An E-type cycle for
Gn[X, d, i] can be formed by splicing together an O-type cycle plus a UV path or an
O-type cycle plus a Q-type path. The details are given in Lemmas 3.5 and 3.6 below.

LEMMA 3.5. For x E L(n,b) with b,d > 1 and b + d < [n/2J, assume that
r(x,d) > 2 and let yi be the ith child of x. For < r(x,d), if Gn[yi, d- l,1] has
an E(yi, d 1, 1) (respectively, O(yi, d 1, 1)) cycle, then Gn[X, d, i] has an O(x, d, i)
(respectively, E(x, d, i)) cycle as long as Gn[x, d, i + 1] has the following:

(A) a UY(x,d, + 1) path or
(B) both P(x, d, + 1) and Q(x, d, + 1) paths.
Proof. (See Figure 5.) Let C be an E(yi, d- 1, 1) cycle in Gn[yi, d- 1, 1] and

for 1 < j < r(yi, 1), let zj be the jth child of yi. Then C contains the edges el
u(zl, d 2)v(zl, d 2) u(yi, d 1)v(yi, d 1) and e2 u(zl, d 2)u(z2, d 2)
u(y,d- 1)u’(y,d-- 1). We seek a Hamilton cycle in Gn[x,d,i] containing edge e
and the edge e3 u(y, d- 1)v(y+, d- 1), which edge exists by Lemma 3.4(c).

Let RA be a UV(x, d, i+1) path in Gn[X, d, i+1] from u(yi+, d-l) to v(y+, d-l).
Note that e4 u’(yi, d- 1)u(yi+,d- 1) is an edge by Lemma 3.4(e). Then (C-
e2) + e3 + e4 + RA is a Hamilton cycle in Gn[x, d, i] containing edges el and e3.

Let RB be a P(x, d, + 1) path in Gn[X, d, + 1] from v(yi+, d- 1) to u(yi+2, d- 1)
and let e5 u’(y, d- 1)u(yi+2, d- 1), which is an edge by Lemma 3.4(g). Then

666 TERRY MIN YIH WANG AND CARLA D. SAVAGE

(C e2) -- e3 + e5 -- RB is a Hamilton cycle in Gn[x, d, i] containing edges el and e3.
On the other hand, if C’ is an O(y, d- 1, 1) cycle in Gn[y, d- 1, 1], it contains

edge el as well as e where e u(zl, d- 2)v(z2, d- 2) u(y, d- 1)v’(y, d- 1). We
seek a Hamilton cycle in Gn[x, d, i] containing edge el and the edge e u(y, d-
1)u(y+, d- 1), which edge exists by Lemma 3.4(b).

With RA as before, note that e v’(y, d- 1)v(y+, d- 1) is an edge by Lemma
3.4(f). Then (C’ e2) + e + e + RA is the required Hamilton cycle in Gn[x, d, i].

Let R be a Q(x, d, + 1) path in Gn[x, d, + 1] from u(y+, d- 1) to u(y+2, d- 1)
and let e v’(y, d- 1)u(y+2, d- 1), which is an edge by Lemma 3.4(h). Then
(C e) + e + e +R is the required Hamilton cycle in Gn Ix, d, i].

A graph is trivial if it has only one vertex.
LEMMA 3.6. For x E L(n,b) with b,d >_ 1 and b + d <_ Ln/2], assume that

r(x, d) >_ 2 and let r r(x, d). If Gn[x, d, r] is trivial, then Gn[x, d, r 1] has both
P(x, d, r 1) and Q(x, d, r 1) paths as long as Gn[yr-, d 1, 1] has either

(A) a UY(yr-1, d- 1, 1) path or
(B) both P(yr-, d- 1, 1) and Q(yr-, d- 1, 1) paths.
Proof. (See Figure 6.) If G,[x, d, r] is trivial, it contains only the vertex u(y, d-

1), by Corollary 2.4(a). By Lemma 3.4(d) and (b), respectively, G,[x, d, r- 1] contains
the edges e v(y_, d- 1, 1)u(yr, d- 1, 1) and e2 u(yr-, d- 1, 1)u(yr, d- 1, 1), as
long as the endpoints exist. It suffices to show that if (A) or (B) holds, Gn[X, d, r- 1]
has a Hamilton cycle C1 containing e and a Hamilton cycle C2 containing e2.

If (A) holds, let H be a UY(y_, d- 1, 1) path in Gn[Yr-1, d, 1] from u(yr-, d-
1) to v(y_,d- 1). Then C C2 H + e + e2 gives both required cycles in
Gn[X, d, r 1].

If (B) holds, let zj be the jth child of YI and let H and H2 be Hamilton paths
in G[y_, d, 1] from V(Zl, d- 2) v(yr-, d- 1) to u(z2, d- 2) u’(yr-1, d- 1) and
from u(z, d- 2) u(y_, d- 1) to u(z2, d- 2) u’(yr-, d- 1), respectively. Let e3
be the edge e3 u’(y_,d- 1)u(yr, d- 1) which exists by Lemma 3.4(e). Then the
required cycles in Gn[x, d, r- 1] are C1 H + e + e3 and C2 H2 + e2 + e3.

We can now prove the main result of the paper.
THEOREM 3.7. For x L(n,b) with b >_ 1, let d and be integers such that

1 _< d+b _< [n/2J and 1 <_ i <_ r(x,d). Then Gn[x,d,i] has a Hamilton cycle
whenever IV(x, d, >_ 3.

Proof. We prove the following claim under the hypotheses of the theorem.
CLAIM. Assume IV(x, d, i)] _> 2.
Exception A subclaim. If

(i) d 1, or

(ii) r(x, d), or
(iii) d 2 and Y(x, d, i) {u(yi, 1), v(yi, 1), u(yi+, 1), v(yi+, 1)},

then G[x, d, i] has a UV(x, d, i) path.
Exception B subclaim. Otherwise, if i + 1 r(x, d) and Gn[X, d, i + 1] is trivial,

then Gn[x, d, i] has both P(x, d, i) and Q(x, d, i) paths.
General case. Otherwise, G,[x, d, i] has an E(x, d, i) cycle when d is even and an

O(x, d, i) cycle when d is odd.
Note that the theorem follows from the Claim, since the origin and terminus of

any UV, P, or Q path are adjacent by Lemma 3.4.
Proof of the Claim. Let r r(x, d). The proof is by induction on d and r i.

If d 1, then Gn[X, d, i] is complete since it is a subgraph of Gn[X, 1, 1], which is
complete by Lemma 3.1. Similarly, when r 0 and d _> 2, Gn[x, d, i] is complete
by Lemma 3.3. In both cases, by Corollary 2.4(b), G[x, d, i] contains u(yi, d- 1) and

A GRAY CODE FOR NECKLACES OF FIXED DENSITY 667

H "U(Yr, d 1)

(UV-type)

)
e

(yr.l,d-

(a) C C

H --.(Y
(P-type), e3e3

(b) C

d-l)

e2

H2 (Yr d- 1)

(-type) / e3

(c) c2

FIG. 6. Construction of P(x, d, r 1) and Q(x, d, r 1) paths in Lemma 3.6.

v(y{, d- 1), and, since it is complete, it contains a Hamilton path joining these two
vertices. This satisfies Subclaim A(i, ii) of the Claim.

Assume inductively that when d >_ 2 and r- >_ 1, the Claim is true for all (,)
with bothd=d-1 andr-i>0orbothd=dandr-i<r-i-1. We show
the claim is true for (d, i).

Since r- i _> 1, u(yi+l,d- 1) E L(n), so by Lemma 2.3(iii), u’(y, d- 1) E L(n).
Thus, r(yi, d- 1) _> 2 and by Corollary 2.4(b), G.[y,d- ,] contains u(yi, d- 1)
and v(yi, d- 1), as well as u(yi, d- 1).

Case d 2. If d 2 and r >_ 1, by induction, Gn[y, 1, 1] has a UV(y, 1, 1)
path U from u(y, 1) to v(y, 1). By Lemma a.a(a,b), Gn[x,2,i] contains the edges
el u(yi, 1) to v(yi, 1) and e2 u(yi, 1) to u(yi+i, 1).

If G[x, 2, i / 1] is trivial (Exception B), let e3 be the edge e3 v(y, 1) to
u(yi+, 1), which exists by Lemma 3.4(d). Then H + e2 + e3 is a Hamilton cycle in
Gn[x, 2, i] containing both P(x, 2, i) and Q(x, 2, i) paths, as required for Exception B.
(See Figure 7(a).)

If Gn[x, 2, i] is Exception A(iii) of the Claim, edges ?(Yi+i,X)v(Yi+i,1 and
u(yi, 1)v(yi+, 1) exist by Lemma 3.4(a,c). These two edges together with e3 give
a UV(x, 2, i) path from u(yi, 1) to v(y, 1), as required. (See Figure 7(b).)

Otherwise, Gn[x, 2, i] is none of the exceptions, so, since d 2 is even, we must
show it has an E(x, 2, i) cycle containing e and e2. By induction, Gn[x, 2, + 1] has

668 TERRY MIN YIH WANG AND CARLA D. SAVAGE

e2

...... ufyi+, 1)

v(yi, 1)
e3

(a)

(b)

u(yi+, 1)

vO’i+l,,1)

FIG. 7. Special cases when d 2 in Theorem 3.7.

either a Hamilton path R1 from u(yi+, d- 1) to u(yi+2, d- 1) (Exception B) or a
Hamilton path R2 from u(y+l, d- 1) to v(y+, d- 1) (Exception A and General
case).

If r(y, 1)= 2, then by Lemma 2.3(v), v(y+2, 1) L(n) and therefore Gn[X, 2, i+
1] is Exception B, so it contains R. In this case, let e4 be the edge v(y, 1) u(y+2, 1),
which exists by Lemma 3.4(j). Then e + e2 +R + e4 is the required Hamilton cycle.
(See Figure 8(a).)

If r(y, 1) >_ 3, then it also contains vertex u"(y, 1) w(yi, 1), by Lemma 2.3.
Thus, since Gn[y, 1, 1] is complete, it contains a Hamilton path H’ from u(y, 1) to
w(y, 1) containing e. Let e5 and e6 be the edges

e5 w(yi, 1)u(yi+2, 1),

which exist by Lemma 3.4(k, i). Since Gn[x, 2, i+ 1] contains either R1 or R2, then one
of the following is a Hamilton cycle in Gn[x, 2, i] containing el and e2: H’+e2+R +e5
or H’ + e2 + R2 + e6. (See Figure 8(b,c).)

Case d 3. In this case, Gn[x, 3, i] cannot fall under any case of Exception A
of the Claim. If Gn[X, 3, i] is Exception B, then + 1 r(x,3) and Gn[x, 3, i + 1]
is trivial. We must find P(x, 3, i) and Q(x, 3, i) paths in Gn[X, 3, i]. But these paths
exist by Lemma 3.6 since, by induction, Gn[yi, 2, 1] satisfies conditions (A) and (B)
of that lemma.

Otherwise, Gn[x, 3, i] is the general case of the Claim and since d 3 is odd,
we must find an O(x, 3, i) cycle containing edges e u(yi,2)v(yi,2) and e2
u(y, 2)v(y+, 2). Since Gn[X, 3, i + 1] is nontriviM, by induction, it satisfies (A) or
(B) of Lemma 3.5.

If Gn[y, 2, 1] is in the general case of the Claim, by induction it has an E(yi, 2, 1)
cycle and therefore by Lemma 3.5, Gn[X, 3, i] has an O(x, 3, i) cycle. Otherwise,
Gn[y, 2, 1] is not the general case of the Claim. But Gn[x, 3, i + 1] is nontriviM, so
by Corollary 2.4(b) it contains v(yi+,2). But then by Lemma 2.3(iv), v’(yi,2) e
Y(yi,2, 1). Clearly, then, Gn[y,2, 1] cannot be Exception B or cases (i) or (ii) of

A GRAY CODE FOR NECKLACES OF FIXED DENSITY 669

e2u(y 1)

el
R

e

(a)

el e2

H

1) ""
e5

(b)

R1

v(y,)
el e

.,11"

R
H eo

(c)

FIG. 8. The d 2 case of Theorem 3.7.

Exception A. So, suppose Gn[yi, 2, 1] is Exception A(iii). Then Gn[y, 2, 1] contains
only the vertices {u(yi,2), v(yi,2), u’(yi,2), v’(yi,2)}. Since u"(y,2) Y(yi,2,1),
by Lemma 2.3(v), v(yi+2,2) L(n). Thus either r + 2 and Gn[x,3, + 1] is
Exception B or r + 1 and therefore by Lemma 3.2, Gn[x, 3, i + 1] has vertex set
either {u(y+l,2), v(y+l,2)} or {u(y+l,2), v(yi+,2), u’(y+,2)}. (Gn[X, 3, i + 1]
trivial was considered earlier.) If Gn[x, 3, + 1] is Exception B, then by induction it
has a Hamilton path R from v(y+, 2) to u(yi+2,2). See Figure 9(a) for an O(x, 3, i)
cycle in this case. If Y(x, 3, i + 1) ={u(yi+,2), v(yi+l,2), u’(yi+l,2)}, it can be
verified that v(yi, 2) and u’(yi+l, 2) are M-adjacent and Figure 9(5) shows an O(x, 3, i)
cycle in this case. An O(x, 3, i) cycle in the remaining case that V(x,3, i + 1)
{u(yi+l, 2), v(yi+l, 2)} is shown in Figure 9(c), where edges exist by Lemma 3.5.

Case d _> 4. If Gn[X, d, i] is Exception B of the Claim, then i + 1 r(x, d) and
Gn[X, d, i + 1] is trivial. By induction, G,[y-I, d- 1, 1] satisfies (A) and (B) of Lemma
3.6, so in this case, by Lemma 3.6, Gn[X, d, i] has both P(x, d, i) and Q(x, d, i) paths,
as required.

Otherwise, Gn[x, d, i+ 1] is nontrivial, so by Corollary 2.4(b) it contains v(y+l, d-
1) and therefore by Lemma 2.3(iv), v’(yi, d- 1) e L(n). Thus, Gn[yi, d- 1, 1] is in
the general case of the Claim, so by induction, it has an E(yi, d- 1, 1) cycle if d- 1
is even and an O(y, d- 1, 1) cycle if d- 1 is odd. Furthermore, since G,[x, d, i + 1] is
nontrivial, it satisfies (A) or (B) of Lemma 3.5 and therefore by Lemma 3.5, Gn[X, d, i]

670 TERRY MIN YIH WANG AND CARLA D. SAVAGE

’l

v(y+, 2) v ’(y+, 2)
(a)

u(y 2) u(Yi + 1, 2) u "(Yi + 1, 2)

,+P ,=

\ | v "(.vi, 2)

,t,, -,,-,-
(b)

FIG. 9. The d 3 case of Theorem 3.7.

has an E(x, d, i) cycle if d is even and an O(x, d, i) cycle if d is odd. This completes
the proof of the theorem. [:1

An example of the construction of the theorem is shown in Figure 10. The tree
of 10-bit necklaces is shown at the top, from levels 0 through 5. In the center is the
Hamilton cycle C in G10[01, 5, 1], resulting from the construction of the theorem. At
the bottom is the Gray code obtained by replacing each x on C by M[x].

4. The algorithm. The proof of Theorem 3.7 gives a recursive procedure for
constructing a Gray code for necklaces of fixed density. The procedure has been im-
plemented in C and is included in the appendix to [Wan]. (A subsequent modification
requires only O(n) storage.) In this section, we show the time required is O(nN(n, d)),
where N(n, d) is the number of n-bit necklaces of density d.

Below, we give a crude outline of the procedure CYCLE(x, d, i) for constructing a
Hamilton cycle in the graph Gn[x, d, i]. For simplicity, we ignore differences between
the different types of cycles (O, E) since these do not affect the time analysis.

CYCLE (x, d, i).

compute y_i, the ith child of x
if d=l then complete graph
else if i=r(x,d) then complete graph

A GRAY CODE FOR NECKLACES OF FIXED DENSITY 671

13.

14.

else if d=2 then
if G[x,d,i+l] is trivial then link cycle in complete graph

Gy_i,d-l,I] with vertex as in Figure 7(a)
else if GKx,d,i] is exception A(iii) then construct cycle

as in Figure 7(b)
else if r(y_i,d-1)=2 then link vertices to CYCLE(x,d,i+I)

as in Figure 8(a)
else link CYCLE(y_i,d-I,1) with CYCLE(x,d,i+I) as in

Figures 8 (b, c)
else if d=3 then

if GKx,d,i] is Exception B then link CYCLE(y_i,d-I,1) with

vertex as in Lemma 3.6
else if GKy_i,d-l,l] is Exception A(iii) then

if Gx,d,i+2] is empty then construct cycle
as in Figure 9(b,c)

else link vertices to CYCLE(x,d,i+I) as in Figure 9(a)
else link CYCLE(y_i,d-I,1) and CYCLE(x,d,i+I) as in Lemma 3.5

else d >= 4 }
if G[x,d,i] is Exception B then link CYCLE(y_i,d-I,1) and

vertex as in Lemma 3.6
else link CYCLE(y_i,d-I,1) with CYCLE(x,d,i+I) as in Lemma 3.5

Recall that L(n) is the set of lexicographicMly smallest representatives of the n-
bit necklaces. It is shown in [Shi] that for an arbitrary n-bit string, x, it is possible
to check whether x E L(n) in time O(n). Using this fact, we show that all the tests
in the CYCLE algorithm can be made in time O(n).

First note that by definition of r(x, d) and Corollary 2.4(a), r(x, d) >_ t if and only
if u(yt, d- 1) E L(n), so the tests on lines 3 and 6 can be made in time O(n) using the
algorithm of [Shi]. By Corollary 2.4(a), G,[x, d, i] is empty if u(y, d- 1) L(n) and
is trivial if and only if u(y, d- 1) L(n) but v(y, d- 1) L(n). By Corollary 2.4(b)
and Lemma 2.3(iii), Gn[x, d, i] has only two vertices if and only if v(y, d- 1) L(n)
but w(y,d- 1), u’(y,d- 1) L(n). Thus, tests in lines 4 and 10 take time O(n).
Finally, Gn[x,d, i] is Exception B if and only if r(x,d)- 1 and G,[x,d, + 1]
is trivial; Gn[x,d,i] is Exception A(iii) if and only if d 2, r(y,d- 1) 2, and
r(y+l,d- 1) 2. Thus, tests on lines 5, 8, 9, and 13 can be done in time O(n)
by testing whether certain binary strings are in L(n). This means that the CYCLE
procedure spends no more than O(n) time to determine whether to make a recursive
call.

If CYCLE(x, d, i) makes no recursive call, it takes one of the branches 2, 3, 4, 5,
or 10, each of which can be implemented in time O(nlY(x, d, i)l).

If CYCLE(x, d, i) makes a recursive call, it does so to one or both of the disjoint
subgraphs Gn[y, d- 1, 1] (a left call) and Gn[X, d, + 1] (a right call) and never to
a trivial graph. To count the number of recursive subcalls over the entire execu-
tion, consider the subtree RICH(x, d, i) of TREE(n) consisting of all nodes x with
descendants in V(x,d, i). Note that no recursive call is made on any node not in

RICH(x, d, i). Further, if w is a nonleaf node with only one child in RICH(x, d),
no recursive call is made at w (line 2 or 3). Thus, the number of recursive calls is
at most the number of nodes in RICH(x, d, i) with at least two children and this
number cannot exceed the number of leaves of RICH(x, d, i), which is IV(x, d,

672 TERRY MIN YIH WANG AND CARLA D. SAVAGE

nffi 10
d=5

1111010000 1011101000
1111001000 1011001100
1110011000 1011010100
1110101000 1011011000
1110110000 1010011100
1101110000 1010111000
1100110100 1010101010
1101010100 i010101100
1101011000 1010110100
1100111000
1101101000

1001110100
1001101100
1001011100
1001111000
1011110000
1111100000

FIG. 10. The Hamilton cycle in G10[01, 5, 1] and the corresponding Gray code for lO-bit neck-
laces of density 5.

In summary, the total time for CYCLE(x, d, i) is

O(n, number of recursive calls

where the sum on the right is over every call CYCLE(z, dP,j) which does not itself
make a recursive call. Both terms are O(nIY(x, d, i)[).

In particular, for d > 2, CYCLE(x,d- 1, 1) with x 0n-ll gives a Gray code
for V(On-, d 1, 1) L(n, d) in time O(n N(n, d)).

We mention that to avoid storing cycles, when recursively constructed "left" and
"right" cycles are to be linked by two edges, the procedure recursively computes and
outputs the left cycle (in an appropriate order), then one link edge is output, and
then the right cycle is computed recursively and output (in an appropriate order).
To complete the cycle, the second link edge is output. Thus the additional storage
required is no more than the depth of the recursion which is O(n).

Although the time analysis of the algorithm can be made tighter in several places,
we have found no way to reduce the overall time bound of O(n. N(n, d)), either by
a tighter analysis or by an alternative implementation. Even for the simpler problem
of listing n-bit necklaces of fixed density d in any order, no asymptotically faster
algorithm is yet known.

A GRAY CODE FOR NECKLACES OF FIXED DENSITY 673

Acknowledgment. We are grateful to the anonymous referee who offered many
suggestions to improve the presentation.

[BuWi]

[ChChCh]

[ChLeDu]

[FrMa]

[Gar]

[Gra]

[Kay]
[Kli]
[Los]

[Luc]

[LuRoRu]

[NiWi]

[PrRul]

[PrRu2]

IRa.SaTe]

[Ric]

[Rusl]

[Rus2]

[RuPr]

[RuSaWa]

[Say]
[Shi]

[Tro]

[WaSa]

REFERENCES

M. BUCK AND D. WIEDEMANN, Gray codes with restricted density, Discrete Math., 48
(1984), pp. 163-171.

C. C. CHANG, H. Y. CHEN, AND C. Y. CHEN, Symbolic Gray code as a data allocation
scheme for two-disc systems, Comput. J., 35 (1992), pp. 299-305.

C. C. CHANG, R. C. T. LEE, AND M. W. Du, Symbolic Gray code as a perfect multiat-
tribute hashing scheme for partial match queries, IEEE Trans. Software Engineering,
8 (1982), pp. 235-249.

H. FREDRICKSEN AND I. J. KESSLER, An algorithm for generating necklaces of beads in
two colors, Discrete Math., 61 (1986), pp. 181-188.

H. FR.EDRICKSEN AND J. MAIORANA, Necklaces of beads in k colors and k-ary de Bruijn
sequences, Discrete Math., 23 (1978), pp. 207-210.

M. GARDNER, The curious properties of the Gray code and how it can be used to solve
puzzles, Scientific American, 227 (1972), pp. 106-109.

F. GRAY, Pulse Code Communication, U. S. Patent 2632058, March 17, 1953.
S. M. JOHNSON, Generation of permutations by adjacent transpositions, Math. Comput.,

17 (1963), pp. 282-285.
R. KAYE, A Gray code for set partitions, Inform. Process. Lett., 5 (1976), pp. 171-173.
P. KLINGSBERG, A Gray code for compositions, J. Algorithms, 3 (1982), pp. 41-44.
R. M. LOSEE, A Gray code based ordering for documents on shelves, J. Amer. Soc.

Inform. Sci., 43 (1992), pp. 312-322.
J. M. LUCAS, The rotation graph of binary trees is hamiltonian, J. Algorithms, 8 (1987),

pp. 503-535.
J. M. LUCAS, D. ROELANTS VAN BARONAIGIEN, AND F. RUSKEY, On rotations and the

generation of binary trees, J. Algorithms, 15 (1993), pp. 343-366.
A. NIJENHUIS AND H. S. WILE, Combinatorial Algorithms for Computers and Calcula-

tors, Academic Press Inc., New York, 1978.
G. PRUESSE AND F. RUSKEY, Generating the linear extensions of certain posers by trans-

positions, SIAM J. Discrete Math., 4 (1991), pp. 413-422.
G. PRUESSE AND F. RUSKEY, Generating linear extensions fast, SIAM J. Comput., 23

(1994), pp. 373-386.
D. RA’SMUSSEN, C. SAVAGE, AND D. WEST, Gray codes for families of integer partitions,

J. Combin. Theory Ser. A, 70 (1995), pp. 201-229.
D. RICHARDS, Data compression and Gray-code sorting, Inform. Process. Lett., 22

(1986), pp. 201-205.
F. RUSKEY, Adjacent interchange generation of combinations, J. Algorithms, 9 (1988),

pp. 162-180.
F. RUSKEY, Generating linear extensions of posers by transpositions, J. Combin. Theory

Ser. B, 54 (1992), pp. 77-101.
F. RUSKEY AND A. PROSKUROWSKI, Generating binary trees by transpositions, J. Algo-

rithms, 11 (1990), pp. 68-84.
F. RUSKEY, C. D. SAVAGE, AND T. M. WANG, Generating necklaces, J. Algorithms, 13

(1992), pp. 414-430.
C. D. SAVAGE, Gray code sequences of partitions, J. Algorithms, 10 (1989), pp. 577-595.
Y. SHILOACH, Fast canonization of circular strings, J. Algorithms, 2 (1981), pp. 107-121.
G. STACHOWlAK, Hamilton paths in graphs of linear extensions for unions of posets,

SIAM J. Discrete Math., 5 (1992), pp. 199-206.
H. F. TROTTER, PERM (Algorithm 115), Comm. ACM, 5 (1962), pp. 434-435.
D. B. WEST, Generating linear extensions by adjacent transpositions, J. Combin. Theory

Ser. B, 57 (1993), pp. 58--64.
T. M. WANG AND C. D. SAVAGE, A New Algorithm for Generating Necklaces, Technical

report TR-90-20, Department of Computer Science, North Carolina State University,
Raleigh, NC, 1990.

T. M. WANe, Gray Codes for Necklaces of Fixed Density, Ph.D. thesis, Department of
Computer Science, North Carolina State University, Raleigh, NC, 1994.

H. S. WILE, Combinatorial Algorithms: An Update, SIAM, Philadelphia, 1989.

SIAM J. DISCRETE MATH.
Vol. 9, No. 4, pp, 674-681, November 1996

1996 Society for Industrial and Applied Mathematics
011

FINDING INDEPENDENT SETS IN TRIANGLE-FREE GRAPHS*

KATHRYN FRAUGHNAUGHt AND STEPHEN C. LOCKE$

Abstract. Finding a maximum independent set in a graph is well known to be an NP-complete
problem. Here an O(n2)-time algorithm that finds an independent set of order at least (6n-m)/13 in
a triangle-free graph with n vertices and rn edges is presented. A tight lower bound on independence
in 4-regular triangle-free graphs is 4n/13, so the bound is sharp for this class.

Key words, independence, triangle-free, algorithm, maximum degree four

AMS subject classification. 05C

1. Introduction. In general we follow the notation and terminology of [2]. A
graph G (V, E) is simple and loop-free. The maximum and minimum degrees of
G are denoted A(G) and 5(G), respectively. The degree of a vertex v is d(v), the
set of neighbors of v is N(v), and the closed neighborhood of v is N[v]. The graph
induced by the vertices of Y- N[v] is H(v). The sum of the degrees of the vertices
of N(v) is denoted s(v). A triangle-free graph is one that contains no complete graph
on three vertices. A set of vertices is independent if no two of them are adjacent. The
independence of a graph is the maximum cardinality of an independent set.

In [5], Fraughnaugh showed that every triangle-free graph with maximum degree
at most 4, n vertices, rn edges, and independence a satisfies rn >_ 6n- 13a. It follows
from this inequality that the independence in such a graph is always at least 4n/13.
This is best possible for this class. In [7], Kreher and Radziszowski demonstrated
that this same inequality holds for all triang!e-free graphs, without being aware of the
earlier work in [5]. We will develop an algorithm to find independent sets in triangle-
free graphs relying heavily on the proof in [5]. Although there is a close relationship
between induction in mathematics and recursion in algorithm design, the proof in
[5] does not yield an explicit algorithm. Crucial parts of the proof depend upon the
existence of sufficiently large independent sets in certain subgraphs but give no means
of finding them. Thus the proof of algorithm correctness provides a new proof of both
Fraughnaugh’s and Kreher and Radziszowski’s results.

For ease of proof, we introduce the algorithm in three parts. The most difficult
part of the proof of correctness is for the algorithm applied to triangle-free graphs with
maximum degree at most 4, which we present in 2. In 3 we extend the algorithm to
triangle-free graphs with no degree restrictions. In 4 we discuss the computational
complexity of all algorithms.

2. The algorithm in graphs with maximum degree four. The algorithm
that we are about to describe must handle 3-regular graphs as a special case. We will
use an algorithm, built from two algorithms of Bondy and Locke, to find independent
sets of order at least 7n/20 in triangle-free cubic graphs of order n. First, in [1],
an algorithm is given for constructing a bipartite subgraph of a triangle-free graph G
with maximum degree at most 3 that has at least 41E]/5 edges. We refer the reader to
that paper for a description of the algorithm. Then, in Theorem 1 of [8], Bondy and
Locke give an algorithm to construct an independent set in a 3-regular triangle-free

Received by the editors April 5, 1994; accepted for publication (in revised form) December 28,
1995.

University of Colorado at Denver, Denver, CO 80217 (kfraughn@carbon.cudenver.edu).
Florida Atlantic University, Boca Raton, FL 33431 (lockesacc.fau.edu).

674

INDEPENDENT SET 675

graph G from a given bipartite subgraph B of G. Although the algorithm described
in [8] assumes that IE(B)I is maximum, all that is necessary for the argument is that
the subgraph induced by B contain no vertices of degree 0 or 1 in B. The bipartite
subgraph constructed in [I] has no such vertices. Let B (X, Y) be the bipartite
subgraph of G constructed by the algorithm of [I]. Let X {v E X" dB(v) i},
Y {v e Y’dB(v)= i}, xi [Xi[, and yi [Y[. We note that X0, X1, Y0, and Y1
are all empty. Assume that X has been chosen so that x2/2 -+- x3

_
y2/2 + Y3. The

vertices of X2 split into at most two independent sets, so let X be the larger of these
sets. Then a _> x2/2+x3 >_ (1/2)(x2/2+x3+y2/2+y3) (1/4)(x2+2x3+Y2+2y2)
(1/4)(2x2 + 3x3 + 2y2 + 3y3 (x2 + x3 + Y2 + Y3)) (1/4)(2[E(B)[- 21E[/3
(1/4)(3[E(B)I/IE 1)(2[E]/3) (1/4)(3[E(B)[/IE[- 1)IV[. Since [E(B)[/IE >_ 4/5,
the combined algorithm finds an independent set of order at least 7n/20 in a triangle-
free cubic graph of order n. We refer to the combined algorithm as the Bondy-Locke
algorithm.

Bondy and Locke showed that the only graphs for which the algorithm in [1] can
possibly construct a bipartite subgraph of size only 4[E[/5 are the Petersen graph
and the dodecahedron. Thus these are the only graphs for which the Bondy-Locke
algorithm can possibly construct an independent set of order exactly 7n/20. However,
the Petersen graph cannot have a subset of V with exactly 7n/20 7/2 vertices. This
leaves the dodecahedron as the only graph in which the Bondy-Locke algorithm might
construct an independent set of order 7n/20.

Now we give the algorithm to find independent sets in graphs with maximum
degree at most 4. It treats 3-regular graphs as a special case. When the graph is
not 3-regular, the algorithm is basically a greedy algorithm where the choice of the
next vertex to add to the independent set under construction is among vertices of the
minimum degree.

ALGORITHM INDEPENDENT SET FOR MAXIMUM DEGREE 4 (IS4)

Input" A triangle-free graph H with maximum degree at most 4.
Output: An independent set I.
Set I .
For each component G of H do

Set V vertex set of G.
While V = } do

If G is 3-regular then
apply the Bondy-Locke algorithm to get an independent set I’.
Set I IU I’.
Set V 0.

else
If 5(G) _< 3 then

choose v with degree 5(G) and with s(v) as large as

possible
else (G is 4-regular)

if G contains a 4-cycle then choose v in the 4-cycle
else choose any v.

Set I I U {v}.
Set V V- N[v].
Set G the subgraph induced by V.

676 KATHRYN FRAUGHNAUGH AND STEPHEN C. LOCKE

Before proving that the algorithm finds independent sets that are appropriately
large, we examine its performance on cycles.

LEMMA 2.1. Let G be a graph with n vertices and e edges. If G is the 5-cycle,
Algorithm IS4 (hereafter referred to as "IS4") constructs an independent set of order
(6n- e + 1)/13. If G is any other cycle, the algorithm constructs an independent set
of order greater than (6n- e + 2)/13.

Proof. It is easy to verify that IS4 constructs a maximum independent set in a
cycle. If n 2k and k _> 2, then IS4 constructs an independent set of order k, and
k > (10k + 2)/13 (6n e + 2)/13. If n 2k + 1 and k > 3, then IS4 constructs an
independent set of order k, and k :> (10k + 7)/13 (6n- e + 2)/13. For the 5-cycle,
the algorithm constructs a 2-element independent set, and (6n-e + 1)/13 2. 13

In order to prove that the algorithm constructs independent sets that are large
enough, we need to prove a stronger statement.

THEOREM 2.2. For every triangle-free graph G with n vertices, e edges, and
maximum degree at most four, the algorithm IS4 finds an independent set I with

III >_ 113(6n e).

Moreover, II] >_ (6n e + 1)/13, unless either G is 4-regular or 5(G) 3, A(G) 4
and G contains a 4-cycle.

In addition, if 5(G) < 2, then III >_ (6n e + 2)/13 unless G is a D-cycle, or G is
the disjoint union of a 5-cycle and a 4-regular graph, or 5(G) 2 and G contains a

4-cycle.
Proof. The proof is by induction on the number of vertices of G. The verification

of the correctness of the algorithm is trivial for a graph with one vertex. Assume all
statements of the theorem for graphs of order less than n and consider a triangle-free
graph G with n vertices, e edges, and maximum degree at most 4.

First suppose G is disconnected. Let G be a component of G with 5(G) 5(G),
and let G2 G- G. Let n and e be the number of vertices nd edges in G for

1, 2. Then’by the induction hypothesis, IS4 constructs an independent set I in

G with 1121 :> (6n2 -e2 + 1)/13 unless G2 is 4-regular, or G hs minimum degree
3, maximum degree 4, nd contains a 4-cycle. In ny case, 1121 >_ (6n2 -e2)/13.

If 5(G) 5(G) <_ 2, then IS4 finds n independent set I in G1 with IIl >_
(6n -e + 2)/13, unless G is 5-cycle or 5(G) 2 and G contains 4-cycle. In
the exceptionM cses, II[>_ (6n-e + 1)/13. Then the independent set I constructed
by the algorithm has order IIl + IIl >_ (6n- e + 2)/13, unless (1 is a 5-cycle nd G2
is 4-regular, or G contains a 4-cycle. In both exceptionM cses, III >_ (6n e + 1)/13,
as desired.

If 5(G) 5(G) >_ 3, then IS4 constructs I with IIl _> (6n e + 1)/13, unless
G is 4-regular or G is nonregular and contains a 4-cycle, and in both of these cses

IIl _> (6hi e)/13. Now III >_ (6n e + 1)/13 with the only case in which we get
III (an- e)/13 being when either both G and G2, and also G, are 4-regular, or
G, and hence G, is a nonregular graph that contains a 4-cycle. This establishes all
statements of the theorem for G disconnected.

Now suppose G is connected and consider the various possibilities for the mini-
mum degree of G.

Case 1.5(G) 1. Then IS4 chooses a vertex v with degree 1. At the next step,
the input to IS4 is a graph G with n- 2 nodes and at most e- 1 edges. Thus by
induction IS4 constructs an independent set I’ in G’ with II’l _> (6(n-2)- (e- 1))/13
so that]II= Irl / 1 _> (6n- e + 2)/13.

INDEPENDENT SET 677

Case 2. i(G) = 2. If IS4 chooses v with s(v) 4, then G is a cycle and the
result follows from Lemma 2.1. So we may assume that IS4 chooses v with s(v) >_ 5.
At the next step the input to the algorithm is a graph G with n- 3 nodes and
at most e- s(v) edges. Thus by induction II’l >_. (6(n- 3)- (e- s(v)))/13 and
III

(6n- e + s(v) 5)/13.

If s(v) 5 (and, by choice, s(v) is maximum among all vertices of degree 2),
then v has a neighbor w of degree 2 with s(w)

5. Thus G’ has minimum degree at

most 2 and by the induction hypothesis II’l >__ (6(n- 3) -(e- 5)
(6n-e/l)/13. Moreover, if lI < (6n-e/2)/13, then II’l < (6(n-3)-(e-5)/2)/13
and since i(G) _< 2, either G contains a 4-cycle, is a 5-cycle, or is the disjoint union
of a 5-cycle and a 4-regular graph. Since G is connected, G cannot have a 4-regular
component or else so does G. If G is a 5-cycle and w is the neighbor of v that
has degree 3, then w’s two neighbors in the 5-cycle are nonadjacent or else there is
a triangle. Thus w and its neighbors in the 5-cycle belong to a 4-cycle. Hence, G
contains a 4-cycle.

If s(v)--6, then III k (6n-e+1)/13 with III _< (6n-e+2)/13 only if
II’l < (6(n 3) (e 6) + 1)/13. By induction, since G’ cannot be 4-regular, G’
contains a 4-cycle and so does G. Finally, if s(v) _> 7, then II! _> (6n- e + 2)/13. This
establishes all statements of the theorem when 5(G) 2.

Case 3, 5(G) 3. If G is 3-regular, then we use the Bondy-Locke algorithm to
find an independent set of order at least 7n/20. It is easy though tedious to show
that [7n/20] >_ (9n + 2)/26 (6n e + 1)/13 for all even n >__ 4.

If G is not 3-regular, then there is a vertex v with degree 3 and s(v) >_ 10,
which IS4 chooses. At the next step the input to IS4 is a graph G’ with n- 4
vertices and e- s(v) edges. Suppose that IS4 chooses v with s(v) 10. Then v
has a neighbor w with degree 3. If both neighbors of w in G’ have degree 4, then
s(w) 11, which contradicts the choice of v. Thus ti(G’)

2 and by induction

II’l >_ (6(n-4)-(e-lO)+l)/13, which yields III >_ (6n-e) IflI < (6n-e+l)/13,
then since G’ has minimum degree 2, G’ contains a 4-cycle (and hence G has a 4-
cycle) or G’ is a 5-cycle or the disjoint union of a 5-cycle and a 4-regular graph. If
G’ is a 5-cycle, then the neighbor of v with degree 4 has three neighbors in G’, which
is impossible in a triangle-free graph. The last case also cannot occur, since G is
connected.

If s(v) k 11, then since i(G’) _< 3, it follows that II’l >_ (6(n-4)-(e-ll))/13 with

I1’1 < (6(n-4)- (e- 11)+ 1)/13 only if G’ contains a 4-cycle. Thus III >_ (6n-e)
and iII < (6n e + 1)/13 only if G contains a 4-cycle. This establishes the theorem
when i(G) _< 3.

Case 4. G is 4-regular. If G contains a 4-cycle, then IS4 chooses v in the 4-cycle.
In this case, the input to IS4 at the next step is a graph G’ with minimum degree 2 and
with n- 5 vertices and e- 16 edges. By induction, IS4 constructs an independent set
I’ in G’ with II’l >_ (6(n-5)- (e- 16)+ 1)/13. Thus III >.k (6n-e)/13. On the other
hand, if G contains no 4-cycle, then IS4 chooses v arbitrarily. Then G’ has no 4-cycle
and cannot be 4-regular, and hence by induction II’! _> (6(n- 5)- (e- 16)+ 1)/13.
So again III _> (6n- e)/13. This completes the proof.

COROLLARY 2.3. The algorithm IS4 constructs an independent set of order at
least 4n/13 in every triangle-free graph with n vertices and maximum degree at most
4.

Proof. Since every graph with maximum degree 4 has at most 2n edges, (6n-
e)/13 _> 4n/13.

678 KATHRYN FRAUGHNAUGH AND STEPHEN C. LOCKE

The 4-regular Cayley graph on 13 vertices labeled 0 through 12 with edges de-
termined by ij E E if and only if (i j) mod 1"3 E {1, 5, 8, 12} has independence 4.
This graph also appears in [2] on page 105. This graph demonstrates that the bound
is sharp.

3. General algorithm for triangle-free graphs. Now we will extend the algo-
rithm to find independent sets in triangle-free graphs with no restriction on maximum
degree. We begin by presenting an algorithm for triangle-free graphs with maximum
degree at most 5. The extension to graphs with no restriction on maximum degree is
then easy. Recall that H(v) is the subgraph induced by the vertices of V N[v].
ALGORITHM INDEPENDENT SET FOR MAXIMUM DEGREE 5 (ISh)
Input: A triangle-free graph H with maximum degree at most 5.
Output: An independent set I.
Set I
For each component G of H do

Set V vertex set of G.
While V = q} do

If A(G) <_ 4 then
apply IS4 to G to get an independent set I’.
Set I I t2 1’.
Set V

else (A(G) 5)
if 6(G) _< 2 then choose v with degree 6(G) and s(v) as large as

possible
if 6(G) _> 3 then choose v with s(v) >_ 6d(v) 7 (if it exists)
else choose v with degree 3, with s(v) 10 and 6(H(v)) <_ 2.

Set I IU {v}.
Set V V- N[v].
Set G the subgraph induced by V.

Before proving that the algorithm produces an independent set of the desired
order, we show that vertices of the type required by the construction can always be
found.

LEMMA 3.1. In every triangle-free graph G with A(G) 5 and 5(G) >_ 3, either
there is a vertex v with s(v) >_ 6d(v) 7 or there is a vertex v with degree 3, with s(v)

10 and 5(H(v)) <_ 2.
Proof. If there is a vertex v with d(v) 5 and s(v) >_ 23, then we are finished. So

suppose v is a vertex of degree 5 with s(v) <_ 22. Then v has a neighbor w of degree
3or4.

Supposed(w) =3. Sinceh(G) _> 3andv N(w), thens(w) >_ 11 andwisa
vertex of the type desired.

Next suppose d(w) 4. If s(w) >_ 17, we obtain the result. Otherwise, since
5(G) _> 3 and v N(w), the vertex w has a neighbor u of degree 3. Since w N(u)
and 5(G) >_ 3, s(u) >_ 10. Now either s(u) >_ 11 and the result follows, or s(u) 10
and u has a neighbor x with d(x) 3. Similarly, either s(x) >_ 11 or x has a neighbor
y e H(u) with degree 3. Thus 5(H(u)) _< 2 and u is the vertex desired.

Now we prove correctness of the algorithm.
THEOREM 3.2. For every triangle-free graph G with n vertices, e edges, and

A(G) _< 5, Algorithm IS5 (hereafter referred to as "ISh") constructs an independent
set I with III >_ (6n- e)/13. Moreover, if 5(G) <_ 2, then [II >_ (6n- e + 1)/13.

INDEPENDENT SET 679

Proof. The proof is by induction on n. The statement is trivial to show for
graph with one vertex. We assume both statements are true for triangle-free graphs
with maximum degree at most 5 and fewer than n vertices and let G be a triangle-free
graph with n vertices, e edges, and maximum degree at most 5. If A(G) <_ 4, then
the result follows from Theorem 2.2. So suppose A(G) 5.

First we make a general observation to simplify what follows. If IS5 chooses
vertex v with s(v) >_ 6d(v) k for some positive integer k, then at the next stage
the input to the algorithm is a graph G’ with n- d(v)- 1 vertices and e- s(v)
edges. Now according to whether A(G’) _< 4 or A(G’) = 5, we either use IS4 or the
construction above. If A(G’) <_ 4, we apply Theorem 2.2. If A(G’) 5, we apply
the induction hypothesis. In either situation, at the next step we get an independent
set I’ in G’ with II’] _> (6(n d(v) 1) (e s(v)))/13 >__ (6n e (k / 6))/13.
So [II [I’[+ 1 :> (6n e + (7- k))/13. If (H(v)) <_ 2, then since G’ H(v),
a similar argument shows that it follows from Theorem 2.2 or from the induction
hypothesis that [I[>_ (6n e / (8 k))/13. In summary, when IS5 chooses v with
s(v) >_ 6d(v) k, we get]I[_> (6n e q- (7 k))/13, while if (H(v)) _< 2, we get
II[_> (6n- e + (8- k))/13.

Now we consider the various possibilities for minimum degree of G. If i(G) 0,
then IS5 chooses a vertex v of degree 0. Then s(v) >_ 0 > 6d(v) -6; that is, we can
take k 6 in the above discussion. Thus IS5 constructs an independent set I with
[I[>_ (6n e + 1)/13. If i(G) 1, then IS5 chooses a vertex v of degree 1. Then
s(v) :> 1 >_ 6d(v)- 6 and the result follows.

Suppose i(G) 2. Then IS5 chooses a vertex v with d(v) 2 and s(v) as large as
possible. If s(v) >_ 6 6d(v)- 6, then IS5 constructs I of appropriate order. Suppose
s(v) 5. Since i(G) 2, then v must have a neighbor w of degree 2. Since s(v) was
chosen as large as possible, s(w) _< 5 and hence w has a neighbor in H(v) of degree
2. Thus (H(v)) <_ 2 and it follows that II[>_ (6n e -t- 1)/13. If s(v) 4 for every
vertex v of degree 2, then G is a cycle or the disjoint union of cycles and components
with minimum degree at least 3. Since IS5 is the same as IS4 for cycles, the result
follows from Lemma 2.1 and an easy calculation.

Finally, if i(G) _> 3, it follows from Lemma 3.1 that we can always find a vertex
v with s(v) >_ 6d(v) 7 or with s(v) >_ 6d(v) 8 and with (H(v)) _< 2. (The vertex
of degree 3 in Lemma 3.1 satisfies the latter condition.) In either case IS5 constructs
an independent set I of order at least (6n- e)/13.

Finally, we describe the general algorithm for triangle-free graphs with no restric-
tion on maximum degree. The procedure is simply to remove vertices of degree 6 or
more until a graph with maximum degree 5 is reached and then to apply ISh.

ALGORITHM INDEPENDENT SET (IS)

Input" A triangle-free graph G.
Output" An independent set I.
Set V the vertex set of G.
While A(G) _> 6,

choose a vertex v with degree 6 or more.
Set V V- {v}.

Perform IS5 on the subgraph induced by the vertices of V.

THEOREM 3.3. For every triangle-free graph G, IS constructs an independent set
I with [I[_> (6n- e)/13.

680 KATHRYN FRAUGHNAUGH AND STEPHEN C. LOCKE

Proof. Again we prove correctness of the algorithm using induction. As usual,
when G is a single vertex, the verification is trivial and we assume that the statement
is true for graphs with fewer than n vertices. We only need establish that Algorithm
IS (hereafter referred to as "IS") performs as desired when A(G) _> 6. Suppose IS
chooses a vertex v with degree 6 or more. Then the input to the algorithm at the next
stage is a graph G with n- 1 vertices and e-d(v) edges. By the induction hypothesis,
IS constructs an independent set I’ with II’l >_ (6(n-1)-(e-d(v)))/13 >_ (6n-e)
Since II1 II’l, the result is established.

4. Algorithm complexity and conclusion. We describe the complexity of IS
in terms of the order n of the graph. First we discuss the complexity of the Bondy-
Locke algorithm. In [1] the algorithm to construct a bipartite subgraph of order
at least 41EI/5 in triangle-free graphs with maximum degree at most 3 is shown to
be O(n2). The construction of the independent set from the bipartite subgraph is
clearly O(n) as it involves a simple examination of degrees and membership in the
sets forming the bipartition. Thus the Bondy-Locke algorithm is O(n2).

The procedure in IS4 that requires determining whether a 4-regular graph contains
a 4-cycle can be seen to be O(n) as follows" to find a 4-cycle in a graph with maximum
degree A, list all paths at v with length 2 for each vertex v. Then check whether two
of these paths end at the same vertex. This requires O(A2) steps to list the paths
and O(log A) steps to examine O(A(A- 1)) vertices for duplicates; thus determining
whether the graph containing a 4-cycle requires O(A3n) steps. Since A _< 4 in IS4,
this procedure is O(n). The other expensive procedures in IS4, ISh, and IS require
only the calculation of degrees of vertices, the maximum and minimum degree of the
graph, and the components of the graph, all of which can be done in at most O(n2)
steps. Thus each of the algorithms IS4, ISh, and IS has complexity O(n2).

In conclusion, we observe that the performance of the algorithm could be im
proved by replacing the Bondy-Locke algorithm, in Case 3 of Theorem 2.2, with an
algorithm that finds an independent set of order at least 5n/14 in triangle-free graphs
with maximum degree 3. Staton [9] showed that this is a tight lower bound for in-
dependence in such graphs. In [6] a stronger result (similar to the result in [5] upon
which this algorithm is based) is proved, from which Staton’s lower bound follows.
Designing an algorithm based on the proof in [6] appears to be difficult. However,
Griggs and Murphy [4] have recently devised an algorithm to construct an indepen-
dent set of order at least 5(n- 1)/14 in 3-regular connected triangle-free graphs and
greater than 5n/14 in connected nonregular triangle-free graphs with maximum degree
3. A more recent algorithm of Fraughnaugh and Locke [3] constructs an independent
set of order at least (lln- 4)/30 in connected triangle-free graphs with maximum
degree 3, including the cubics. This newer Fraughnaugh-Locke algorithm provides
results at least as good as those guaranteed by the Bondy-Locke algorithm used in
this proof. The Bondy-Locke algorithm produces an independent set of cardinM-
ity at least [7n/20. The Griggs-Murphy algorithm produces an independent set of
cardinMity at least [5(n- 1)/14. The Fraughnaugh-Locke algorithm produces an
independent set of cardinality at least [(lln- 4)/30]. When the input is a cubic
triangle-free graph, each of these algorithms produces an independent set of cardi-
nality at least [(9n + 2)/26 as needed in Case 3--with the possible exception of the
cases n 6, 12, 26 for the Griggs-Murphy algorithm. Furthermore, each of these three
algorithms is polynomial time.

INDEPENDENT SET 681

REFERENCES

[1] J. A. BONDY AND S. C. LOCKE, Largest bipartite subgraphs in triangle-free graphs with maxi-
mum degree three, J. Graph Theory, 10 (1986), pp. 477-504.

[2] J. A. BONDY AND U. S. R. MURTY, Graph Theory with Applications, American Elsevier, New
York, NY, 1976.

[3] K. FRAUGHNAUGH AND S. C. LOCKE, 11/30 (finding large independent sets in connected
triangle-free 3-regular graphs), J. Combin. Theory Ser. B, 65 (1995), pp, 51-72.

[4] J. R. GRIGGS AND O. MURPHY, Edge density and independence ratio in triangle-free graphs
with maximum degree three, Discrete Math., 152 (1996), pp. 157-170.

[5] K. FRAUGHNAUGH JONES, Independence in graphs with maximum degree four, J. Combin. The-
ory Ser. B, 37 (1984), pp. 254-269.

[6] ------, Size and independence in triangle-free graphs with maximum degree three, J. Graph
Theory, 14 (1990), pp. 525-535.

[7] D. L. KREHER AND S. P. RADZISZOWSKI, Minimum triangle-free graphs, Ars Combin., 31 (1991),
pp. 65-92.

[8] S. C. LOCKE, Bipartite density and the independence ratio, J. Graph Theory, 10 (1986), pp.
47-53.

[9] W. STATON, Some Ramsey-type numbers and the independence ratio, Trans. Amer. Math. Soc.,
256 (1979), pp. 353-370.

	SJDMEC_V09_i1_p0001
	SJDMEC_V09_i1_p0007
	SJDMEC_V09_i1_p0019
	SJDMEC_V09_i1_p0029
	SJDMEC_V09_i1_p0037
	SJDMEC_V09_i1_p0055
	SJDMEC_V09_i1_p0063
	SJDMEC_V09_i1_p0071
	SJDMEC_V09_i1_p0087
	SJDMEC_V09_i1_p0101
	SJDMEC_V09_i1_p0118
	SJDMEC_V09_i1_p0129
	SJDMEC_V09_i1_p0151
	SJDMEC_V09_i1_p0155
	SJDMEC_V09_i2_p0167
	SJDMEC_V09_i2_p0173
	SJDMEC_V09_i2_p0178
	SJDMEC_V09_i2_p0201
	SJDMEC_V09_i2_p0210
	SJDMEC_V09_i2_p0225
	SJDMEC_V09_i2_p0233
	SJDMEC_V09_i2_p0258
	SJDMEC_V09_i2_p0269
	SJDMEC_V09_i2_p0274
	SJDMEC_V09_i2_p0290
	SJDMEC_V09_i2_p0301
	SJDMEC_V09_i2_p0309
	SJDMEC_V09_i2_p0317
	SJDMEC_V09_i2_p0339
	SJDMEC_V09_i3_p0349
	SJDMEC_V09_i3_p0360
	SJDMEC_V09_i3_p0365
	SJDMEC_V09_i3_p0377
	SJDMEC_V09_i3_p0393
	SJDMEC_V09_i3_p0413
	SJDMEC_V09_i3_p0424
	SJDMEC_V09_i3_p0453
	SJDMEC_V09_i3_p0492
	SJDMEC_V09_i4_p0511
	SJDMEC_V09_i4_p0529
	SJDMEC_V09_i4_p0545
	SJDMEC_V09_i4_p0562
	SJDMEC_V09_i4_p0577
	SJDMEC_V09_i4_p0597
	SJDMEC_V09_i4_p0602
	SJDMEC_V09_i4_p0625
	SJDMEC_V09_i4_p0643
	SJDMEC_V09_i4_p0654
	SJDMEC_V09_i4_p0674

